首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Unlike all other vertebrates examined to date, there is only one detectable class I locus in the Xenopus MHC. On the bases of a nearly ubiquitous and high tissue expression, extensive polymorphism, and MHC linkage, this gene is of the classical or class Ia type. Sequencing analysis of class Ia cDNAs encoded by eight defined MHC haplotypes reveals two very old allelic lineages that perhaps emerged when humans and mice diverged from a common ancestor up to 100 million years ago. The unprecedented age of these lineages suggests that different class Ia genes from ancestors of the laboratory model Xenopus laevis are now expressed as alleles in this species. The lineages are best defined by their cytoplasmic and alpha2 peptide-binding domains, and there are highly diverse alleles (defined by the alpha1 peptide-binding domain) in each lineage. Surprisingly, the alpha3 domains are homogenized in both lineages, suggesting that interallelic gene conversion/recombination maintains the high sequence similarity.  相似文献   

2.
Polymorphic class II (Ia) major histocompatibility complex (MHC) gene products associate intracytoplasmically with a third nonpolymorphic class II molecule, the invariant chain (Ii), which is encoded by gene(s) unlinked to the MHC. Although the role of the Ii chain in the expression of cell surface Ia molecules is unclear, it has been suggested that the Ii chain helps in the assembly and intracellular transport of class II antigens. In this study, we demonstrate that the murine polymorphic class II antigens of an interspecies mouse-human hybrid, which has segregated the murine invariant chain gene, associates with the human invariant chain gene intracytoplasmically. The murine Ia antigens are expressed on the cell surface and can function as restriction elements in antigen presentation to T cells. The biochemical analysis demonstrates that the regions of the Ii gene that are critical to its interaction with Ia molecules are conserved between species.  相似文献   

3.
Whilst the Major Histocompatibility Complex (MHC) is well characterized in the anuran Xenopus, this region has not previously been studied in another popular model species, the common frog (Rana temporaria). Nor, to date, have there been any studies of MHC in wild amphibian host-pathogen systems. We characterise an MHC class I locus in the common frog, and present primers to amplify both the whole region, and specifically the antigen binding region. As no more than two expressed haplotypes were found in over 400 clones from 66 individuals, it is likely that there is a single class I locus in this species. This finding is consistent with the single class I locus in Xenopus, but contrasts with the multiple loci identified in axolotls, providing evidence that the diversification of MHC class I into multiple loci likely occurred after the Caudata/Anura divergence (approximately 350 million years ago) but before the Ranidae/Pipidae divergence (approximately 230 mya). We use this locus to compare wild populations of common frogs that have been infected with a viral pathogen (Ranavirus) with those that have no history of infection. We demonstrate that certain MHC supertypes are associated with infection status (even after accounting for shared ancestry), and that the diseased populations have more similar supertype frequencies (lower FST) than the uninfected. These patterns were not seen in a suite of putatively neutral microsatellite loci. We interpret this pattern at the MHC locus to indicate that the disease has imposed selection for particular haplotypes, and hence that common frogs may be adapting to the presence of Ranavirus, which currently kills tens of thousands of amphibians in the UK each year.  相似文献   

4.
The patterns of major histocompatibility complex (MHC) evolution involve duplications, deletions, and independent divergence of loci during episodes punctuated by natural selection. Major differences in MHC evolution among taxa have previously been attributed to variation in linkage patterns of class I and class II MHC genes. Here we characterize patterns of evolution in the MHC class Ia gene of Xenopus laevis in terms of polymorphism, recombination, and extent of transspecies polymorphism. We also compare these patterns to see if a correlation exists with linkage or separation of the MHC class I and class II regions as seen in amphibians and teleost fishes. In X. laevis, we find high levels of polymorphism. Also, genetic exchange is relatively frequent and occurs in intron II, reshuffling allelic forms of exons 2 and 3. Evolutionary relationships among class I alleles show an intermingling of alleles from divergent Xenopus species rather than a species-specific clustering. Results indicate that the patterns of evolution are similar to those found in salmonid fishes and are different from the mode of evolution seen in primates. Similar patterns of class Ia evolution in salmonid fishes and X. laevis suggest that nonlinkage of class I and class II regions alone is insufficient to explain some patterns of MHC evolution in salmonids.  相似文献   

5.
The identification of the factors responsible for genetic variation and differentiation at adaptive loci can provide important insights into the evolutionary process and is crucial for the effective management of threatened species. We studied the impact of environmental viral richness and abundance on functional diversity and differentiation of the MHC class Ia locus in populations of the black‐spotted pond frog (Pelophylax nigromaculatus), an IUCN‐listed species, on 24 land‐bridge islands of the Zhoushan Archipelago and three nearby mainland sites. We found a high proportion of private MHC alleles in mainland and insular populations, corresponding to 32 distinct functional supertypes, and strong positive selection on MHC antigen‐binding sites in all populations. Viral pathogen diversity and abundance were reduced at island sites relative to the mainland, and islands housed distinctive viral communities. Standardized MHC diversity at island sites exceeded that found at neutral microsatellites, and the representation of key functional supertypes was positively correlated with the abundance of specific viruses in the environment (Frog virus 3 and Ambystoma tigrinum virus). These results indicate that pathogen‐driven diversifying selection can play an important role in maintaining functionally important MHC variation following island isolation, highlighting the importance of considering functionally important genetic variation and host–pathogen associations in conservation planning and management.  相似文献   

6.
Major histocompatibility complex (MHC) genes encode proteins in the acquired immune response pathway that often show distinctive selection-driven patterns in wild vertebrate populations. We examined genetic variation and signatures of selection in the MHC class I alpha 1 (A1)- and alpha 2 (A2)-domain encoding exons of two frog congeners [Agalychnis callidryas (n?=?20) and A. lemur (n?=?20)] from a single locality in Panama. We also investigated how historical demographic processes may have impacted MHC genetic diversity by analyzing a neutral mitochondrial marker. We found that both MHC domains were highly variable in both species, with both species likely expressing three loci. Our analyses revealed different signatures of selection between the two species, most notably that the A. callidryas A2 domain had experienced positive selection while the A2 domain of A. lemur had not. Diversifying selection acted on the same number of A1 and A2 allelic lineages, but on a higher percentage of A1 sites compared to A2 sites. Neutrality tests of mitochondrial haplotypes predominately indicated that the two species were at genetic equilibrium when the samples were collected. In addition, two historical tests of demography indicated both species have had relatively stable population sizes over the past 100,000 years; thus large population size changes are unlikely to have greatly influenced MHC diversity in either species during this time period. In conclusion, our results suggest that the impact of selection on MHC diversity varied between these two closely related species, likely due to a combination of distinct ecological conditions and past pathogenic pressures.  相似文献   

7.
A nucleotide sequence analysis of a fragment of a Morone MHC class Ia gene detected high levels of polymorphism in striped bass Morone saxatilis, white perch Morone americana and yellow bass Morone mississippiensis. Extremely low levels of MHC diversity, however, were detected in white bass Morone chrysops, suggesting the possibility of a severe population bottleneck for this species.  相似文献   

8.
Bos DH  Waldman B 《Immunogenetics》2006,58(5-6):433-442
In the African clawed frog (Xenopus laevis), two deeply divergent allelic lineages of multiple genes of the class I MHC region have been discovered. For the MHC class I UAA locus, functional differences and the molecular basis for lineages maintenance are unknown. Alleles of linked class I region genes also exhibit strong disequilibrium with specific MHC alleles, but the underlying cause is not clear. We use MHC class Ia sequence data to estimate substitution rates and investigate structural differences between allelic lineages from protein models. Results indicate the operation of natural selection, and differences in the steric properties in the F pocket of the peptide-binding region among lineages. Variability in this pocket likely enables allelic lineages to bind very different sets of peptides and to interact differently with MHC chaperones in the endoplasmic reticulum. These results constitute evidence of the molecular evolutionary basis for 1) the maintenance of allelic lineages, 2) functional differences among lineages, and 3) strong linkage disequilibrium of allelic variants of class I region genes in X. laevis.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

9.
10.
Nonclassical MHC class Ib (class Ib) genes are a family of highly diverse and rapidly evolving genes wherein gene numbers, organization, and expression markedly differ even among closely related species rendering class Ib phylogeny difficult to establish. Whereas among mammals there are few unambiguous class Ib gene orthologs, different amphibian species belonging to the anuran subfamily Xenopodinae exhibit an unusually high degree of conservation among multiple class Ib gene lineages. Comparative genomic analysis of class Ib gene loci of two divergent (~65 million years) Xenopodinae subfamily members Xenopus laevis (allotetraploid) and Xenopus tropicalis (diploid) shows that both species possess a large cluster of class Ib genes denoted as Xenopus/Silurana nonclassical (XNC/SNC). Our study reveals two distinct phylogenetic patterns among these genes: some gene lineages display a high degree of flexibility, as demonstrated by species-specific expansion and contractions, whereas other class Ib gene lineages have been maintained as monogenic subfamilies with very few changes in their nucleotide sequence across divergent species. In this second category, we further investigated the XNC/SNC10 gene lineage that in X. laevis is required for the development of a distinct semi-invariant T cell population. We report compelling evidence of the remarkable high degree of conservation of this gene lineage that is present in all 12 species of the Xenopodinae examined, including species with different degrees of ploidy ranging from 2, 4, 8 to 12 N. This suggests that the critical role of XNC10 during early T cell development is conserved in amphibians.  相似文献   

11.
Major histocompatibility complex (MHC) class II genes, which play a major role in the immune system response, are some of the most polymorphic genes in vertebrates. We developed polymerase chain reaction primers for part of the second exon of an expressed MHC class II gene in the common frog, Rana temporaria. We genotyped this locus in five frog populations in southeast England and detected eight alleles in 215 individuals. Five or six alleles were detected in each population with a maximum of two alleles per individual, indicating that only a single locus was amplified. We also inferred the possible existence of a null allele. There were 23 variable nucleotide sites (out of 136) and 13 variable amino acid sites (out of 44), many of which corresponded to amino acids involved in antigen recognition. We detected a significant excess of nonsynonymous substitutions at antigen binding sites, indicating that this gene is under positive selection. The level of variation we found was similar to that in other amphibian MHC class II loci, such as those in Bombina bombina, Xenopus laevis and Ambystoma tigrinum.  相似文献   

12.
The Major Histocompatibility Complex (MHC) class I is a highly variable gene family that encodes cell-surface receptors vital for recognition of intracellular pathogens and initiation of immune responses. The MHC class I has yet to be characterised in bufonid toads (Order: Anura; Suborder: Neobatrachia; Family: Bufonidae), a large and diverse family of anurans. Here we describe the characterisation of a classical MHC class I gene in the Australian cane toad, Rhinella marina. From 25 individuals sampled from the Australian population, we found only 3 alleles at this classical class I locus. We also found large number of class I alpha 1 alleles, implying an expansion of class I loci in this species. The low classical class I genetic diversity is likely the result of repeated bottleneck events, which arose as a result of the cane toad''s complex history of introductions as a biocontrol agent and its subsequent invasion across Australia.  相似文献   

13.
Clark MS  Shaw L  Kelly A  Snell P  Elgar G 《Immunogenetics》2001,52(3-4):174-185
A BAC map of the Japanese pufferfish (Fugu) MHC class I region was constructed using a mixture of sequence scanning and sequence-tagged site mapping methodologies. The Fugu MHC class Ia genes are linked to genes which are found within the human classical MHC class II and extended class II regions, a situation which has been found in the MHC of all teleosts mapped so far. The 300-kb contig comprises 24 MHC-related genes and is bounded by six non-MHC genes, which are thought to represent an evolutionary breakpoint within the region. Comparative analysis with both human and zebrafish MHC maps indicates two blocks of genes (KNSL2, ZNF297, DAXX, TAPBP, FLOTILLIN; and PSMB8, PSMB10, PSMB9, ABCB3, FABGL, BRD2, COL11A2, RXRB) which have remained linked over 400 million years and may represent an ancestral arrangement of the vertebrate MHC. Zebrafish and Fugu diverged between 100-200 million years ago and differences exist between these two fish species. The position and number of MHC class Ia genes is not conserved between species, there is an inversion of a block of nine genes centering on the PSMB cluster, and additional genes are present in zebrafish coding for a transport-associated protein and a beta proteasome subunit. The extent of these differences has implications for the extrapolation of fish model organism data to commercial aquaculture species. The data presented here represent the most extensive analysis of a fish MHC class Ia region described so far and clearly delimit the extent of this region in Fugu and, potentially, all teleosts.  相似文献   

14.
The major histocompatibility complex (MHC) plays a central role in innate and adaptive immunity, but relatively little is known about the evolution of the number and arrangement of MHC genes in birds. Insights into the evolution of the MHC in birds can be gained by comparing the genetic architecture of the MHC between closely related species. We used a fosmid DNA library to sequence a 60.9-kb region of the MHC of the greater prairie chicken (Tympanuchus cupido), one of five species of Galliformes with a physically mapped MHC. Greater prairie chickens have the smallest core MHC yet observed in any bird species, and major changes are observed in the number and arrangement of MHC loci. In particular, the greater prairie chicken differs from other Galliformes in the deletion of an important class I antigen binding gene. Analysis of the remaining class IA gene in a population of greater prairie chickens in Wisconsin, USA revealed little evidence for selection at the region responsible for antigen binding.  相似文献   

15.
Genetic diversity of major histocompatibility complex (MHC) genes is linked to reduced pathogen susceptibility in amphibians, but few studies also examine broad spatial and temporal patterns of MHC and neutral genetic diversity. Here, we characterized range-wide MHC diversity in the Northern leopard frog, Rana pipiens, a species found throughout North America that is experiencing disease-related declines. We used previously sequenced neutral markers (mitochondrial DNA and microsatellites), sequenced an expressed MHC class IIß gene fragment, and measured infection prevalence and intensity of the global fungal pathogen Batrachochytrium dendrobatidis (Bd) across 14 populations. Four populations were sampled across two decades, enabling temporal comparisons of selection and demography. We recovered 37 unique MHC alleles, including 17 that were shared across populations. Phylogenetic and population genetic patterns between MHC and neutral markers were incongruent, and five MHC codon positions associated with peptide binding were under positive selection. MHC heterozygosity, but not neutral marker heterozygosity, was a significant factor explaining spatial patterns of Bd prevalence, whereas only environmental variables predicted Bd intensity. MHC allelic richness (AR) decreased significantly over time but microsatellite-based AR did not, highlighting a loss of functional immunogenetic diversity that may be associated with Bd selective pressures. MHC supertype 4 was significantly associated with an elevated risk of Bd infection, whereas one supertype 2 allele was associated with a nearly significant reduced risk of Bd. Taken together, these results provide evidence that positive selection contributes to MHC class IIß evolution in R. pipiens and suggest that functional MHC differences across populations may contribute to disease adaptation.Subject terms: Genetic variation, Immunogenetics  相似文献   

16.
Major histocompatibility complex (MHC) class II molecules exhibit conformational heterogeneity, which influences their ability to stimulate CD4 T cells and drive immune responses. Previous studies suggest a role for the transmembrane domain of the class II αβ heterodimer in determining molecular structure and function. Our previous studies identified an MHC class II conformer that is marked by the Ia.2 epitope. These Ia.2+ class II conformers are lipid raft-associated and able to drive both tyrosine kinase signaling and efficient antigen presentation to CD4 T cells. Here, we establish that the Ia.2+ I-Ak conformer is formed early in the class II biosynthetic pathway and that differential pairing of highly conserved transmembrane domain GXXXG dimerization motifs is responsible for formation of Ia.2+ versus Ia.2 I-Ak class II conformers and controlling lipid raft partitioning. These findings provide a molecular explanation for the formation of two distinct MHC class II conformers that differ in their inherent ability to signal and drive robust T cell activation, providing new insight into the role of MHC class II in regulating antigen-presenting cell-T cell interactions critical to the initiation and control of multiple aspects of the immune response.  相似文献   

17.
Amphibians can be more vulnerable to environmental changes and diseases than other species because of their complex life cycle and physiological requirements. Therefore, understanding the adaptation of amphibians to environmental changes is crucial for their conservation. Major histocompatibility complex (MHC) presents an excellent tool for the investigation of adaptive variations and the assessment of adaptive potential because it can be under strong diversifying selection. Here, we isolated the MHC class II B (MHCIIB) gene from cDNA sequences of the black‐spotted frog (Pelophylax nigromaculatus), a widespread amphibian species in China, and designed locus‐specific primers to characterize adaptive variability of this amphibian. Ten alleles were identified from 67 individual frogs of three populations and no more than two alleles were present in each individual animal. Furthermore, none of the sequences had indels or/and stop codons, which is in good agreement with locus‐specific amplification of a functional gene. However, we found low polymorphism at both nucleotide and amino acid levels, even in the antigen‐binding region. Purifying selection acting at this locus was supported by the findings that the dN/dS ratio across all alleles was below 1 and that negatively selected sites were detected by different methods. Allele frequency distributions were significantly different among geographic populations, indicating that physiographic factors may have strong effect on the genetic structure of the black‐spotted frog. This study revealed limited polymorphism of three adjacent black‐spotted frog populations at the functional MHCIIB locus, which may be attributed to region‐specific differences. The locus‐specific genotyping technique developed in this study would provide a foundation for future studies on adaptive divergence among different frog populations.  相似文献   

18.
19.
MHC genes in the chicken are arranged into two genetically independent clusters located on the same chromosome. These are the classical B: system and restriction fragment pattern-Y (Rfp-Y), a second cluster of MHC genes identified recently through DNA hybridization. Because small numbers of MHC class I and class II genes are present in both B: and Rfp-Y, the two clusters might be the result of duplication of an entire chromosomal segment. We subcloned, sequenced, and analyzed the expression of two class I loci mapping to Rfp-Y to determine whether Rfp-Y should be considered either as a second, classical MHC or as a region containing specialized MHC-like genes, such as class Ib genes. The Rfp-Y genes are highly similar to each other (93%) and to classical class Ia genes (73% with chicken B: class I; 49% with HLA-A). One locus is disrupted and unexpressed. The other, YFV, is widely transcribed and polymorphic. Mature YFV protein associated with beta(2)m arrives on the surface of chicken B (RP9) lymphoma cells expressing YFV as an epitope-tagged transgene. Substitutions in the YFV Ag-binding region (ABR) occur at four of the eight highly conserved residues that are essential for binding of peptide-Ag in the class Ia molecules. Therefore, it is unlikely that Ag is bound in the YFV ABR in the manner typical of class Ia molecules. This ABR specialization indicates that even though YFV is polymorphic and widely transcribed, it is, in fact, a class Ib gene, and Rfp-Y is a region containing MHC genes of specialized function.  相似文献   

20.
The zebrafish is an important animal model for stem cell biology, cancer, and immunology research. Histocompatibility represents a key intersection of these disciplines; however, histocompatibility in zebrafish remains poorly understood. We examined a set of diverse zebrafish class I major histocompatibility complex (MHC) genes that segregate with specific haplotypes at chromosome 19, and for which donor-recipient matching has been shown to improve engraftment after hematopoietic transplantation. Using flanking gene polymorphisms, we identified six distinct chromosome 19 haplotypes. We describe several novel class I U lineage genes and characterize their sequence properties, expression, and haplotype distribution. Altogether, ten full-length zebrafish class I genes were analyzed, mhc1uba through mhc1uka. Expression data and sequence properties indicate that most are candidate classical genes. Several substitutions in putative peptide anchor residues, often shared with deduced MHC molecules from additional teleost species, suggest flexibility in antigen binding. All ten zebrafish class I genes were uniquely assigned among the six haplotypes, with dominant or codominant expression of one to three genes per haplotype. Interestingly, while the divergent MHC haplotypes display variable gene copy number and content, the different genes appear to have ancient origin, with extremely high levels of sequence diversity. Furthermore, haplotype variability extends beyond the MHC genes to include divergent forms of psmb8. The many disparate haplotypes at this locus therefore represent a remarkable form of genomic region configuration polymorphism. Defining the functional MHC genes within these divergent class I haplotypes in zebrafish will provide an important foundation for future studies in immunology and transplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号