首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coxsackievirus B3 (CVB3) causes viral myocarditis, and can ultimately result in dilated cardiomyopathy. There is no vaccine available for clinical use. In the present work, we assessed whether the Sabin3-like mutant of CVB3 could induce a protective immunity against virulent CVB3 Nancy and CVB4 E2 strains in mice by both oral and intraperitoneal (IP) routes. Serum samples, taken from mice inoculated with Sabin3-like, were assayed in vitro for their anti-CVB3 neutralizing activity. CVB3 Sabin3-like was highly attenuated in vivo and was able to induce an anti-CVB3 activity of the serum. However, at 4 days post-CVB3 challenge, significant increased titers of CVB3 neutralizing antibodies were detectable in the sera of immunized mice over the next 6 days. Non-immunized mice challenged with CVB3 Nancy had no anti-CVB3 activity in their sera until 10 days post-infection. CVB3 Nancy induced higher viral titers than did the mutant strain. There was no variation of the neutralizing activity of serum taken from mice immunized with CVB3 Sabin3-like and challenged with CVB4 E2, compared to non-immunized mice. Despite the fact that CVB3 and CVB4 are closely related viruses, virus-neutralizing activity clearly distinguish between these viruses. A variable and limited amount of pancreatic inflammation was seen in some mice 10 days after Sabin3-like inoculation by IP route, whereas there was no evidence of pancreatic damage in mice inoculated by oral route. All immunized mice were protected from myocarditis and pancreatitis at 8 days post-challenge with CVB3 or CVB4 E2. These findings strongly suggest that the mutant strain could be considered a candidate for an attenuated CVB3 vaccine.  相似文献   

2.
The Sabin3 mutation in the viral RNA plays an important role in directing attenuation phenotype of Sabin vaccine strain of poliovirus type 1 (PV1). We previously described that Sabin3-like mutation introduced in Coxsackievirus B3 (CVB3) genome led to a defective mutant. However, this mutation do not led to destruction of secondary structure motif C within the stem-loop V of CVB3 RNA because of the presence of one nucleotide difference (C → U) in the region encompassing the Sabin3 mutation at nucleotides 471 of PV1 and 475 of CVB3 RNA. In order to reproduce the same sequence of PV1 sabin3 vaccine strain, we introduce in this study an additional mutation (U475 → C) to CVB3 Sabin3-like mutant. Our results demonstrated that Sabin3-like+C mutant displayed a decreased translation initiation defects when translated in cell-free system. This translation initiation defect was correlated with reduced yields of infectious virus particles in HeLa cells in comparison with Sabin3-like mutant and wild-type CVB3 viruses. Inoculation of Swiss mice with mutant viruses resulted in no inflammatory heart disease when compared to heart of mice infected with wild-type. Theses findings indicate that the double mutant could be exploited for the development of a live attenuated vaccine against CVB3.  相似文献   

3.
The spreading of viral RNA within Swiss Albino mice orally inoculated with coxsackievirus B4 E2 strain (CVB4 E2) was studied by using RT-PCR and semi-nested-RT-PCR methods. Viral RNA was detected in various organs: pancreas, heart, small intestine, spleen, thymus, and blood at various postinfectious (p.i.) times ranging from 8 hr to 150 days. Our results show that (i) outbred mice can be infected with CVB4 E2 following an oral inoculation, which results in systemic spreading of viral RNA, (ii) CVB4 E2 infection can be associated with a prolonged detection of viral RNA in spleen, thymus and blood, up to 70 days p.i. and further in other organ tissues.  相似文献   

4.
Yue Y  Gui J  Ai W  Xu W  Xiong S 《PloS one》2011,6(3):e18186

Background

Myocarditis is an inflammation of the myocardium that often follows the enterovirus infections, with coxsackievirus B3 (CVB3) being the most dominant etiologic agent. We and other groups previously reported that chemokine IP-10 was significantly induced in the heart tissue of CVB3-infected mice and contributed to the migration of massive inflammatory cells into the myocardium, which represents one of the most important mechanisms of viral myocarditis. To evaluate the direct effect of IP-10 on the inflammatory responses in CVB3 myocarditis, herein an IP-10 mutant deprived of chemo-attractant function was introduced into mice to antagonize the endogenous IP-10 activity, and its therapeutic effect on CVB3-induced myocarditis was evaluated.

Methodology/Principal Findings

The depletion mutant pIP-10-AT, with an additional methionine after removal of the 5 N-terminal amino acids, was genetically constructed and intramuscularly injected into BALB/c mice after CVB3 infection. Compared with vector or no treatment, pIP-10-AT treatment had significantly reduced heart/body weight ratio and serum CK-MB level, increased survival rate and improved heart histopathology, suggesting an ameliorated myocarditis. This therapeutic effect was not attributable to an enhanced viral clearance, but to a blunted Th1 immune response, as evidenced by significantly decreased splenic CD4+/CD8+IFN-γ+ T cell percentages and reduced myocardial Th1 cytokine levels.

Conclusion/Significance

Our findings constitute the first preclinical data indicating that interfering in vivo IP-10 activity could ameliorate CVB3 induced myocarditis. This strategy may represent as a new therapeutic approach in treating viral myocarditis.  相似文献   

5.
Translation initiation of Coxsackievirus B3 (CVB3) RNA is directed by an internal ribosome entry site (IRES) within the 5′ untranslated region. Host cell factors involved in this process include some canonical translation factors and additional RNA-binding proteins. We have, previously, described that the Sabin3-like mutation (U475 → C) introduced in CVB3 genome led to a defective mutant with a serious reduction in translation efficiency. With the aim to identify proteins interacting with CVB3 wild-type and Sabin3-like IRESes and to study interactions between HeLa cell or BHK-21 protein extracts and CVB3 RNAs, UV-cross-linking assays were performed. We have observed a number of proteins that specifically interact with both RNAs. In particular, molecular weights of five of these proteins resemble to those of the eukaryotic translation initiation factors 4G, 3b, 4B, and PTB. According to cross-linking patterns obtained, we have demonstrated a better affinity of CVB3 RNA binding to BHK-21 proteins and a reduced interaction of the mutant RNA with almost cellular polypeptides compared to the wild-type IRES. On the basis of phylogeny of some initiation factors and on the knowledge of the initiation of translation process, we focused on the interaction of both IRESes with eIF3, p100 (eIF4G), and 40S ribosomal subunit by filter-binding assays. We have demonstrated a better affinity of binding to the wild-type CVB3 IRES. Thus, the reduction efficiency of the mutant RNA to bind to cellular proteins involved in the translation initiation could be the reason behind inefficient IRES function.  相似文献   

6.
目的:探讨紫外灭活型CVB3病毒诱导BALB/c小鼠产生特异性免疫应答及保护作用的评估。方法:采用紫外灭活的方法处理野生型CVB3m株,按照0.1 LD50(10~4 PFU)的剂量免疫小鼠,设置PBS免疫组作为对照,免疫后第3,5,7天收集小鼠血清,检测细胞因子含量;在第3,5,7,14天分离小鼠脾脏,流式分析T细胞亚群的分布比例;在免疫后一个月分离小鼠血清,检测中和抗体的滴度;同时间给予小鼠100LD 50野生型CVB3感染,观察小鼠的死亡率。结果:与对照组相比,在检测日期内紫外灭活型CVB3组小鼠血清中细胞因子IL-1α,TNF-α,IL-6的表达量明显增高(P0.05),IL-4的表达量没有明显差异;免疫后第14天CD3~+CD4~+T细胞的分布较对照组明显升高(P0.05);在免疫后一个月,紫外灭活型CVB3免疫组可以诱导机体产生高滴度中和抗体,同时,小鼠应对高致死量CVB3感染时有较高的存活率。结论:紫外灭活型CVB3感染能诱导机体产生特异性免疫应答,同时,产生的中和抗体可以提高小鼠应对致死剂量CVB3感染时的生存率,对机体有明显的保护作用。  相似文献   

7.
8.
Dan M  Chantler JK 《Journal of virology》2005,79(14):9285-9295
Coxsackievirus B3 (CVB3) is a common human pathogen that is endemic throughout the world. There is currently no vaccine available, although the virus is known to be highly lethal to newborns and has been associated with heart disease and pancreatitis in older children and adults. Previously, we showed that the virulence of CVB3 is reduced by a lysine-to-arginine substitution in the capsid protein VP2 (K2168R) or a glutamic acid-to-glycine substitution in VP3 (E3060G). In this report, we show that the double mutant virus CVB3(KR/EG) displays additional attenuation, particularly for the pancreas, in A/J mice. In addition, two other attenuating mutations have been identified in the capsid protein VP1. When either the aspartic acid residue D1155 was replaced with glutamic acid or the proline residue P1126 was replaced with methionine, the resulting mutant also possessed an attenuated phenotype. Moreover, when either of these mutations was incorporated into CVB3(KR/EG), the resulting triple mutant viruses, CVB3(KR/EG/DE) and CVB3(KR/EG/PM), were completely noncardiovirulent and caused only small foci of damage to the pancreas, even at a high dose. Both triple mutants were found to be immunogenic, and a single injection of young A/J mice with either was found to protect them from a subsequent lethal challenge with wild-type CVB3. These findings indicate that the triple mutants could be exploited for the development of a live attenuated vaccine against CVB3.  相似文献   

9.
Insulin-dependent (type 1) diabetes mellitus (T1D) onset is mediated by individual human genetics as well as undefined environmental influences such as viral infections. The group B coxsackieviruses (CVB) are commonly named as putative T1D-inducing agents. We studied CVB replication in nonobese diabetic (NOD) mice to assess how infection by diverse CVB strains affected T1D incidence in a model of human T1D. Inoculation of 4- or 8-week-old NOD mice with any of nine different CVB strains significantly reduced the incidence of T1D by 2- to 10-fold over a 10-month period relative to T1D incidences in mock-infected control mice. Greater protection was conferred by more-pathogenic CVB strains relative to less-virulent or avirulent strains. Two CVB3 strains were employed to further explore the relationship of CVB virulence phenotypes to T1D onset and incidence: a pathogenic strain (CVB3/M) and a nonvirulent strain (CVB3/GA). CVB3/M replicated to four- to fivefold-higher titers than CVB3/GA in the pancreas and induced widespread pancreatitis, whereas CVB3/GA induced no pancreatitis. Apoptotic nuclei were detected by TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) assay in CVB3/M-infected pancreata but not in CVB3/GA-infected pancreata. In situ hybridization detected CVB3 RNA in acinar tissue but not in pancreatic islets. Although islets demonstrated inflammatory infiltrates in CVB3-protected mice, insulin remained detectable by immunohistochemistry in these islets but not in those from diabetic mice. Enzyme-linked immunosorbent assay-based examination of murine sera for immunoglobulin G1 (IgG1) and IgG2a immunoreactivity against diabetic autoantigens insulin and HSP60 revealed no statistically significant relationship between CVB3-protected mice or diabetic mice and specific autoimmunity. However, when pooled sera from CVB3/M-protected mice were used to probe a Western blot of pancreatic proteins, numerous proteins were detected, whereas only one band was detected by sera from CVB3/GA-protected mice. No proteins were detected by sera from diabetic or normal mice. Cumulatively, these data do not support the hypothesis that CVB are causative agents of T1D. To the contrary, CVB infections provide significant protection from T1D onset in NOD mice. Possible mechanisms by which this virus-induced protection may occur are discussed.  相似文献   

10.
Ray PS  Das S 《Nucleic acids research》2002,30(20):4500-4508
Translation initiation in Coxsackievirus B3 (CVB3) occurs via ribosome binding to an internal ribosome entry site (IRES) located in the 5′-untranslated region (UTR) of the viral RNA. This unique mechanism of translation initiation requires various trans-acting factors from the host. We show that human La autoantigen (La) binds to the CVB3 5′-UTR and also demonstrate the dose-dependent effect of exogenously added La protein in stimulating CVB3 IRES-mediated translation. The requirement of La for CVB3 IRES mediated translation has been further demonstrated by inhibition of translation as a result of sequestering La and its restoration by exogenous addition of recombinant La protein. The abundance of La protein in various mouse tissue extracts has been probed using anti-La antibody. Pancreatic tissue, a target organ for CVB3 infection, was found to have a large abundance of La protein which was demonstrated to interact with the CVB3 5′-UTR. Furthermore, exogenous addition of pancreas extract to in vitro translation reactions resulted in a dose dependent stimulation of CVB3 IRES-mediated translation. These observations indicate the role of La in CVB3 IRES-mediated translation, and suggest its possible involvement in the efficient translation of the viral RNA in the pancreas.  相似文献   

11.
Calpains are calcium-activated neutral cysteine proteases. The dysregulation of calpain activity has been found to be related to cardiovascular diseases, for which calpain inhibition is used as a treatment. Viral myocarditis (VMC) is primarily caused by Coxsackievirus group B3 virus infection (CVB3). CVB3 virus infection induces autophagy and hijacks this process to facilitate its replication. In this study, we found that calpain was significantly activated in hearts affected by VMC. However, pharmacologically inhibiting calpain aggravated VMC symptoms in mice due to myocardial inflammation and cardiac dysfunction. The inhibition of calpain activity in vitro led to the accumulation of LC3-II and increased levels of p62/SQSTM1 protein expression, suggesting that autophagic flux was impaired by calpain inhibition. These effects of calpain inhibition were also observed in capn4-specific myocardial knockout mice in vivo. Furthermore, our results provided evidence that calpain inhibition in VMC, unlike other cardiovascular diseases, exacerbated the disease symptom by impairing CVB3-induced autophagic flux, which may subsequently reduce virus autolysosome degradation. Our findings indicated that calpain inhibition may not be a good treatment for VMC disease in a clinical setting.  相似文献   

12.
Amiloride derivatives are known blockers of the cellular Na+/H+ exchanger and the epithelial Na+ channel. More recent studies demonstrate that they also inhibit ion channels formed by a number of viral proteins. We previously reported that 5-(N-ethyl-N-isopropyl)amiloride (EIPA) modestly inhibits intracellular replication and, to a larger extent, release of human rhinovirus 2 (HRV2) (E. V. Gazina, D. N. Harrison, M. Jefferies, H. Tan, D. Williams, D. A. Anderson and S. Petrou, Antiviral Res. 67:98-106, 2005). Here, we demonstrate that amiloride and EIPA strongly inhibit coxsackievirus B3 (CVB3) RNA replication and do not inhibit CVB3 release, in contrast to our previous findings on HRV2. Passaging of plasmid-derived CVB3 in the presence of amiloride generated mutant viruses with amino acid substitutions in position 299 or 372 of the CVB3 polymerase. Introduction of either of these mutations into the CVB3 plasmid produced resistance to amiloride and EIPA, suggesting that they act as inhibitors of CVB3 polymerase, a novel mechanism of antiviral activity for these compounds.  相似文献   

13.
Trace elements are pivotal for the host defense, as well as potentially important for viral replication and virulence. Studies of sequential changes in viral replication in target organs of infection are sparse and a possible association with changes in specific trace elements is unknown. In this study Balb/c mice were infected with Coxsackie virus B3 (CVB3). Results indicated that sequential changes in viral replication (RT-PCR) were related to changes in trace element (arsenic, copper, iron, selenium and zinc) concentrations (as determined by ICP-MS) on days 3, 5 and 7 of the infection in serum, heart, lung, liver, pancreas, kidney, spleen, intestine and brain. After an initial viral peak on day 3, viral load drastically decreased in all organs, i.e. by >99% (serum), 97% (lung), 98% (liver), 60% (pancreas), 95% (kidney) and 93% (spleen), except in the heart, intestine and brain in which viral load increased after day 3. Selenium decreased in all organs except the heart while arsenic decreased in all organs except the kidney, spleen and brain. Moreover, selenium was negatively correlated to viral load in serum, liver, pancreas and intestine. To conclude, these findings give evidence that trace elements are directly involved in the replication of CVB3.  相似文献   

14.
Hypertonic KCl extracts prepared from heart tissues of adolescent CD-1 mice inoculated with coxsackievirus B3 (CVB3) were tested for antigenicity in evaluating cell-mediated sensitivity to CVB3 virus utilizing the agarose droplet cell-migration-inhibition assay. Immune mouse peritoneal exudate cells (IMPEC) from mice immunized against CVB3 virus and Freund's complete adjuvant were specifically inhibited in the cell-migration-inhibition assay with graded doses of KCl-extracted antigen and purified protein derivative (PPD). Unimmunized for "normal" mouse peritoneal exudate cells (NMPEC) were not inhibited in the presence of the CVB3 KCl extracts. KCl heart extracts from mice inoculated with a cardiotropic strain of antigenically distinct mengovirus failed to inhibit CVB3 IMPEC, and noncardiac KCl extracts of liver and spleen from CVB3-inoculated mice also failed to inhibit cellular migration of CVB3 IMPEC. Reciprocal specificity experiments utilizing KCl-extracted antigens from mice infected with antigenically distinct cardiotropic mengovirus failed to inhibit cellular migration of IMPEC from mice immunized against the mengovirus. Serum-blocking power experiments indicate the antigenic KCl extracts failed to bind virus-neutralizing antibodies, indicating absence of detectable quantities of virion antigens. The results indicate that inoculation of mice with CVB3 virus results in the appearance of a new antigen(s) in cardiac tissue reacting with CVB3-IMPEC, but not with mengovirus IMPEC.  相似文献   

15.
Protein A, encoded by the spa gene, is one of the major immune evading MSCRAMM of S. aureus, demonstrated to be prevalent in a significant percentage of clinical bovine mastitis isolates in Australia. Given its’ reported significance in biofilm formation and the superior performance of S. aureus biofilm versus planktonic vaccine in the mouse mastitis model, it was of interest to determine the immunogenicity and protective potential of Protein A as a potential vaccine candidate against bovine mastitis using the mouse mastitis model. Pregnant Balb/c mice were immunised with Protein A emulsified in an alum-based adjuvant by subcutaneous (s/c) or intramammary (i/mam) routes. While humoral immune response of mice post-immunization were determined using indirect ELISA, cell-mediated immune response was assessed by estimation of interferon-gamma (IFN-γ) produced by protein A-stimulated splenocyte supernatants. Protective potential of Protein A against experimental mastitis was determined by challenge of immunized versus sham-vaccinated mice by i/mam route, based upon manifestation of clinical symptoms, total bacterial load and histopathological damage to mammary glands. Significantly (p<0.05) higher levels of IgG1 isotype were produced in mice immunized by the s/c route. In contrast, significantly higher levels of the antibody isotype IgG2a were produced in mice immunized by the i/mam route (p<0.05). There was significant reduction (p<0.05) in bacterial loads of the mammary glands of mice immunized by Protein A regardless of the route of immunization, with medium level of clinical symptoms observed up to day 3 post-challenge. However, Protein A vaccine failed to protect immunized mice post-challenge with biofilm producing encapsulated S. aureus via i/mam route, regardless of the route of immunization, as measured by the level of mammary tissue damage. It was concluded that, Protein A in its’ native state was apparently not a suitable candidate for inclusion in a cell-free vaccine formulation against mastitis.  相似文献   

16.
Clinical and laboratory investigations have demonstrated the involvement of viruses and bacteria as potential causative agents in cardiovascular disease and have specifically found coxsackievirus B3 (CVB3) to be a leading cause. Experimental data indicate that cytokines are involved in controlling CVB3 replication. Therefore, recombinant CVB3 (CVB3rec) variants expressing the T-helper-1 (T(H)1)-specific gamma interferon (IFN-gamma) or the T(H)2-specific interleukin-10 (IL-10) as well as the control virus CVB3(muIL-10), which produce only biologically inactive IL-10, were established. Coding regions of murine cytokines were cloned into the 5' end of the CVB3 wild type (CVB3wt) open reading frame and were supplied with an artificial viral 3Cpro-specific Q-G cleavage site. Correct processing releases active cytokines, and the concentration of IFN-gamma and IL-10 was analyzed by enzyme-linked immunosorbent assay and bioassays. In mice, CVB3wt was detectable in pancreas and heart tissue, causing massive destruction of the exocrine pancreas as well as myocardial inflammation and heart cell lysis. Most of the CVB3wt-infected mice revealed virus-associated symptoms, and some died within 28 days postinfection. In contrast, CVB3rec variants were present only in the pancreas of infected mice, causing local inflammation with subsequent healing. Four weeks after the first infection, surviving mice were challenged with the lethal CVB3H3 variant, causing casualties in the CVB3wt- and CVB3(muIL-10)-infected groups, whereas almost none of the CVB3(IFN-gamma)- and CVB3(IL-10)-infected mice died and no pathological disorders were detectable. This study demonstrates that expression of immunoregulatory cytokines during CVB3 replication simultaneously protects mice against a lethal disease and prevents virus-caused tissue destruction.  相似文献   

17.
Stress granules (SGs) are dynamic cytosolic aggregates containing messenger ribonucleoproteins and target poly-adenylated (A)-mRNA. A key component of SGs is Ras-GAP SH3 domain binding protein-1 (G3BP1), which in part mediates protein-protein and protein-RNA interactions. SGs are modulated during infection by several viruses, however, the function and significance of this process remains poorly understood. In this study, we investigated the interplay between SGs and Coxsackievirus type B3 (CVB3), a member of the Picornaviridae family. Our studies demonstrated that SGs were formed early during CVB3 infection; however, G3BP1-positive SGs were actively disassembled at 5 hrs post-infection, while poly(A)-positive RNA granules persisted. Furthermore, we confirmed G3BP1 cleavage by 3Cpro at Q325. We also demonstrated that overexpression of G3BP1-SGs negatively impacted viral replication at the RNA, protein, and viral progeny levels. Using electron microscopy techniques, we showed that G3BP1-positive SGs localized near mitochondrial surfaces. Finally, we provided evidence that the C-terminal cleavage product of G3BP1 inhibited SG formation and promoted CVB3 replication. Taken together, we conclude that CVB3 infection selectively targets G3BP1-SGs by cleaving G3BP1 to produce a dominant-negative fragment that further inhibits G3BP1-SG formation and facilitates viral replication.  相似文献   

18.
Chrysanthemum virus B (CVB genus Carlavirus, family Flexiviridae) is one of the major viral pathogens of chrysanthemum. This virus occurs worldwide, is a potential threat to the floriculture industry and hence is a quarantine pathogen. CVB has a positive sense single-stranded RNA (ssRNA) genome ~8.8 kb. The coat protein gene of CVB was amplified by RT-PCR, cloned and over expressed in E. coli BL21. The protein (CP) was expressed as a fusion protein with Glutathione S-Transferase (GST). Fused protein with GST was purified by GST tagged affinity chromatography and polyclonal (but monospecific) antibodies from rabbits immunized with the fusion protein was used for formulation of ELISA based diagnostic kit for CVB detection. The antisera produced showed specific reaction to CVB from infected chrysanthemums, Nicotiana glutinosa, Nicotiana clevelandii and Chenopodium quinoa at dilution of 1:1000 in ELISA. Results obtained were comparable (some times better) than commercial kit. The IgG against CVB performed favorably in specificity and sensitivity to the virus. Findings present a procedure for production of antibodies for CVB indexing of chrysanthemums propagative and mother stock materials to provide the disease free planting material.  相似文献   

19.

Aims

To explore the effects and potential mechanisms of hydrogen sulfide (H2S) in CVB3-induced mice with myocarditis.

Main methods

A total of 75 six-week-old inbred male Balb/c mice were divided randomly into four groups (N, C, P and S). Group N was the negative control. The others were inoculated intraperitoneally (i.p.) with CVB3. Subsequently, groups P and S were injected i.p. once a day with DL-Proparglygylcine (PAG) and NaHS respectively. Group C was the positive control. Inducible nitric oxide synthase (iNOS) and heme oxygenase-1(HO-1) expression on cardiac tissues were evaluated by histopathological examination, immunohistochemistry, RT-PCR and Western blot.

Key findings

The heart-weight to body-weight (HW/BW) ratio, the histologic scores and the iNOS mRNA and protein expression levels were higher, and the HO-1 mRNA and protein expression levels were lower in mice treated with PAG than those mice solely inoculated with CVB3. Mice in group S had a significant decreased in the HW/BW ratio, the histologic scores and the iNOS mRNA and protein expression levels, and had a significant increased in the HO-1 mRNA and protein expression levels compared to the mice in group C. H2S can attenuate inflammatory cell infiltration, alleviate cardiac edema, and limit myocardial lesions.

Significance

Our data support that H2S can inhibit iNOS overexpression and induce HO-1 expression, both of which contribute to the cardioprotection of H2S in CVB3-induced mice myocarditis.  相似文献   

20.
Previously, we described a heart-reactive monoclonal antibody (MAb), 10A1, derived from a coxsackievirus B3 (CVB3)-infected mouse. This MAb selectively inhibits infection of HeLa cells and myocytes with the myocarditic virus variant (CVB3W). A plaque-purified variant (H3) of CVB3W was isolated from the heart of an infected animal, and a second virus (H3-10A1) was obtained by growing H3 in HeLa cells in the presence of MAb 10A1. As with the parental CVB3W virus, H3 infection of HeLa cells can be inhibited by MAb 10A1, but the antibody-selected H3-10A1 variant is resistant to MAb inhibition (presumably an escape mutant). BALB/c mice infected with 10(6) PFU of CVB3W, H3, or H3-10A1 resulted in approximately 90% animal mortality with CVB3W or H3 and less than 10% mortality with H3-10A1, suggesting that the escape mutant is less pathogenic. Additionally, hearts from animals infected with H3-10A1 demonstrated only half the amount of myocarditis observed in either CVB3W- or H3-infected mice. Cardiac virus titers were also reduced approximately 200-fold in H3-10A1-infected animals compared with those in mice given the pathogenic variants. In vitro studies indicate that H3-10A1 is less effective in inhibiting cellular RNA and protein synthesis and show reduced virus replication compared with that of pathogenic viruses in cultured myocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号