首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Drosophila, the body axes are specified during oogenesis through interactions between the germline and the overlying somatic follicle cells [1-5]. A Gurken/TGF-alpha signal from the oocyte to the adjacent follicle cells assigns them a posterior identity [6, 7]. These posterior cells then signal back to the oocyte, thereby inducing the repolarization of the microtubule cytoskeleton, the migration of the oocyte nucleus, and the localization of the axis specifying mRNAs [8-10]. However, little is known about the signaling pathways within or from the follicle cells responsible for these patterning events. We show that the Salvador Warts Hippo (SWH) tumor-suppressor pathway is required in the follicle cells in order to induce their Gurken- and Notch-dependent differentiation and to limit their proliferation. The SWH pathway is also required in the follicle cells to induce axis specification in the oocyte, by inducing the migration of the oocyte nucleus, the reorganization of the cytoskeleton, and the localization of the mRNAs that specify the anterior-posterior and dorsal-ventral axes of the embryo. This work highlights a novel connection between cell proliferation, cell growth, and axis specification in egg chambers.  相似文献   

2.
Li Q  Xin T  Chen W  Zhu M  Li M 《Cell research》2008,18(3):372-384
The intricately regulated differentiation of the somatic follicle cell lineages into distinct subpopulations with specific functions plays an essential role in Drosophila egg development. At early oogenesis, induction of the stalk cells generates the first anteroposterior (AP) asymmetry in the egg chamber by inducing the posterior localization of the oocyte. Later, the properly specified posterior follicle cells signal to polarize the oocyte along the AP and dorsoventral (DV) axes at mid-oogenesis. Here, we show that lethal(2)giant larvae (lgl), a Drosophila tumor suppressor gene, is required in the follicle cells for the differentiation of both stalk cells and posterior follicle cells. Loss-of-function mutations in lgl cause oocyte mispositioning in the younger one of the fused chambers, due to lack of the stalk. Removal of lgl function from the posterior follicle cells using the FLP/FRT system results in loss of the oocyte polarity that is elicited by the failure of those posterior cells to differentiate normally. Thus, we provide the first demonstration that lgl is implicated in the formation of the initial AP asymmetry and the patterning of the AP and DV axes in the oocyte by acting in the specification of a subset of somatic follicle cells.  相似文献   

3.
The anterior-posterior axis of Drosophila is established before fertilisation when the oocyte becomes polarised to direct the localisation of bicoid and oskar mRNAs to opposite poles of the egg. Here we review recent results that reveal that the oocyte acquires polarity much earlier than previously thought, at the time when it acquires its fate. The oocyte arises from a 16-cell germline cyst, and its selection and the initial cue for its polarisation are controlled by the asymmetric segregation of a germline specific organelle called the fusome. Several different downstream pathways then interpret this asymmetry to restrict distinct aspects of oocyte identity to this cell. Mutations in any of the six conserved Par proteins disrupt the early polarisation of the oocyte and lead to a failure to maintain its identity. Surprisingly, mutations affecting the control of the mitotic or meiotic cell cycle also lead to a failure to maintain the oocyte fate, indicating crosstalk between the nuclear and cytoplasmic events of oocyte differentiation. The early polarity of the oocyte initiates a series of reciprocal signaling events between the oocyte and the somatic follicle cells that leads to a reversal of oocyte polarity later in oogenesis, which defines the anterior-posterior axis of the embryo.  相似文献   

4.
5.
Patterning of the Drosophila egg requires the establishment of several distinct types of somatic follicle cells, as well as interactions between these follicle cells and the oocyte. The polar cells occupy the termini of the follicle and are specified by the activation of Notch. We have investigated their role in follicle patterning by creating clones of cells mutant for the Notch modulator fringe. This genetic ablation of polar cells results in cell fate defects within surrounding follicle cells. At the anterior, the border cells, the immediately adjacent follicle cell fate, are absent, as are the more distant stretched and centripetal follicle cells. Conversely, increasing the number of polar cells by expressing an activated form of the Notch receptor increases the number of border cells. At the posterior, elimination of polar cells results in abnormal oocyte localization. Moreover, when polar cells are mislocalized laterally, the surrounding follicle cells adopt a posterior fate, the oocyte is located adjacent to them, and the anteroposterior axis of the oocyte is re-oriented with respect to the ectopic polar cells. Our observations demonstrate that the polar cells act as an organizer that patterns surrounding follicle cells and establishes the anteroposterior axis of the oocyte. The origin of asymmetry during Drosophila development can thus be traced back to the specification of the polar cells during early oogenesis.  相似文献   

6.
The establishment of the anterior-posterior (AP) axis in Drosophila melanogaster requires signaling between the oocyte and surrounding somatic follicle cells during oogenesis [1] [2]. First, a signal from the oocyte (Gurken (Grk), a transforming growth factor-alpha (TGFalpha) homolog) is received by predetermined terminal follicle cells in which the epidermal growth factor receptor (EGFR) pathway is activated and a posterior fate is induced [2] [3] [4]. Later, the posterior follicle cells send an unidentified signal back to the oocyte, which leads to the reorganization of its cytoskeletal polarity. This reorganization is required for proper localization of maternal determinants, such as oskar (osk) and bicoid (bcd) mRNAs, that determine the AP polarity of the oocyte and the subsequent embryo [2]. We show here that when the gene lanA, which encodes the extracellular matrix component laminin A, is mutated in posterior follicle cells, localization of AP determinants is disrupted in the underlying oocyte. Posterior follicle-cell differentiation and follicle cell apical-basal polarity are unaffected in the lanA mutant cells, suggesting that laminin A is required for correct signaling from the posterior follicle cells that polarizes the oocyte. This is the first evidence that the extracellular matrix is involved in the establishment of a major body axis.  相似文献   

7.
 During Drosophila oogenesis the body axes are determined by signaling between the oocyte and the somatic follicle cells that surround the egg chamber. A key event in the establishment of oocyte anterior-posterior polarity is the differential patterning of the follicle cell epithelium along the anterior-posterior axis. Both the Notch and epithelial growth factor (EGF) receptor pathways are required for this patterning. To understand how these pathways act in the process we have analyzed markers for anterior and posterior follicle cells accompanying constitutive activation of the EGF receptor, loss of Notch function, and ectopic expression of Delta. We find that a constitutively active EGF receptor can induce posterior fate in anterior but not in lateral follicle cells, showing that the EGF receptor pathway can act only on predetermined terminal cells. Furthermore, Notch function is required at both termini for appropriate expression of anterior and posterior markers, while loss of both the EGF receptor and Notch pathways mimic the Notch loss-of-function phenotype. Ectopic expression of the Notch ligand, Delta, disturbs EGF receptor dependent posterior follicle cell differentiation and anterior-posterior polarity of the oocyte. Our data are consistent with a model in which the Notch pathway is required for early follicle cell differentiation at both termini, but is then repressed at the posterior for proper determination of the posterior follicle cells by the EGF receptor pathway. Received: 5 November 1998 / Accepted: 14 December 1998  相似文献   

8.
The Drosophila anterior-posterior axis is established at stage 7 of oogenesis when the posterior follicle cells signal to polarize the oocyte microtubule cytoskeleton. This requires the conserved PAR-1 kinase, which can be detected at the posterior of the oocyte in immunostainings from stage 9. However, this localization depends on Oskar localization, which requires the earlier PAR-1-dependent microtubule reorganization, indicating that Oskar-associated PAR-1 cannot establish oocyte polarity. Here we analyze the function of the different PAR-1 isoforms and find that only PAR-1 N1 isoforms can completely rescue the oocyte polarity phenotype. Furthermore, PAR-1 N1 is recruited to the posterior cortex of the oocyte at stage 7 in response to the polarizing follicle cell signal, and this requires actin, but not microtubules. This suggests that posterior PAR-1 N1 polarizes the microtubule cytoskeleton. PAR-1 N1 localization is mediated by a cortical targeting domain and a conserved anterior-lateral exclusion signal in its C-terminal linker domain. PAR-1 is also required for the polarization of the C. elegans zygote and is recruited to the posterior cortex in an actin-dependent manner. Our results therefore identify a molecular parallel between axis formation in Drosophila and C. elegans and make Drosophila PAR-1 N1 the earliest known marker for the polarization of the oocyte.  相似文献   

9.
Intercellular communication between the somatic and germline cells is vital to development of the Drosophila egg chamber. One critical outcome of this communication is the polarization of the oocyte along the anterior-posterior axis, a process induced by an unknown signal from the somatic follicle cells to the oocyte. The existence of this signal has been inferred from several reports demonstrating that the differentiation and patterning of the follicle cells by the spatially restricted activation of certain cell-signaling pathways is necessary for axis formation in the oocyte. These reports have also provided a framework for understanding how these signaling pathways are integrated to generate the follicle-cell pattern, but the precise role of the follicle cells in anterior-posterior axis formation remains enigmatic. Research has identified several genes that appear to be involved in the polarizing communication from the follicle cells to the oocyte. Interestingly the proteins encoded by most of these genes are associated with the extracellular matrix, suggesting a pivotal role for this complex biological component in the polarizing communication between the follicle cells and the oocyte. This review summarizes the findings in this area, and uses the experimental analyses of these genes to evaluate various models describing the possible nature of the polarizing signal, and the role of these genes in it.  相似文献   

10.
The Drosophila ovary provides a model system for studying the mechanisms that regulate the differentiation of somatic stem cells into specific cell types. Ovarian somatic stem cells produce follicle cells, which undergo a binary choice during early differentiation. They can become either epithelial cells that surround the germline to form an egg chamber ('main body cells') or a specialized cell lineage found at the poles of egg chambers. This lineage goes on to make two cell types: polar cells and stalk cells. To better understand how this choice is made, we carried out a screen for genes that affect follicle cell fate specification or differentiation. We identified extra macrochaetae (emc), which encodes a helix-loop-helix protein, as a downstream effector of Notch signaling in the ovary. EMC is expressed in proliferating cells in the germarium, as well as in the main body follicle cells. EMC expression in the main body cells is Notch dependent, and emc mutant cells located on the main body failed to differentiate. EMC expression is reduced in the precursors of the polar and stalk cells, and overexpression of EMC caused dramatic egg chamber fusions, indicating that EMC is a negative regulator of polar and/or stalk cells. EMC and Notch were both required in the main body cells for expression of Eyes Absent (EYA), a negative regulator of polar and stalk cell fate. We propose that EMC functions downstream of Notch and upstream of EYA to regulate main body cell fate specification and differentiation.  相似文献   

11.
The localization of oskar mRNA to the posterior of the Drosophila oocyte defines the site of assembly of the pole plasm, which contains the abdominal and germline determinants. oskar mRNA localization requires the polarization of the microtubule cytoskeleton, which depends on the recruitment of PAR-1 to the posterior cortex in response to a signal from the follicle cells, where it induces an enrichment of microtubule plus ends. Here, we show that overexpressed oskar mRNA localizes to the middle of the oocyte, as well as the posterior. This ectopic localization depends on the premature translation of Oskar protein, which recruits PAR-1 and microtubule-plus-end markers to the oocyte center instead of the posterior pole, indicating that Oskar regulates the polarity of the cytoskeleton. Oskar also plays a role in the normal polarization of the oocyte; mutants that disrupt oskar mRNA localization or translation strongly reduce the posterior recruitment of microtubule plus ends. Thus, oskar mRNA localization is required to stabilize and amplify microtubule polarity, generating a positive feedback loop in which Oskar recruits PAR-1 to the posterior to increase the microtubule cytoskeleton's polarization, which in turn directs the localization of more oskar mRNA.  相似文献   

12.
The localized expression of Hedgehog (Hh) at the extreme anterior of Drosophila ovarioles suggests that it might provide an asymmetric cue that patterns developing egg chambers along the anteroposterior axis. Ectopic or excessive Hh signaling disrupts egg chamber patterning dramatically through primary effects at two developmental stages. First, excess Hh signaling in somatic stem cells stimulates somatic cell over-proliferation. This likely disrupts the earliest interactions between somatic and germline cells and may account for the frequent mis-positioning of oocytes within egg chambers. Second, the initiation of the developmental programs of follicle cell lineages appears to be delayed by ectopic Hh signaling. This may account for the formation of ectopic polar cells, the extended proliferation of follicle cells and the defective differentiation of posterior follicle cells, which, in turn, disrupts polarity within the oocyte. Somatic cells in the ovary cannot proliferate normally in the absence of Hh or Smoothened activity. Loss of protein kinase A activity restores the proliferation of somatic cells in the absence of Hh activity and allows the formation of normally patterned ovarioles. Hence, localized Hh is not essential to direct egg chamber patterning.  相似文献   

13.
The Drosophila egg develops through closely coordinated activities of associated germline and somatic cells. An essential aspect of egg development is the differentiation of the somatic follicle cells into several distinct subpopulations with specific functions. Here we demonstrate that the graded activity of the Janus kinase (JAK) pathway, stimulated by the Unpaired ligand, patterns the anterior-posterior axis of the follicular epithelium. Different levels of JAK activity instruct adoption of distinct anterior cell fates. Further, the coordinated activities of the JAK/STAT and epidermal growth factor receptor (EGFR) pathways are required to specify the posterior terminal cell fate. We propose that Upd secreted from the polar cells may act as a morphogen to stimulate A/P-derived follicular fates through JAK pathway activation.  相似文献   

14.
Substrate-specific degradation of proteins by the ubiquitin-proteasome pathway is a precise mechanism that controls the abundance of key cell regulators. SCF complexes are a family of E3 ubiquitin ligases that target specific proteins for destruction at the 26S-proteasome. These complexes are composed of three constant polypeptides--Skp1, Cullin1/3 and Roc1/Rbx1--and a fourth variable adapter, the F-box protein. Slimb (Slmb) is a Drosophila F-Box protein that fulfills several roles in development and cell physiology. We analyzed its participation in egg chamber development and found that slmb is required in both the follicle cells and the germline at different stages of oogenesis. We observed that in slmb somatic clones, morphogenesis of the germarium and encapsulation of the cyst were altered, giving rise to egg chambers with extra germline cells and two oocytes. Furthermore, in slmb somatic clones, we observed ectopic Fasciclin 3 expression, suggesting a delay in follicle cell differentiation, which correlated with the occurrence of ectopic polar cells, lack of interfollicular stalks and mislocalization of the oocyte. Later in oogenesis, Slmb was required in somatic cells to specify the position, size and morphology of dorsal appendages. Mild overactivation of the Dpp pathway caused similar phenotypes that could be antagonized by simultaneous overexpression of Slmb, suggesting that Slmb might normally downregulate the Dpp pathway in follicle cells. Indeed, ectopic expression of a dad-LacZ enhancer trap revealed that the Dpp pathway was upregulated in slmb somatic clones and, consistent with this, ectopic accumulation of the co-Smad protein, Medea, was recorded. By analyzing slmb germline clones, we found that loss of Slmb provoked a reduction in E2f2 and Dp levels, which correlated with misregulation of mitotic cycles during cyst formation, abnormal nurse cell endoreplication and impairment of dumping of the nurse cell content into the oocyte.  相似文献   

15.
During epithelial development cells become polarized along their apical-basal axis and some epithelia also exhibit polarity in the plane of the tissue. Mutations in the gene encoding a Drosophila Pak family serine/threonine kinase, dPak, disrupt the follicular epithelium that covers developing egg chambers during oogenesis. The follicular epithelium normally exhibits planar polarized organization of basal F-actin bundles such that they lie perpendicular to the anterior-posterior axis of the egg chamber, and requires contact with the basement membrane for apical-basal polarization. During oogenesis, dPak becomes localized to the basal end of follicle cells and is required for polarized organization of the basal actin cytoskeleton and for epithelial integrity and apical-basal polarity. The receptor protein tyrosine phosphatase Dlar and integrins, all receptors for extracellular matrix proteins, are required for polarization of the basal F-actin bundles, and for correct dPak localization in follicle cells. dpak mutant follicle cells show increased beta(Heavy)-spectrin levels, and we speculate that dPak regulation of beta(Heavy)-spectrin, a known participant in the maintenance of membrane domains, is required for correct apical-basal polarization of the membrane. We propose that dPak mediates communication between the basement membrane and intracellular proteins required for polarization of the basal F-actin and for apical-basal polarity.  相似文献   

16.
F Jankovics  R Sinka  M Erdélyi 《Genetics》2001,158(3):1177-1188
Abdomen and germ cell development of Drosophila melanogaster embryo requires proper localization of oskar mRNA to the posterior pole of the developing oocyte. oskar mRNA localization depends on complex cell biological events like cell-cell communication, dynamic rearrangement of the microtubule network, and function of the actin cytoskeleton of the oocyte. To investigate the cellular mechanisms involved, we developed a novel interaction type of genetic screen by which we isolated 14 dominant enhancers of a sensitized genetic background composed of mutations in oskar and in TropomyosinII, an actin binding protein. Here we describe the detailed analysis of two allelic modifiers that identify Drosophila Rab11, a gene encoding small monomeric GTPase. We demonstrate that mutation of the Rab11 gene, involved in various vesicle transport processes, results in ectopic localization of oskar mRNA, whereas localization of gurken and bicoid mRNAs and signaling between the oocyte and the somatic follicle cells are unaffected. We show that the ectopic oskar mRNA localization in the Rab11 mutants is a consequence of an abnormally polarized oocyte microtubule cytoskeleton. Our results indicate that the internal membranous structures play an important role in the microtubule organization in the Drosophila oocyte and, thus, in oskar RNA localization.  相似文献   

17.
The transmembrane protein Dystroglycan is a central element of the dystrophin-associated glycoprotein complex, which is involved in the pathogenesis of many forms of muscular dystrophy. Dystroglycan is a receptor for multiple extracellular matrix (ECM) molecules such as Laminin, agrin and perlecan, and plays a role in linking the ECM to the actin cytoskeleton; however, how these interactions are regulated and their basic cellular functions are poorly understood. Using mosaic analysis and RNAi in the model organism Drosophila melanogaster, we show that Dystroglycan is required cell-autonomously for cellular polarity in two different cell types, the epithelial cells (apicobasal polarity) and the oocyte (anteroposterior polarity). Loss of Dystroglycan function in follicle and disc epithelia results in expansion of apical markers to the basal side of cells and overexpression results in a reduced apical localization of these same markers. In Dystroglycan germline clones early oocyte polarity markers fail to be localized to the posterior, and oocyte cortical F-actin organization is abnormal. Dystroglycan is also required non-cell-autonomously to organize the planar polarity of basal actin in follicle cells, possibly by organizing the Laminin ECM. These data suggest that the primary function of Dystroglycan in oogenesis is to organize cellular polarity; and this study sets the stage for analyzing the Dystroglycan complex by using the power of Drosophila molecular genetics.  相似文献   

18.
ABSTRACT: INTRODUCTION: Establishment of distinct follicle cell fates at the early stages of Drosophila oogenesis is crucial for achieving proper morphology of individual egg chambers. In Drosophila oogenesis, Notch-signaling controls proliferation and differentiation of follicular cells, which eventually results in the polarization of the anterior-posterior axis of the oocyte. Here we analyzed the functions of Tribolium Notch-signaling factors during telotrophic oogenesis, which differs fundamentally from the polytrophic ovary of Drosophila. RESULTS: We found Notch-signaling to be required for maintaining the mitotic cycle of somatic follicle cells. Upon Delta RNAi, follicle cells enter endocycle prematurely, which affects egg-chamber formation and patterning. Interestingly, our results indicate that Delta RNAi phenotypes are not solely due to the premature termination of cell proliferation. Therefore, we monitored the terminal /stalk cell precursor lineage by molecular markers. We observed that upon Delta RNAi terminal and stalk cell populations were absent, suggesting that Notch-signaling is also required for the specification of follicle cell populations, including terminal and stalk precursor cells. CONCLUSIONS: We demonstrate that with respect to mitotic cycle/endocycle switch Notch-signaling in Tribolium and Drosophila has opposing effects. While in Drosophila a Delta-signal brings about the follicle cells to leave mitosis, Notch-signaling in Tribolium is necessary to retain telotrophic egg-chambers in an "immature" state. In most instances, Notch-signaling is involved in maintaining undifferentiated (or preventing specialized) cell fates. Hence, the role of Notch in Tribolium may reflect the ancestral function of Notch-signaling in insect oogenesis. The functions of Notch-signaling in patterning the follicle cell epithelium suggest that Tribolium oogenesis may - analogous to Drosophila - involve the stepwise determination of different follicle cell populations. Moreover, our results imply that Notch-signaling may contribute at least to some aspects of oocyte polarization and AP axis also in telotrophic oogenesis.  相似文献   

19.
Eyes absent,a key repressor of polar cell fate during Drosophila oogenesis   总被引:3,自引:0,他引:3  
Throughout Drosophila oogenesis, specialized somatic follicle cells perform crucial functions in egg chamber formation and in signaling between somatic and germline cells. In the ovary, at least three types of somatic follicle cells, polar cells, stalk cells and main body epithelial follicle cells, can be distinguished when egg chambers bud from the germarium. Although specification of these three somatic cell types is important for normal oogenesis and subsequent embryogenesis, the molecular basis for establishment of their cell fates is not completely understood. Our studies reveal the gene eyes absent (eya) to be a key repressor of polar cell fate. EYA is a nuclear protein that is normally excluded from polar and stalk cells, and the absence of EYA is sufficient to cause epithelial follicle cells to develop as polar cells. Furthermore, ectopic expression of EYA is capable of suppressing normal polar cell fate and compromising the normal functions of polar cells, such as promotion of border cell migration. Finally, we show that ectopic Hedgehog signaling, which is known to cause ectopic polar cell formation, does so by repressing eya expression in epithelial follicle cells.  相似文献   

20.
We describe a new dominant allele, StarKojak, that alters receptor tyrosine kinase signaling in the follicle cells and in the eyes in Drosophila. We isolated StarKojak in a screen for follicle-cell-dependent dominant female sterile mutations. We show that StarKojak and revertants of StarKojak do not complement Star loss-of-function mutations. We propose that StarKojak is a novel type of allele of Star that has both dominant gain-of-function phenotypes early in development and dominant loss-of-function phenotypes later in development. Star encodes a putative transmembrane protein that has previously been shown to be a critical component of the epidermal growth factor receptor tyrosine kinase signaling pathway. Early in oogenesis, Star mRNA expression is higher in StarKojak egg chambers than in wild-type egg chambers, consistent with its gain-of-function phenotype. Later in oogenesis, Star mRNA expression is lower in StarKojak follicle cells than in wild-type follicle cells, consistent with its loss-of-function phenotype. By genetically analyzing StarKojak and its revertants, we present evidence that Star is involved in anterior-posterior axis formation both in the female germline cells and in the somatic follicle cells. We also demonstrate that at least part of the dominant female sterile phenotype of StarKojak is restricted to the posterior-pole follicle cells. We propose that Star functions by processing pro-Gurken to mature Gurken, which is thereby released in the region between the oocyte and the follicle cells and binds to the epidermal growth factor receptor in the follicle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号