首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Zooplankton, sampled at five stations from the upper Sangga estuary (7 km upstream) in Matang Mangrove Forest Reserve (MMFR), Malaysia, to 16 km offshore, comprised more than 47% copepod. Copepod abundance was highest at nearshore waters (20,311 ind m−3), but decreased toward both upstream (15,572 ind m−3) and offshore waters (12,330 ind m−3). Copepod abundance was also higher during the wetter NE monsoon period as compared to the drier SW monsoon period, but vice versa for copepod species diversity. Redundancy analysis (RDA) shows that copepod community structure in the upper estuary, nearshore and offshore waters differed, being influenced by spatial and seasonal variations in environmental conditions. The copepods could generally be grouped into estuarine species (dominantly Acartia spinicauda Mori, Acartia sp1, Oithona aruensis Früchtl, and Oithona dissimilis Lindberg), stenohaline species (Acartia erythraea Giesbrecht, Acrocalanus gibber Giesbrecht, Paracalanus aculateus Giesbrecht, and Corycaeus andrewsi Farran) and euryhaline species (Parvocalanus crassirostris Dahl, Oithona simplex Farran, and Bestiolina similis (Sewell)). Shifts in copepod community structure due to monsoonal effects on water parameters occurred at the lower estuary. Copepod peak abundance in mangrove waters could be associated with the peak chlorophyll a concentration prior to it. Evidence of copepod consumption by many species of young fish and shrimp larvae in the MMFR estuary implies the considerable impact of phytoplankton and microphytobenthos on mangrove trophodynamics.  相似文献   

3.
黄河口邻近海域浮游动物群落时空变化特征   总被引:6,自引:1,他引:5  
利用2012年12月—2013年9月4个季度的现场调查资料研究了黄河口邻近海域浮游动物群落的时空分布特征。研究表明,黄河口邻近海域共鉴定出浮游动物70种,包括浮游幼虫19类。浮游动物优势种主要由夜光虫(Noctiluca scintillans)、小拟哲水蚤(Paracalanus parvus)、双刺纺锤水蚤(Acartia bifilosa)、拟长腹剑水蚤(Oithona similis)、强额拟哲水蚤(Paracalanus crassirostris)、近缘大眼剑水蚤(Corycaeus affinis)、强壮箭虫(Sagitta crassa)、双壳类幼体(Bivalvia larvae)、多毛类幼体(Polychaeta larvae)等种类。黄河口邻近海域浮游动物丰度夏季最高(60620个/m~3),春季(31228个/m~3)和秋季(21540个/m~3)次之,冬季最低(7594个/m~3)。不同季节浮游动物丰度的空间分布具有差异性,春季浮游动物丰度呈现出从近岸到外海降低的趋势;夏季浮游动物形成两个高丰度区,分别位于河口邻近海区和河口东部海区;秋季和冬季浮游动物丰度高值区均位于河口东部海区。浮游动物生物多样性指数均呈现从河口到外海升高的趋势,低值区位于黄河口入海口附近海区。相关性分析显示,黄河口邻近海域浮游动物丰度与海水温度显著正相关(r=0.212,P0.05),表明温度为影响黄河口邻近海域浮游动物丰度变化的主要因素。  相似文献   

4.
Seasonal cycles of zooplankton from San Francisco Bay   总被引:5,自引:5,他引:0  
The two estuarine systems composing San Francisco Bay have distinct zooplankton communities and seasonal population dynamics. In the South Bay, a shallow lagoon-type estuary, the copepods Acartia spp. and Oithona davisae dominate. As in estuaries along the northeast coast of the U.S., there is a seasonal succession involving the replacement of a cold-season Acartia species (A. clausi s.l.) by a warm-season species (A. californiensis), presumably resulting from the differential production and hatching of dormant eggs. Oithona davisae is most abundant during the fall. Copepods of northern San Francisco Bay, a partially-mixed estuary of the Sacramento-San Joaquin Rivers, organize into discrete populations according to salinity distribution: Sinocalanus doerrii (a recently introduced species) at the riverine boundary, Eurytemora affinis in the oligohaline mixing zone, Acartia spp. in polyhaline waters (18–30\%), and neritic species (e.g., Paracalanus parvus) at the seaward boundary. Sinocalanus doerrii and E. affinis are present year-round. Acartia clausi s.l. is present almost year-round in the northern reach, and A. californiensis occurs only briefly there in summer-fall. The difference in succession of Acartia species between the two regions of San Francisco Bay may reflect differences in the seasonal temperature cycle (the South Bay warms earlier), and the perennial transport of A. clausi s.l. into the northern reach from the seaward boundary by nontidal advection.Large numbers (>106 m–3) of net microzooplankton (>64 µm), in cluding the rotifer Synchaeta sp. and three species of tintinnid ciliates, occur in the South Bay and in the seaward northern reach where salinity exceeds about 5–10 Maximum densities of these microzooplankton are associated with high concentrations of chlorophyll. Meroplankton (of gastropods, bivalves, barnacles, and polychaetes) constitute a large fraction of zooplankton biomass in the South Bay during winter-spring and in the northern reach during summer-fall.Seasonal cycles of zooplankton abundance appear to be constant among years (1978–1981) and are similar in the deep (>10 m) channels and lateral shoals (<3 m). The seasonal zooplankton community dynamics are discussed in relation to: (1) river discharge which alters salinity distribution and residence time of plankton; (2) temperature which induces production and hatching of dormant copepod eggs; (3) coastal hydrography which brings neritic copepods of different zoogeographic affinities into the bay; and (4) seasonal cycles of phytoplankton.  相似文献   

5.
The present study aimed to investigate into the feeding ecology of the dominant copepods along a salinity gradient in Chikugo estuary. Copepod composition was studied from samples collected from stations positioned along the salinity gradient of the estuary. Copepod gut pigment concentrations were measured by fluorescence technique and hydrographical parameters such as temperature, salinity, transparency, suspended particulate matter (SPM); pigments such as chlorophyll-a (Chl-a), phaeopigment; and particulate nutrients such as particulate organic carbon (POC) and particulate organic nitrogen (PON) were measured. Two distinct zones in terms of nutrient and pigment concentrations as well as copepod distribution and feeding were identified along the estuary. We identified a zone of turbidity maximum (TM) in the low saline upper estuary which was characterized by having higher SPM, higher POC and PON but lower POC:PON ratios, higher pigment concentrations but lower Chl-a/SPM ratios and higher copepod dry biomass. Sinocalanus sinensis was the single dominant copepod in low saline upper estuary where significantly higher concentrations of nutrients and pigments were recorded and a multispecies copepod assemblage dominated by common coastal copepods such as Acartia omorii, Oithona davisae and Paracalanus parvus was observed in the lower estuary where nutrient and pigment concentrations were lower. Copepods in the estuary are predominantly herbivorous, feeding primarily on pigment bearing plants. However, completely contrasting trophic environments were found in the upper and the lower estuary. It was speculated from the Chl-a and phaeopigment values that copepods in the upper estuary receive energy from a detritus-based food web while in the lower estuary an algal-based food web supports copepod growth. Overall, the upper estuary was identified to provide a better trophic environment for copepod and is associated with higher SPM concentrations and elevated turbidity. The study demonstrates the role of estuarine turbidity maximum (ETM) in habitat trophic richness for copepod feeding. The study points out the role of detritus-based food web as energy source for the endemic copepod S. sinensis in the upper estuary, which supports as nursery for many fish species.  相似文献   

6.
Zooplankton were collected by vertical tows with 102 µm mesh at ten stations in Boston Harbor, Massachusetts Bay and Cape Cod Bay in February, March, April, June, August, and October, 1992. This study was part of a larger monitoring program to assess the effects of a major sewage abatement project, and sampling periods were designed around periods of major phytoplankton events such as the winter-spring diatom bloom, the stratified summer flagellate period, and the autumn transition from stratified to mixed waters. There was considerable seasonal variation in total zooplankton abundance, with minimal values in April (1929–11631 animals m–3) during a massive bloom of Phaeocystis pouchetii, and maximum values (67 316–261075 animals m–3) in August. There were no consistent trends of total abundance where any particular station had greater or lesser abundance than others over the entire year. Zooplankton abundance was dominated by copepods (adults + copepodites) and copepod nauplii (30.4–100.0% of total zooplankton, mean= 83.2%). Despite the large seasonal variation in zooplankton and copepod abundance, the copepod assemblage was dominated throughout the entire year by the small copepod Oithona similis, followed by Paracalanus parvus. Other less-abundant copepods present year-round were Pseudocalanus newmani, Temora longicornis, Centropages hamatus, C. typicus, and Calanus finmarchicus. Two species of Acartia were present, primarily in low-salinity waters of Boston Harbor: A. hudsonica during cold periods, and A. tonsa in warm ones. Eurytemora herdmani was also a subdominant in Boston Harbor in October. The potential role of zooplankton grazing in phytoplankton dynamics and bloom cycles in these waters must be considered in view of the overwhelming numerical dominance of the zooplankton by Oithona similis which may feed primarily as a carnivore. Furthermore, it seems unlikely that eutrophication-induced alteration of phytoplankton assemblages could cause significant trophic domino effects, reducing abundances of Calanus finmarchicus that are forage of endangered right whales seasonally utilizing Cape Cod Bay because C. finmarchicus has long been known to be a relatively unselective grazer, and most importantly, it is a trivial component of total zooplankton or total copepod abundance in these waters.  相似文献   

7.
In the Southern Ocean, zooplankton research has focused on krill and macro-zooplankton despite the high densities of micro- and meso-zooplankton. We investigated their community structure in relation to different sea ice conditions around Japan’s Syowa Station in Lützow-Holm Bay, in the summers of 2011 and 2012. Zooplankton samples were collected using vertical hauls (0–150 m), with a closing net of 100-μm mesh size. The results of cluster analysis showed that the communities in this region were separated into fast ice, pack ice, and open ocean fauna. The fast ice fauna had lower zooplankton abundance (393.8–958.9 inds. m?3) and was dominated by cyclopoid copepods of Oncaea spp. (54.9–74.8 %) and Oithona similis (6.6–19.9 %). Deep-water calanoid copepods were also found at the fast ice stations. Pack ice and open ocean fauna had higher zooplankton abundance (943.6–2,639.8 inds. m?3) and were characterized by a high density of foraminiferans in both years (6.6–61.9 %). Their test size distribution indicated that these organisms were possibly released from melting sea ice. The pteropod Limacina spp. was a major contributor to total abundance of zooplankton in the open ocean zone in 2012 (26.4 %). The physical and/or biological changes between 2 years may affect the abundance and distribution of the dominant zooplankton taxa such as cyclopoid copepods, foraminiferans, and pteropods. Information on the relationships between the different species associated with sea ice will help to infer the possible future impacts of climate change on the sea ice regions.  相似文献   

8.
The Mediterranean copepod Calanipeda aquaedulcis Kritschagin, 1873 was first recorded in the Kuibyshev Reservoir in August 2015. It has been detected at all surveyed stations from the Volga-Kama reach to the dam of the Zhiguli hydroelectric power plant; the most northern finding of the copepod has been recorded in the mouth of the Kama River (55°24′ N). C. aquaedulcis (0.3–7.3 thous. ind./m3) is in the group of dominant species and forms, on average, 13% of the total abundance and biomass of zooplankton. Comparatively large (1.0–1.4 mm) copepods reproduce intensively; females carry up to 18 eggs (on average 10 ± 0.6). The main part of the population (>90%) are represented by nauplii. The species has been found in smaller quantities (0.04–1.1 thous. ind./m3) throughout the Saratov Reservoir, which is located downstream the cascade. The ecology of the species and its potential importance in the zooplankton of the Volga reservoirs is discussed.  相似文献   

9.
The investigation of the zooplankton community in the upstream part of Stratos reservoir during a 24 months survey (September 2004–August 2006) revealed 26 invertebrate species (14 rotifers, 6 cladocerans, 5 copepods and one mollusk larva). The mean abundance of the total zooplankton was higher in the first sampling period (2004–2005) and ranged between 8.81 and 47.74 ind. L−1, than the second period (2005–2006) when fluctuated between 1.91 and 43.09 ind. L−1. The seasonal variation was strongly influenced by the presence of rotifers, which accounting on average for 68.4% in total. Among them Keratella cochlearis and the order Bdelloidea were numerically the most important, while Macrocyclops albidus prevailed among the copepods and Bosmina longirostris among the cladocerans. Dreissena polymorpha was the only mollusk found in the zooplankton community. Rotifers, copepods and cladocerans showed a seasonal succession with the former preceding in the abundance having their first maximum in spring, while copepods and cladocerans followed, having peaks of abundance in early summer and in autumn, respectively. No seasonal succession among the cladoceran species was observed. The intense water flow in the upstream part of the reservoir, as well as temperature, conductivity, DO, pH, phosphates and silicates, were significant parameters controlling abiotic and biotic elements of the ecosystem and consequently influencing the seasonal variation and the dynamics of the zooplankton community.  相似文献   

10.
We conducted a year-round mesozooplankton study in the Arctic Kongsfjord from August 1998 until July 1999 to investigate seasonal abundance and vertical as well as stage distributions of the prevalent taxa. It is the first investigation in Kongsfjord that covers the Arctic winter season and provides reasonable estimates also of small-sized copepod species. Abundant smaller copepods comprised Oithona similis, Pseudocalanus minutus, Microcalanus spp., Triconia borealis and Acartia longiremis. Among the larger copepods, Calanus finmarchicus, C. glacialis, C. hyperboreus and Metridia longa dominated. The thecosome pteropod Limacina helicina was also an important component. Abundance maxima occurred in November (988,669 ind. m?2) with one to two orders of magnitude higher numbers as compared to all other months (39,832–200,067 ind. m?2). The summers of 1998 and 1999 were characterized by intrusions of Atlantic water, but the community was not entirely dominated by advected boreal species. During winter, the majority of the mesozooplankton occurred below 100 m. Advection is the most likely reason for the accumulation of zooplankton at depth in winter, but local production may also contribute to high overwintering numbers. Much lower abundances of most species in spring suggest high winter mortality and emphasize the importance of sufficient reproductive success during the previous summer to ensure enough winter survivors as seed stock for the coming reproductive season. This study was conducted prior to the recent warming trend in the Arctic. Therefore, it provides valuable baseline data and allows comparing present and future states of the zooplankton community in Kongsfjord.  相似文献   

11.
烟台近海浮游动物优势种空间生态位研究   总被引:2,自引:0,他引:2  
根据2018年春、夏季烟台近海海域的调查资料,以浮游动物优势种(类)为研究对象,运用Levins公式和Pianka指数分析了浮游动物优势种(类)的生态位宽度和生态位重叠程度,采用冗余分析(RDA)研究了影响浮游动物优势种(类)空间生态位分化的主要因素。研究结果表明,浮游幼虫和桡足类是烟台近海浮游动物群落结构的主要组成群体,春、夏季浮游动物优势种(类)更替率为73.33%。依据烟台近海浮游动物优势种(类)的生态位宽度值,可将其划分为广生态位、中生态位和窄生态位三大类群,广生态位种类为浮游动物优势种(类)的主要构成群体,春季代表种类有短角长腹剑水蚤(Oithona brevicornis)、拟长腹剑水蚤(Oithona similis)等,夏季代表种类有小拟哲水蚤(Paracalanus parvus)、克式纺锤水蚤(Acartia clausi)等。生态位重叠指数与物种分布的环境位点的重合情况密切相关,广生态位种类之间的生态位重叠程度要高于窄生态位种类与其他种类之间的生态位重叠程度。RDA分析表明,春季影响浮游动物优势种(类)空间生态位分化的主要因素为海水温度、盐度和无机氮(DIN),夏...  相似文献   

12.
On some zooplankters common in the Cabo Frio (Brazil) upwelling.In the waters off Cabo Frio zooplankton maxima are observedbetween February and April, which is the period of upwellingoccurrence. Copepods are highly diversified; we identified 96species at a single collecting station during one year. In summerCalanoides carinatus, Paracalanus parvus and Oncea media areabundant, whereas we observed dominance of Temora stylifera,Clausocalanus furcatus, C. arcuicomis, Oithona plumifera andgreat quantity of Creseis acicula during winter. Chaetognatha(Sagitta enflata), Appendicularia (Oikopleura longicauda), Ostracoda(Conchoecia spp.) and Pteropoda (Limacina sp.) are permanentthroughout the year, and maximum in summer. The vertical distributionof zooplankton depends on the hydrological structure, i.e. natureof the water mass and degree of mixing between different waters.Brazil current water, with low quantity of organisms and dominanceof copepods (Clausocalanus furcatus, Mecynocera clausi, Corycaeidae,Oithonidae, Oncaeidae) accompanied by Evadne spinifera and Lucifertypicus. South Atlantic Central Water (upwelling water) characterizedby rare deep copepods and abundance of Calanoides carinatusand Ctenocalanus vanus which are excellent indicator speciesfor upwelling occurrence. Coastal water, with low salinity,where some species with brackish affinity are observed, likeOithona ovalis and Podon polyphemoides.  相似文献   

13.
渤海浮游动物群落生态特点 Ⅱ.桡足类数量分布及变动   总被引:23,自引:1,他引:23  
用1959年全国海洋普查浮游动物中网样品分析渤海浮游动物。尤其是中小型浮游动物的数量分布及变动特点。结果表明,渤海浮游动物全年平均丰度为3841ind/m^3,最大33756ind/m^3,最小6.5ind/m^3。其中桡足类年平均密度为3413ind/m^3,是数量的主要构成者。渤海浮游动物主要的高峰期出现在夏季,此外春、秋两季各自有一个小的高峰。春季峰主要是由双毛纺锤水蚤(Acartia bifilosa)的大量繁殖造成,秋季峰主要是由拟长腹剑水蚤(Oithona similis)构成。夏季峰是由于小拟哲水蚤(Paraclanus parvus)、强额拟哲水蚤(Paracalanus crassirostris)、拟长腹剑水蚤等多种桡足类和一些幼虫大量繁殖造成。渤海浮游动物季节演替比较明显。双毛纺锤水蚤、墨氏胸刺水蚤(Centropages mcmmurrichi)和中华哲水蚤(Calanus sinicus)是春季的优势种;小拟哲水蚤、拟长腹剑水蚤、近缘大眼剑水蚤(Corycaeus affinis)和太平洋纺锤水蚤(Acartia pacifica)是夏季的优势种;拟长腹剑水蚤、真刺唇角水蚤(Lubidocera euchaeta)等是秋季的优势种。数量的水平分布同温度的水平分布趋势基本一致。同盐度趋势相反。  相似文献   

14.
Zooplankton in the main channel of the Nakdong River and in three tributaries was sampled from June 1994 to September 1995. Planktonic rotifers (Brachionus spp., Keratella spp., and Polyarthra spp.), cyclopoid nauplii and small cladocerans (Bosmina longirostris) were numerically dominant. There was considerable longitudinal variation of zooplankton biomass in the main channel as well as spatial heterogeneity among the major tributaries. In the middle region of the main channel, between river kilometer (RK) 170 and 150 above the estuary dam, total zooplankton abundance sharply increased from less than 100 ind. L—1 to more than 1,000 ind. L—1. In a downstream direction toward the estuary dam, phytoplankton biomass increased while total zooplankton biomass decreased. However, as shown by the increasing transport of zooplankton biomass, zooplankton was diluted in the reach of the estuary dam. Advective effects from major tributaries appear to be the contributory factor for the higher zooplankton biomass in the middle region. Overall, rather the external factors (flushing, retention) than internal factors (e.g., phytoplankton) appear to be responsible for changes in zooplankton abundance toward the river mouth.  相似文献   

15.
We present a list of zooplankton taxa occurring in the Barents Sea based on our analysis of 360 samples from the upper 100 m of the water column as well as on reports from published sources. Moreover, we provide information on adult size, ecological and geographical distribution, habitat preference and frequency of occurrence of each taxon. The list encompasses a total of 374 species and higher taxa. Most are mesozooplankton, with Copepoda prevailing (153 species), and belong to the holoplankton. However, pseudoplankton, organisms only circumstantially occurring in the water column, also comprise a significant part of the fauna (86 taxa). The coastal zooplankton (264 neritic species) was richer than the fauna of the open sea. In our samples, the majority of the zooplankton taxa were rarely found (94 of 157 taxa, equivalent of 60%), 46 taxa (29%) were moderate and only 17 taxa (11%) were common (found in >80% of the samples). Among these, the copepods Calanus finmarchicus, C. glacialis, Oithona similis and Pseudocalanus minutus were most frequent.  相似文献   

16.
Seasonal changes in the species abundance of surface meso-zooplankton was monitored during spring, winter, and fall in Saanich Inlet, British Columbia. Small copepods were the dominant organisms during winter (Pseudocalanus minutus (Kröyer), Paracalanus parvus (Claus), Oithona helgolandica Claus, and Corycaeus anglicus Lubbock) while Calanus spp. were relatively rare. Pseudocalanus minutus was able to graze the flagellates which dominate winter phytoplankton populations but Calanus glacialis Jaschnov was not. There appeared to be active movement of small copepods towards the shallower depths where phytoplankton concentrations were highest. Pseudocalanus minutus was able to obtain its minimum energy requirement during winter by filter-feeding. Reproduction continued throughout the winter but at reduced rates. Growth was slowed at stages C-IV and C-V during winter with moulting to adult beginning immediately after a late winter increase in primary production.  相似文献   

17.
Information on the food and predation of zooplankton species is essential for an improved understanding of zooplankton community dynamics of the Southern Ocean. Feeding of dominant zooplankton species at locations across the neritic, slope and oceanic regions of Prydz Bay, Antarctica, was investigated with incubation experiments during austral spring/summer of 2009/2010 to identify the response of dominant copepods and krill to different feeding environments. Results showed distinct spatial and temporal variations in ingestion and filtration of predominant copepods and krill. In late spring, Calanoides acutus was inactive and the ingestion rate was only 1.30 μgC/ind/day. During early summer, a diatom bloom was in progress at station IS21, showing a peak biomass of Thalassiosira spp. and Fragilaria spp. Daily ingestion rates of Euphausia crystallorophias, C. acutus, Metridia gerlachei and Ctenocalanus citer were relatively high. By contrast, copepod ate predominantly ciliates in slope and oceanic regions where microplankton biomass were lower (<20 μgC/L). During late summer, microplankton of neritic regions, mainly composed of nano-sized Pseudo-nitzschia spp. and ciliates, was less than 10 μgC/L. C. acutus incubated in neritic regions mainly ate ciliates. The total microplankton biomass was lower (<5 μgC/L) and predominated by Pseudo-nitzschia spp. in slope regions north of Fram Bank, and daily ingestion rates of incubated copepods were less than 2.5 μgC/ind. Our results clearly demonstrated that copepods and krill had flexible feeding strategies to cope with temporally and spatially changing food availability in Prydz Bay. Meanwhile, ciliates appeared to represent an important carbon source for zooplankton, especially in regions with lower food concentrations.  相似文献   

18.
Early juvenile Japanese temperate bass Lateolabrax japonicus samples were collected during four cruises to study the spatial and temporal patterns of distribution and feeding habits of the fish in Chikugo estuary, Ariake Sea, Japan. Gut contents were studied by separating, identifying and counting the prey organisms. Plankton samples were collected during each cruise to study the numerical abundance of copepods in the water. Copepod dry biomass and gut content dry mass were estimated. Juveniles were distributed over wide estuarine areas in salinities ranging from as low as 0·37 to as high as 28·81. Considerable spatial and temporal variations were observed in the copepod distribution in the environment and in the food habits of the fish. Two distinctly different copepod assemblages were identified along the estuary: one in the upper river, dominated by a single species Sinocalanus sinensis, and the other a multi‐specific assemblage in the lower estuary dominated by common coastal copepods such as Acartia omorii, Oithona davisae, Paracalanus parvus and Calanus sinicus. The gut content composition corresponded strongly with the copepod composition in the environment, i.e. a single species (S. sinensis) dietary habit at the upper river and a multi‐specific dietary habit dominated by the common coastal copepods in the lower estuary. Ivlev's electivity index showed that the fish strongly preferred larger copepods and avoided smaller ones. Higher dry biomass of copepods in the water as well as higher dry masses of the gut contents were recorded in the low‐to‐medium saline upper river areas, indicating that these areas are of particular importance as nursery grounds for the juvenile Japanese temperate bass. It was speculated that ascending to the upstream nursery areas to utilize S. sinensis, which is the single dominant copepod in these areas, is one of the most important survival strategies of the Japanese temperate bass juveniles in the Chikugo estuary.  相似文献   

19.
Zooplankton species composition and abundance variation was studied in Lake Amvrakia, which is a deep, temperate, gypsum karst lake situated in the western Greece. The two year survey of zooplankton revealed 33 species (23 rotifers, five cladocerans, four copepods and one mollusc larva). The mean integrated abundance of the total zooplankton ranged between 83.6 and 442.7 ind. L−1, with the higher density to be recorded in the surface 0–20 m layer. Small numbers of specimens of almost all species were found also in the hypoxic or anoxic hypolimnion. Copepods and especially the calanoid Eudiaptomus drieschi dominated the zooplankton community throughout the sampling period, followed by Dreissena polymorpha larvae, rotifers and cladocerans. Seasonal succession among the cladocerans and the most abundant rotifer species was observed. The concentration of chlorophyll-a was the most important factor for the variation of total zooplankton, as well as for the rotifers’ community. Dissolved oxygen affected copepods and cladocerans, water level correlated mainly with the molluscs larvae of D. polymorpha, while temperature influenced the variation of several rotifers, the cladoceran Diaphanosoma orghidani and the mollusc larvae. Negative correlation of conductivity with the cladoceran Daphnia cucullata and the copepods E. drieschi and Macrocyclops albidus was found. The differences in species composition found in Lake Amvrakia in comparison to the nearby lakes are probably ought to the geographical isolation and perhaps to its particular chemistry (e.g., elevated conductivity).  相似文献   

20.
Temporal and spatial variability of micro and mesozooplankton was studied in 1998 and 1999 at four stations in the Neretva Channel area influenced by the Neretva river and the open waters of the south Adriatic Sea. The area is orthophosphate limited, but an excessive accumulation of land derived nitrogen is prevented by phytoplankton uptake and the general circulation pattern. Microzooplankton was dominated by ciliates, with average abundances comparable to other Adriatic channel areas (122–543 ind. l−1). Non-loricate ciliates (NLC) generally peaked in the warmer periods, but a winter increase was evident towards the inner part of the channel. Tintinnid abundances generally increased in autumn. A significant relationship with temperature was not recorded for either protozoan group. An inverse relationship between NLC and salinity might be indirectly caused by their preference for the food abundant surface layer. Mesozooplankton was dominated by copepods, with distinct summer maxima throughout the area and pronounced winter maxima of >10,000 ind. m−3 at the inner stations. The community was predominantly neritic but the open sea waters were important in structuring the mesozooplankton assemblage at all stations during the autumn–winter period. Although temperature regulated the seasonal dynamics of most metazoans and the species succession in the copepod community, small omnivorous copepods (Oncaea media complex, Oithona nana and Euterpina acutifrons) dominated regardless of the season. A trophic link between copepods and ciliates was evident in winter during low phytoplankton biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号