首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
KIF20A (Kinesin-like family member 20A), also called mitotic kinesin-like proteins 2 (MKLP2), is a mammalian mitotic kinesin-like motor protein of the Kinesin superfamily proteins (KIFs), which was originally involved in Golgi apparatus dynamics and thought to essential for cell cycle regulation during successful cytokinesis. In the present study, we investigated whether KIF20A has roles on porcine oocyte meiotic maturation and subsequent early embryo development. By immunofluorescence staining, KIF20A was found to exhibit a dynamic localization pattern during meiosis. KIF20A was restricted to centromeres after germinal vesicle breakdown (GVBD), transferred to the midbody at telophase I (TI), and again associated with centromeres at metaphase II (MII). Inhibition of endogenous KIF20A via a specific inhibitor, Paprotrain, resulted in failure of polar body extrusion. Further cell cycle analysis showed that the percentage of oocytes that arrested at early metaphase I (MI) stage increased after KIF20A activity inhibition; however, the proportion of oocytes at anaphase/telophase I (ATI) and MII stages decreased significantly. Our results also showed that KIF20A inhibition did not affect spindle morphology. In addition, KIF20A was localized at the nucleus of early embryos, and KIF20A inhibition resulted in failure of early parthenogenetic embryo development. These results demonstrated that KIF20A is critical for porcine oocyte meiotic maturation and subsequent early embryo development.  相似文献   

3.
High cAMP levels during in vitro maturation (IVM) have been related to improved blastocyst yields. Here, we employed the cAMP/cGMP modulators, forskolin, IBMX, and cilostamide, during IVM to unravel the role of high cAMP in early embryonic development produced from prepubertal and adult bovine oocytes. Oocytes were collected via transvaginal aspiration and randomly assigned to three experimental groups: TCM24 (24h IVM/control), cAMP30 (2h pre-IVM (forskolin-IBMX), 30h IVM-cilostamide), and DMSO30 (Dimethyl Sulfoxide/vehicle control). After IVM, oocytes were fertilized in vitro and zygotes were cultured in vitro to blastocysts. Meiotic progression, cAMP levels, mRNA abundance of selected genes and DNA methylation were evaluated in oocytes. Blastocysts were used for gene expression or DNA methylation analyses. Blastocysts from the cAMP30 groups were transferred to recipients. The cAMP elevation delayed meiotic progression, but developmental rates were not increased. In immature oocytes, mRNA abundance of PRKACA was higher for cAMP30 protocol and no differences were found for PDE3A, SMAD2, ZAR1, PRDX1 and SLC2A8. EGR1 gene was up-regulated in prepubertal cAMP30 immature oocytes and down-regulated in blastocysts from all in vitro treatments. A similar gene expression profile was observed for DNMT3b, BCL2L1, PRDX1 and SLC2A8 in blastocysts. Satellite DNA methylation profiles were different between prepubertal and adult oocytes and blastocysts derived from the TCM24 and DMSO30 groups. Blastocysts obtained from prepubertal and adult oocytes in the cAMP30 treatment displayed normal methylation profiles and produced offspring. These data indicate that cAMP regulates IVM in prepubertal and adult oocytes in a similar manner, with impact on the establishment of epigenetic marks and acquisition of full developmental competency.  相似文献   

4.
哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)是一种Ser/Thr激酶,属于PIKK超家族,对调节细胞周期、蛋白质合成等具有重要作用,是细胞生长、增殖、分化、凋亡的中心调控器,但在哺乳动物卵母细胞中的研究还未见报道.以小鼠卵母细胞为研究对象,采用免疫荧光为主要研究方法,对mTOR在小鼠卵母细胞中的表达进行研究,并通过mTOR的特异性抑制剂雷帕霉素( rapamycin,RAPA )对卵母细胞进行处理,对mTOR在卵母细胞成熟过程中的作用进行研究.结果显示:小鼠卵母细胞成熟过程中,生发泡( germinal vesicle,GV )期mTOR主要集中在核膜处表达,生发泡破裂 ( germinal vesicle breakdown,GVBD )后mTOR伴随染色体分布,第二次减数分裂中期( second metaphase,MⅡ期 ) mTOR伴随纺锤体分布;雷帕霉素处理后,小鼠卵母细胞的成熟受到抑制,且这种抑制作用具有浓度依赖性,同时其mTOR的表达部位和形态也发生变化.研究表明,在小鼠卵母细胞成熟过程中,mTOR在各个时期的表达及分布具有阶段特异性,并对小鼠卵母细胞GVBD的发生和第一极体的排放都具有重要作用.  相似文献   

5.
As a tumor suppressor homologue during mitosis, Chk2 is involved in replication checkpoints, DNA repair, and cell cycle arrest, although its functions during mouse oocyte meiosis and early embryo development remain uncertain. We investigated the functions of Chk2 during mouse oocyte maturation and early embryo development. Chk2 exhibited a dynamic localization pattern; Chk2 expression was restricted to germinal vesicles at the germinal vesicle (GV) stage, was associated with centromeres at pro-metaphase I (Pro-MI), and localized to spindle poles at metaphase I (MI). Disrupting Chk2 activity resulted in cell cycle progression defects. First, inhibitor-treated oocytes were arrested at the GV stage and failed to undergo germinal vesicle breakdown (GVBD); this could be rescued after Chk2 inhibition release. Second, Chk2 inhibition after oocyte GVBD caused MI arrest. Third, the first cleavage of early embryo development was disrupted by Chk2 inhibition. Additionally, in inhibitor-treated oocytes, checkpoint protein Bub3 expression was consistently localized at centromeres at the MI stage, which indicated that the spindle assembly checkpoint (SAC) was activated. Moreover, disrupting Chk2 activity in oocytes caused severe chromosome misalignments and spindle disruption. In inhibitor-treated oocytes, centrosome protein γ-tubulin and Polo-like kinase 1 (Plk1) were dissociated from spindle poles. These results indicated that Chk2 regulated cell cycle progression and spindle assembly during mouse oocyte maturation and early embryo development.  相似文献   

6.
Maturation of the oocyte involves nuclear and cytoplasmic changes that include post-translational processing of proteins. The objective was to investigate whether inhibition of proteasomes during maturation would alter competence of the bovine oocyte for fertilization and subsequent development. Cumulus-oocyte complexes were cultured in the presence or absence of the proteasomal inhibitor MG132 from either 0–6 h or 16–22 h after initiation of maturation. Treatment with MG132 early in maturation prevented progression to meiosis II and reduced fertilization rate and the proportion of oocytes and cleaved embryos that became blastocysts. Conversely, treatment with MG132 late in maturation improved the percentage of oocytes and cleaved embryos that became blastocysts without affecting nuclear maturation or fertilization rate. Optimal results with MG132 were achieved at a concentration of 10 µM – effects were generally not observed at lower or higher concentrations. Using proteomic analysis, it was found that MG132 at the end of maturation increased relative expression of 6 proteins and decreased relative expression of 23. Among those increased by MG132 that are potentially important for oocyte competence are GAPDH, involved in glycolysis, TUBA1C, needed for organellar movement, and two proteins involved in protein folding (P4HB and HYOU1). MG132 decreased amounts of several proteins that exert anti-apoptotic actions including ASNS, HSP90B1, PDIA3 and VCP. Another protein decreased by MG132, CDK5, can lead to apoptosis if aberrantly activated and one protein increased by MG132, P4HB, is anti-apoptotic. Finally, the pregnancy rate of cows receiving embryos produced from oocytes treated with MG132 from 16–22 h of maturation was similar to that for control embryos, suggesting that use of MG132 for production of embryos in vitro does not cause a substantial decrease in embryo quality.  相似文献   

7.
Preimplantation goat embryos were cultured with or without goat oviduct epithelial cells in Earle's 199 medium + 10% goat serum (E199 + 10%GS), and in three different simple chemically defined media. In-vivo development was characterized by an extended 8- to 16-cell stage followed by a rapid cleavage rate in the next 3 cell cycles. Culture of 1-8-cell embryos in Medium E199 + 10%GS led to cleavage arrest at the 8-16-cell stage, while in the chemically defined media embryos developed poorly and a high percentage failed to pass the 8-16-cell stage. In co-culture, however, a high percentage (77% and 96%) of 1-2-cell and 4-8-cell embryos, respectively, developed beyond the 16-cell stage. In co-culture, 1-2-cell embryos maintained cleavage rates equivalent to those in vivo until the 8-cell stage, but thereafter cell numbers lagged behind those in vivo, and by 168 h after ovulation, cell numbers (+/- s.e.) in vitro were 47.6 +/- 7.9 compared to 238 +/- 27.2 in vivo (t = 6.93, P less than 0.001). The results demonstrate that co-culture of embryos with oviduct cells allows a high percentage of embryos to develop through the period of cleavage arrest, providing a favourable environment for development through the 1-16-cell stages but a less adequate environment for development to the blastocyst stage.  相似文献   

8.
Bax inhibitor 1 (BI-1), a transmembrane protein with Ca2+ channel-like activity, has antiapoptotic and anticancer activities. Cells overexpressing BI-1 demonstrated increased cell adhesion. Using a proteomics tool, we found that BI-1 interacted with γ-actin via leucines 221 and 225 and could control actin polymerization and cell adhesion. Among BI-1−/− cells and cells transfected with BI-1 small interfering RNA (siRNA), levels of actin polymerization and cell adhesion were lower than those among BI-1+/+ cells and cells transfected with nonspecific siRNA. BI-1 acts as a leaky Ca2+ channel, but mutations of the actin binding sites (L221A, L225A, and L221A/L225A) did not change intra-endoplasmic reticulum Ca2+, although deleting the C-terminal motif (EKDKKKEKK) did. However, store-operated Ca2+ entry (SOCE) is activated in cells expressing BI-1 but not in cells expressing actin binding site mutants, even those with the intact C-terminal motif. Consistently, actin polymerization and cell adhesion were inhibited among all the mutant cells. Compared to BI-1+/+ cells, BI-1−/− cells inhibited SOCE, actin polymerization, and cell adhesion. Endogenous BI-1 knockdown cells showed a similar pattern. The C-terminal peptide of BI-1 (LMMLILAMNRKDKKKEKK) polymerized actin even after the deletion of four or six charged C-terminal residues. This indicates that the actin binding site containing L221 to D231 of BI-1 is responsible for actin interaction and that the C-terminal motif has only a supporting role. The intact C-terminal peptide also bundled actin and increased cell adhesion. The results of experiments with whole recombinant BI-1 reconstituted in membranes also coincide well with the results obtained with peptides. In summary, BI-1 increased actin polymerization and cell adhesion through Ca2+ regulation and actin interaction.In metastasis, tumor cells migrate from primary tumor sites into the lymphatic or circulatory system and then attach to the basal matrix of the target tissue (16). Cell adhesion and migration contribute to the metastatic process. Adhesion assembly and turnover are highly dynamic, coordinated processes essential for cell migration (16, 26). Adhesions serve as traction points for cell translocation and mediate a network of signaling events that regulate protrusion, contractility, and attachment (16, 29, 30). In migrating cells, protrusions are generated by actin polymerization at the front of the cell (22). Actin exists as monomers (G-actin) and polymers (F-actin), which transform into each other, and the transformation has a major contribution to cell physiology and dynamics. In the cell under physiological conditions, both G- and F-actin contain Mg2+ at the high-affinity binding site. The actin dynamic state contributes to cancer metastasis environments, including that of increased cell adhesion.The antiapoptotic protein Bax inhibitor 1 (BI-1) was identified through a functional yeast screen designed to select for human cDNAs that inhibit Bax-induced apoptosis (39). BI-1 regulates Ca2+ levels in the endoplasmic reticulum (ER) and cytosol (19) via a C-terminal amino acid sequence of EKDKKKEKK. The antiapoptotic function of BI-1 contributes to the development of cancer and resistance to antitumor therapies (12, 14, 17), but the roles of BI-1 in regulating cell adhesion and actin polymerization are unclear. This study examines the role of BI-1 in cell adhesion through Ca2+ regulation and actin polymerization.  相似文献   

9.
10.
In contrast to the impact of elevated progesterone on endometrial receptivity, the data on whether increased progesterone levels affects the quality of embryos is still limited. This study retrospectively enrolled 4,236 fresh in vitro fertilization (IVF) cycles and sought to determine whether increased progesterone is associated with adverse outcomes with regard to top quality embryos (TQE). The results showed that the TQE rate significantly correlated with progesterone levels on the day of human chorionic gonadotropin (hCG) trigger (P = 0.009). Multivariate linear regression analysis of factors related to the TQE rate, in conventional IVF cycles, showed that the TQE rate was negatively associated with progesterone concentration on the day of hCG (OR was -1.658, 95% CI: -2.806 to -0.510, P = 0.005). When the serum progesterone level was within the interval 2.0–2.5 ng/ml, the TQE rate was significantly lower (P <0.05) than when the progesterone level was < 1.0 ng/ml; similar results were obtained for serum progesterone levels >2.5 ng/ml. Then, we choose a progesterone level at 1.5ng/ml, 2.0 ng/ml and 2.5 ng/ml as cut-off points to verify this result. We found that the TQE rate was significantly different (P <0.05) between serum progesterone levels < 2.0 ng/ml and >2.0 ng/ml. In conclusion, the results of this study clearly demonstrated a negative effect of elevated progesterone levels on the day of hCG trigger, on TQE rate, regardless of the basal FSH, the total gonadotropin, the age of the woman, or the time of ovarian stimulation. These data demonstrate that elevated progesterone levels (>2.0 ng/ml) before oocyte maturation were consistently detrimental to the oocyte.  相似文献   

11.
Alam MG  Ahmed JU  Jahan S 《Theriogenology》1989,31(4):935-941
In an experiment to examine the relationships between adrenals and reproductive cycle, 10 mg dexamethasone (a synthetic glucocorticoid) were injected intramuscularly twice daily for 10 d to four Black Bengal goats, beginning on Day 11 of the synchronized estrous cycle. The extended length of the sexual cycle was monitored by the clinical signs of anestrus. Laparotomy was performed to examine the status of the ovary of an 8, 9, 10 and 8 d extended cycle, respectively. The length of the next cycle was normal. Endogenous cortisol values were suppressed for 11, 13, 20 and 24 d, respectively. It is thought that dexamethasone caused prolonged luteal function either by the suppression of prostaglandin F(2)alpha synthesis or by the suppression of pituitary stimulation of follicular growth.  相似文献   

12.
Jugular administration of 200 micrograms PGI-2 salt significantly reduced spontaneous uterine activity in ovariectomized, oestrogen-primed goats; the effect was acute and persisted for about 3 h. Peripheral plasma concentrations of 6-keto-PGF-1 alpha, the stable metabolite of PGI-2, decreased to 50% of initial values after 30 min; but at the start of uterine recovery were in excess of 2 ng.ml-1. Uterine reactivity to both oxytocin and PGF-2 alpha after PGI-2 administration was unaffected.  相似文献   

13.
Twenty eight 2–3 month old castrated male Black Bengal kids (Capra hircus) were used to determine the effects of dietary Cu concentration on lipid metabolism. These kids were randomly assigned to one of seven treatments in a ((2 × 3) + 1) factorial arrangement. Factors were two sources of Cu (CuSO4 versus Cu proteinate) fed at three dietary levels (10, 20 or 30 mg/kg) and the control group, where neither CuSO4 nor Cu proteinate were supplemented. Kids were fed a basal diet containing maize (19.5%), soybean (17.0%), deoiled rice bran (56.5%), molasses (4.0%), di-calcium phosphate and salt (1.0% each), and mineral and vitamin mixture (0.5% each) supplements, at 3.5% of BW to meet NRC requirements for protein, energy, macro minerals and micro minerals, excluding Cu. The basal diet (DM basis) contained 5.7 mg Cu/kg, 122.5 mg Fe/kg, 110 mg Zn/kg, 0.26 mg Mo/kg and 0.32% S. CuSO4 or Cu proteinate (Cu-P) was added to the basal diet at the rate of 10, 20 and 30 mg/kg. Kids were housed in a well-ventilated shed with facilities for individual feeding in aluminum plated metabolic cages in an open-sided barn. Blood samples were collected on Days 0, 30, 60 and 90 to determine serum cholesterol, high density lipoprotein (HDL), total lipid and phospholipids. Kids were slaughtered after metabolism trial and liver tissues were collected to determine the copper and zinc concentrations. Kids receiving Cu-P showed higher (P < 0.05) HDL, total lipid and phospholipid concentrations. Increase in dietary level of Cu significantly decreased (P < 0.05) serum cholesterol and increased serum HDL, total lipid and phospholipid concentrations. There was an increasing (P < 0.05) trend in liver Cu with the increased dietary level of Cu supplementation irrespective of source, but the increasing rate was greater with CuSO4 than Cu-P supplementation. Kids’ diet containing 30 mg/kg CuSO4 had 26% more liver Cu than those fed iso-amounts of Cu-P. Fecal Cu excretion was increased with the increasing dietary level of Cu, and excretion was reduced by the use of Cu-P in the diet. In conclusion, dietary supplementation of organic Cu in the form of copper proteinate had significant effects on lipid metabolism in goat kids. There was an increase in accumulation of Cu in the liver and excretion of Cu in feces with the increase of dietary level of Cu in the diet of Black Bengal kids.  相似文献   

14.
在本实验中我们用优化的免疫荧光化学法结合激光共聚焦显微技术,观察了微丝在小鼠卵细胞不同期的分布情况及PKB/Akt对小鼠卵母细胞和早期胚胎的微丝聚合的影响。结果显示,在小鼠卵母细胞及早期胚胎中均有微丝的表达,且主要集中在纺锤体处的质膜处、极体及分裂沟处。注射激活型PKB/Akt mRNA能够增强微丝的聚集。相反,注射激酶失活型的PKB/AktmRNA减弱了微丝的聚合。因而我们认为PKB/Akt可以影响小鼠卵细胞和早期胚胎的微丝聚集。  相似文献   

15.
RNA干扰(RNAinterference,RNAi)是一种真核生物体内由特定双链RNA介导的转录后基因沉默现象。近年来,RNAi的作用机制已基本阐明,并广泛的应用于基因功能的研究。现对RNAi在哺乳动物卵母细胞及早期胚胎研究中的作用特点、应用情况、存在问题等几方面进行综述。  相似文献   

16.
17.
沉默信息调节因子1(silent information regulator1, SIRT1)是NAD+ 依赖的去乙酰化酶,通过使底物发生去乙酰化而参与细胞众多生理功能的调节,在糖脂代谢、衰老、细胞凋亡、氧化应激等过程中发挥了重要作用。另外,众多研究表明,SIRT1是调控动物卵巢老化、卵泡发育和卵母细胞成熟的重要因子,SIRT1 表达下降或活性改变将导致卵母细胞老化,降低动物的繁殖力。为了充分理解SIRT1功能,并通过调控SIRT1活性而延缓卵巢和卵母细胞老化,从而提高动物繁殖力,简述了SIRT1的激活及其参与细胞内调控的生物过程,并从能量代谢、抗氧化胁迫、染色质重塑的角度讨论了SIRT1的主要功能,重点阐述了SIRT1对动物卵泡发育和卵母细胞成熟的调控作用。  相似文献   

18.
Incubation of chick embryo retinal explants with insulin resulted in a pronounced inhibition of thymidine uptake and incorporation into trichloroacetic acid-insoluble fraction. The inhibitory effect was highest with explants from embryos at day 7 and day 8, and thereafter it declined markedly with the age of embryos until day 11. A time-course study of the effect revealed that the inhibition occurred after a lag time; both thymidine uptake and incorporation were not altered significantly after 2-6 h of incubation with insulin, but began to decrease thereafter, reaching the maximum after 16 h. The effect was also dose dependent. After 16 h of incubation, the maximal inhibition (65%) was found with 10(-8) M insulin. Insulin caused similar effects also on thymidine kinase activity. All these effects were obtained by using minimal essential medium without glutamine. The addition of glutamine to the medium reduced the inhibitory effect of insulin. Retinas of chick embryos contain immunoreactive insulin. Retinal immunoreactive insulin was at the highest level (1.12 ng/mg of protein) in the youngest retinas studied (day 6), then it declined with age, reaching the lowest value (0.58 ng/mg of protein) at day 14. This value did not vary significantly during the third week of development. A potential biological role of insulin in retinal development is discussed.  相似文献   

19.
Summary

The parthenogenetic ovaries of the black bean aphid, Aphis fabae, contain developing embryos. When reared at 15°C in long days (LD 16:8) oocyte development begins within the ovaries of the largest embryos of a fourth instar mother 24–48 hr after her ecdysis from the third instar. Starvation, decapitation and precocene III treatment inhibit embryonic oocyte development; juvenile hormone treatment reverses this inhibition. A method for the in vitro culture of embryos is described and under these conditions juvenile hormone again stimulates oogenesis. Embryogénie growth in vivo, as measured by the increase in length of the oldest daughter embryos, is also stimulated by juvenile hormone treatment. The results are discussed in relation to other roles proposed for juvenile hormone in aphid development.  相似文献   

20.
The effect of 5-hydroxytryptamine (5-HT) on steroidogenesis and oocyte maturation in pre-ovulatory follicles of the medaka Oryzias lalipes was examined using in vitro culture system. The earliest breakdown of the germinal vesicle of intrafollicular oocytes occurred about 17 hr after the beginning of incubation in the presence of 5-HT at concentration of 10 ng/ml or more. 5-HT induced oocyte maturation in a dose-dependent manner. Cyanoketone inhibited this stimulation. The concentration of 5-HT required to induce oocyte maturation corresponded to that required to enhance the production (secretion) of estradiol-17β and 17α,20β-dihydroxy-4-pregnen-3-one by pre-ovulatory follicle cells. At a concentration of 1 μg/ml, the follicle had to be exposed to 5-HT for at least 4 hr for oocyte maturation accompanied by ovulation to occur. These results indicate that 5-HT induces in vitro maturation of medaka oocytes by stimulating 17α,20β-dihydroxy-4-pregnen-3-one production by pre-ovulatory follicular cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号