首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《The Journal of cell biology》1984,99(4):1212-1220
The intracellularly trapped fluorescent calcium indicator, quin 2, was used not only to monitor changes in cytosolic-free calcium, [Ca2+]i, but also to assess the role of [Ca2+]i in neutrophil function. To increase cytosolic calcium buffering, human neutrophils were loaded with various quin 2 concentrations, and [Ca2+]i transients, granule content release as well as superoxide [O2-] production were measured in response to the chemotactic peptide formyl-methionyl-leucyl- phenylalanine (fMLP) and the calcium ionophore ionomycin. Receptor- mediated cell activation induced by fMLP caused a rapid rise in [Ca2+]i. The extent of [Ca2+]i rise and granule release were inversely correlated with the intracellular concentration of quin 2, [quin 2]i. These effects of [quin 2]i were more pronounced in the absence of extracellular Ca2+. The initial rate and extent of fMLP-induced O2- production were also inhibited by [quin 2]i. The rates of increase of [Ca2+]i and granule release elicited by ionomycin were also inversely correlated with [quin 2]i in Ca2+-containing medium. As the effects of ionomycin, in contrast to those of fMLP, are sustained, the final increase in [Ca2+]i and granule release were not affected by [quin 2]i. A further reduction of fMLP effects was seen when intracellular calcium stores were depleted by incubating the cells in Ca2+-free medium with ionomycin. The specificity of quin 2 effects on cellular calcium were confirmed by loading the cells with Anis/AM, a structural analog of quin 2 with low affinity for calcium which did not inhibit granule release. In addition, functional responses to phorbol myristate acetate (PMA), which stimulates neutrophils without raising [Ca2+]i, were not affected by [quin 2]i. The findings indicate that rises in [Ca2+]i control the rate and extent of granule exocytosis and O2-generation in human neutrophils exposed to the chemotactic peptide fMLP.  相似文献   

2.
Leukotriene B4 (LTB4) was shown to be a potent stimulator of neutrophil actin polymerization as detected by right-angle light scatter and rhodamine-phalloidin staining of F-actin. When we compared the kinetics of this neutrophil cytoskeletal response to the chemoattractants formylpeptide and LTB4, we observed that the response to LTB4 was markedly shorter-lived. To understand the basis of this result, we re-examined the kinetics of superoxide generation, elastase release, intracellular calcium elevation, and phosphoinositide metabolism in neutrophils stimulated with LTB4 and N-formylhexapeptide. LTB4 was relatively inefficient in producing superoxide and in releasing elastase. Although both responses were initiated with similar rapidity, they turned off sooner with LTB4 as compared with N-formylhexapeptide stimulation. Intracellular calcium elevation, a signal that is necessary for superoxide generation and degranulation, was of similar magnitude but of shorter duration in response to LTB4 as compared with the N-formylhexapeptide. The LTB4-induced rise of phosphatidic acid also was not sustained as long as the N-formylhexapeptide-induced increase. Prior exposure of neutrophils to LTB4 did not inhibit subsequent stimulation of superoxide generation by N-formylhexapeptide. Thus, the inability of LTB4 to stimulate superoxide generation was not due to LTB4-induced global inhibitory signals. The deficiency in LTB4-induced superoxide and elastase responses may be related to short-lived LTB4-induced activation signals and/or the number of receptors contributing to these responses.  相似文献   

3.
Changes in cytosolic free calcium [Ca2+]i and release of beta-glucuronidase in response to leukotriene B4 (LTB4) were measured in intact neutrophils loaded with the fluorescent Ca2+ indicator, quin 2. LTB4 (10(-10) M or higher) caused a rapid rise in [Ca2+]i due to influx from the extracellular medium and release from intracellular pools as well as enzyme release. PGE2 (3 microM) did not alter [Ca2+]i whereas arachidonic acid (10 microM) raised [Ca2+]i. Pretreatment of cells with the chemotactic peptide FMLP inhibited the subsequent rise of [Ca2+]i induced by LTB4. Since chemotactic peptides activate the lipoxygenase pathway of arachidonic acid metabolism, it may be speculated that endogenous LTB4 generation is involved in neutrophil activation.  相似文献   

4.
Neutrophilic polymorphonuclear leukocytes contain glycosphingolipid- and cholesterol-enriched lipid raft microdomains within the plasma membrane. Although there is evidence that lipid rafts function as signaling platforms for CXCR chemokine receptors, their role in recognition systems for other chemotaxins such as leukotriene B4 (LTB4) and fMLP is unknown. To address this question, human neutrophils were extracted with 1% Brij-58 and fractionated on sucrose gradients. B leukotriene receptor-1 (BLT-1), the primary LTB4 receptor, partitioned to low density fractions, co-isolating with the lipid raft marker, flotillin-1. By contrast, formyl peptide receptor (FPR), the primary fMLP receptor, partitioned to high density fractions, co-isolating with a non-raft marker, Cdc42. This pattern was preserved after the cells were stimulated with LTB4 or fMLP. Fluorescence resonance energy transfer (FRET) was performed to confirm the proximity of BLT-1 and FPR with these markers. FRET was detected between BLT1 and flotillin-1 but not Cdc42, whereas FRET was detected between FPR and Cdc42, but not flotillin-1. Pretreating neutrophils with methyl-beta-cyclodextrin, a lipid raft-disrupting agent, suppressed intracellular Ca(2+) mobilization and ERK1/2 phosphorylation in response to LTB4 but had no effect on either of these responses to fMLP. We conclude that BLT-1 is physically located within lipid raft microdomains of human neutrophils and that disrupting lipid raft integrity suppresses LTB4-induced activation. By contrast, FPR is not associated with lipid rafts, and fMLP-induced signaling does not require lipid raft integrity. These findings highlight the complexity of chemotaxin signaling pathways and offer one mechanism by which neutrophils may spatially organize chemotaxin signaling within the plasma membrane.  相似文献   

5.
Upon activation neutrophils release reactive oxygen intermediates such as superoxide anion (O2-) which are potent mediators of inflammation. Various agents elicit different responses; N-formylmethionylleucylphenylalanine (fMLP) (0.1 microM) provokes brisk generation of superoxide anion; leukotriene B4 (LTB4, 0.1 microM) is a poor stimulus. In contrast, phorbol myristate acetate (PMA, 1.6 microM) acting directly via protein kinase C is a potent stimulus for O2-. We compared the kinetics of appearance of various "second messengers" with the capacity of these ligands to elicit O2- generation. Kinetic analysis showed a two-phase response to membrane ligands; both an "early" (less than or equal to 15 s) and a "late" (greater than 15 s) increase in [3H]- and [14C]diacylglycerol (DG) was noted in response to fMLP. In contrast, LTB4 elicited only a rapid early increase in DG. The rise in DG evoked by PMA was late. Cytochalasin B increased the late phase of DG labeling elicited by all agonists. Moreover, comparison of increases in [3H]DG versus those of [14C]DG at early and late time points suggested that DG was not formed exclusively from the hydrolysis of polyphosphoinositides. Early increments of DG were also accompanied by addition of plasma membrane (ultrastructural morphometry); the ratio of surface perimeter to area increased rapidly (10 s) and persisted (60 s) in response to fMLP. Increments were more gradual in response to PMA. Kinetic analysis of protein phosphorylation was compared to the early and late increments of DG labeling. A 47,000 Mr protein was phosphorylated with kinetics consistent with the production of O2- and DG in response to fMLP (early and late) and PMA (late). In contrast, LTB4 provoked only early phosphorylation of this protein. The temporal pattern of the formation of diacylglycerol and the phosphorylation of proteins describe a dual signal. The data suggest that neutrophils require not only "triggering" (the rapid generation of a signal) but also "activation" (the maintenance of a signal) to sustain responses.  相似文献   

6.
Leukotriene B4 (LTB4) is reported to exert its biological activity in neutrophils through the increase in cytosolic free calcium that follows binding to its specific receptor. Leukotriene B5 has been shown to be far less active than LTB4. Therefore we compared the capacity of LTB4 and LTB5 to stimulate the rise in cytosolic free calcium using fura-2-loaded human neutrophils, to assess the relationship between the calcium mobilizing activity and biological potency of LTB4 and LTB5. At any concentration tested, LTB5 was less active than LTB4 in increasing cytosolic free calcium. ED50 for LTB4 and LTB5 were 5 X 10(-10) M and 5 X 10(-9) M, respectively. The difference in the binding affinities of LTB4 and LTB5 to the LTB4 receptor has been reported to explain the difference in their biological activities. In the present study we further demonstrated that the calcium mobilizing activity of LTB4 and LTB5 also correlates the different biological activity of the two compounds.  相似文献   

7.
Leukotriene B4 (5S,12R-dihydroxy-6,14-cis,8,10-trans-eicosatetraenoic acid, LTB4) is released from neutrophils exposed to calcium ionophores. To determine whether LTB4 might be produced by ligand-receptor interactions at the plasmalemma, we treated human neutrophils with serum-treated zymosan (STZ), heat-aggregated IgG and fMet-Leu-Phe (fMLP), agonists at the C3b, Fc and fMLP receptors respectively. STZ (10 mg/ml) provoked the formation of barely detectable amounts of LTB4 (0.74 ng/10(7) cells); no omega-oxidized metabolites of LTB4 were found. Adding 10 microM-arachidonate did not significantly increase production of LTB4 or its metabolites. Addition of 50 microM-arachidonate (an amount which activates protein kinase C) before STZ caused a 40-fold increase in the quantity of LTB4 and its omega-oxidation products. Neither phorbol myristate acetate (PMA, 200 ng/ml) nor linoleic acid (50 microM), also activators of protein kinase C, augmented generation of LTB4 by cells stimulated with STZ. Neither fMLP (10(-6) M) nor aggregated IgG (0.3 mg/ml) induced LTB4 formation (less than 0.01 ng/10(7) cells). Moreover, cells exposed to STZ, fMLP, or IgG did not form all-trans-LTB4 or 5-hydroxyeicosatetraenoic acid; their failure to make LTB4 was therefore due to inactivity of neutrophil 5-lipoxygenase. However, adding 50 microM-arachidonate to neutrophil suspensions before fMLP or IgG triggered LTB4 production, the majority of which was metabolized to its omega-oxidized products (fMLP, 20.2 ng/10(7) cells; IgG, 17.1 ng/10(7) cells). The data show that neutrophils exposed to agonists at defined cell-surface receptors produce significant quantities of LTB4 only when treated with non-physiological concentrations of arachidonate.  相似文献   

8.
Both 1,2-diacyl- and 1-O-alkyl-2-acylglycerols are formed during stimulation of human neutrophils (PMN), and both can prime respiratory burst responses for stimulation by the chemotactic peptide, N-formyl-Met-Leu-Phe (fMLP); however, mechanisms of priming are unknown. Arachidonic acid (AA) release through phospholipase A2 activation and metabolism by 5-lipoxygenase are important activities of PMN during inflammation and could be involved in the process of primed stimulation. Therefore, we have examined the ability of diacyl- and alkylacylglycerols to act as priming agents for AA release and metabolism in human neutrophils. After prelabeling PMN phospholipids with [3H]AA, priming was tested by incubating human PMN with the diacylglycerol, 1-oleoyl-2-acetylglycerol (OAG), or its alkylacyl analog, 1-O-delta 9-octadecenyl-2-acetylglycerol (EAG) before stimulating with fMLP. fMLP (1 microM), OAG (20 microM), or EAG (20 microM) individually caused little or no release of labeled AA. However, after priming PMN with the same concentrations of either OAG or EAG, stimulation with 1 microM fMLP caused rapid (peak after 1 min) release of 6-8% of [3H]AA from cellular phospholipids; total release was similar with either diglyceride. Priming cells with OAG also enhanced conversion of released AA to leukotriene B4 (LTB4) and 5-hydroxyeicosatetraenoic acid (5-HETE) upon subsequent fMLP stimulation, but AA metabolites were not increased in EAG-primed PMN. If fMLP was replaced with the calcium ionophore A23187 (which directly causes release of AA and production of LTB4 and 5-HETE), priming by both diglycerides again enhanced release of [3H]AA, but only OAG priming increased lipoxygenase activity. Indeed, EAG pretreatment markedly reduced LTB4 and 5-HETE production. Thus, both diglycerides prime release of AA from membrane phospholipids but have opposite actions on the subsequent metabolism of AA.  相似文献   

9.
Platelet-activating factor (PAF) is a potent lipid mediator of inflammation that can act on human neutrophils. When neutrophils are stimulated with PAF at concentrations greater than 10 nM, a double peak of intracellular calcium mobilization is observed. The second calcium peak observed in PAF-treated neutrophils has already been suggested to come from the production of endogenous leukotriene B4 (LTB4). Here we demonstrate the involvement of endogenous LTB4 production and subsequent activation of the high affinity LTB4 receptor (BLT1) in this second calcium mobilization peak observed after stimulation with PAF. We also show that the second, but not the first peak, could be desensitized by prior exposure to LTB4. Moreover, when neutrophils were pre-treated with pharmacological inhibitors of LTB4 production or with the specific BLT1 antagonist, U75302, PAF-mediated neutrophil degranulation was inhibited by more than 50%. On the other hand, pre-treating neutrophils with the PAF receptor specific antagonist (WEB2086) did not prevent any LTB4-induced degranulation. Also, when human neutrophils were pre-treated with U75302, PAF-mediated chemotaxis was reduced by more than 60%. These data indicate the involvement of BLT1 signaling in PAF-mediated neutrophil activities.  相似文献   

10.
Intracellular Ca2+ mobilization in U937 cells was studied. Stimulation of immature U937 cells with leukotriene B4 (LTB4) increased intracellular Ca2+ levels, whereas stimulation with N-formyl-methionyl-leucyl-phenylalanine (fMLP) failed to increase intracellular Ca2+ levels. U937 cells cultured with 1.5% dimethyl sulfoxide (DMSO) for 4 days (DMSO-U937 cells) responded to LTB4 and possessed the ability to respond to fMLP. U937 cells cultured with 1 ng/ml phorbol myristate acetate (PMA) for 4 days (PMA-U937 cells) lost the ability to respond to LTB4, although they responded to fMLP. Treatment of DMSO-U937 cells with 100 ng/ml PMA for 3 min suppressed intracellular Ca2+ increase induced by LTB4 and fMLP. The fMLP-induced Ca2+ rise in PMA-U937 cells was not suppressed by a further treatment with 100 ng/ml PMA. DMSO-U937 cells responded to inositol 1,4,5-trisphosphate (IP3), indicating that IP3 functions as a messenger of intracellular Ca2+ mobilization from endoplasmic reticulum in U937. The magnitude and duration of the rise in Ca2+ induced by IP3 in DMSO-U937 cells treated with 100 ng/ml PMA for 3 min were similar to those of the controls. When DMSO-U937 cells were Ca2+-depleted, addition of Ca2+ resulted in a transient overshoot of Ca2+ influx. However, the transient overshoot was not observed, when PMA-U937 cells were tested. These results indicate that Ca2+ efflux in PMA-U937 cells is increased by an activated exit pump, which may be directly or indirectly related to the functional state of PMA-U937 cells.  相似文献   

11.
Calcium (Ca2+) signals were monitored in individual neutrophils using ratio imaging of fura-2. In contrast to N-formyl-L-leucyl-L-phenylalanine (f-met-leu-phe), which produced grossly asynchronous Ca2+ signals with delays in response (up to 60 s), leukotriene B4 (LTB4) provoked synchronous and immediate elevations in cytosolic free Ca2+. Some individual neutrophils which responded immediately to LTB4, subsequently displayed delayed Ca2+ signals in response to f-met-leu-phe. A sub-population of neutrophils failed to respond to both LTB4 and f-met-leu-phe. The asynchrony of the Ca2+ signalling to f-met-leu-phe is not, therefore, an obligatory property of signal transduction in neutrophils.  相似文献   

12.
Leukotrienes generated by 5-lipoxygenase (5-LOX)-catalyzed reaction are key regulators of inflammation. In ionophore-stimulated (A23187; 1-2.5 μM) human blood neutrophils or differentiated HL-60 cells, vitamin E forms differentially inhibited leukotriene B(4) (LTB(4)) with an IC(50) of 5-20 μM for γ-tocopherol, δ-tocopherol (δT), and γ-tocotrienol, but a much higher IC(50) for α-tocopherol. 13'-Carboxychromanol, a long-chain metabolite of δT, suppressed neutrophil- and HL-60 cell-generated LTB(4) with an IC(50) of 4-7 μM and potently inhibited human recombinant 5-LOX activity with an IC(50) of 0.5-1 μM. In contrast, vitamin E forms had no effect on human 5-LOX activity but impaired ionophore-induced intracellular calcium increase and calcium influx as well as the subsequent signaling including ERK1/2 phosphorylation and 5-LOX translocation from cytosol to the nucleus, a key event for 5-LOX activation. Further investigation showed that δT suppressed cytosolic Ca(2+) increase and/or LTB(4) formation triggered by ionophores, sphingosine 1-phosphate, and lysophosphatidic acid but not by fMLP or thapsigargin, whereas 13'-carboxychromanol decreased cellular production of LTB(4) regardless of different stimuli, consistent with its strong inhibition of the 5-LOX activity. These observations suggest that δT does not likely affect fMLP receptor-mediated signaling or store depletion-induced calcium entry. Instead, we found that δT prevented ionophore-caused cytoplasmic membrane disruption, which may account for its blocking of calcium influx. These activities by vitamin E forms and long-chain carboxychromanol provide potential molecular bases for the differential anti-inflammatory effects of vitamin E forms in vivo.  相似文献   

13.
This study documents the influence of leukotriene (LT) B4 on human B lymphocyte responses. Incubation of freshly isolated B lymphocytes with LTB4, but not LTC4, induced a slight but significant, time- and dose-dependent increase in the surface expression of Fc epsilon RII/CD23 and class II MHC Ag and in the release of soluble CD23. These changes were maximal at 10 nM LTB4 after an incubation period of 48 h. When B lymphocytes were preactivated in vitro with Staphylococcus aureus Cowan strain I (SAC), neither LTB4 nor LTC4 was able to promote proliferation and/or IgG and IgM secretion. In contrast, when resting B lymphocytes were stimulated with a suboptimal concentration (3 U/ml) of IL-4, LTB4, but not LTC4, potentiated both the Fc epsilon RII/CD23 and the class II MHC antigen expression, and the release of soluble CD23 in a dose-dependent manner, without affecting the kinetics of these responses. Furthermore, LTB4, but not LTC4, amplified both the proliferative response and the IgG and IgM secretion induced by addition of a suboptimal dose of IL-4 (3 U/ml) to SAC-preactivated B lymphocytes. Again, LTB4 did not modify the kinetics of the proliferative response promoted by IL-4. Although LTB4 potentiated IL-4-induced IgG and IgM secretion from SAC-activated B lymphocytes, no production of IgE was observed. These data indicate that LTB4 could play a regulatory role in the modulation of IL-4-induced signaling in human B lymphocytes.  相似文献   

14.
The effect of 6,9-deepoxy-6,9-(phenylimino)-delta 6,8-prostaglandin I1 (Piriprost) on the oxidative response was studied in human neutrophils stimulated by N-formyl-methionyl-leucyl-phenylalanine (fMLP), phorbol 12-myristate, 13-acetate (PMA) or opsonized zymosan. Piriprost inhibited the stimulatory effect of fMLP on superoxide anion (O2-) generation, at concentrations higher than those which depress leukotriene B4 (LTB4) formation. This inhibition was overcome by increasing the concentration of fMLP. Neither exogenous LTB4 nor indomethacin were able to reverse the inhibitory effect of piriprost on fMLP action. In contrast, piriprost did not inhibit the stimulation of O2- production induced by PMA or zymosan. Piriprost behaves thus as a specific and apparently competitive antagonist of fMLP: this action does not seem to involve lipoxygenase inhibition and might be exerted at the level of the fMLP receptor or its associated mechanisms of transduction.  相似文献   

15.
SC-41930 was evaluated for effects on human neutrophil chemotaxis and degranulation. At concentrations up to 100 microM, SC-41930 alone exhibited no effect on neutrophil migration, but dose-dependently inhibited neutrophil chemotaxis induced by leukotriene B4 (LTB4) in a modified Boyden chamber. Concentrations of SC-41930 from 0.3 microM to 3 microM competitively inhibited LTB4-induced chemotaxis with a pA2 value of 6.35. While inactive at 10 microM against C5a-induced chemotaxis, SC-41930 inhibited N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced chemotaxis, with 10 times less potency than against LTB4-induced chemotaxis. SC-41930 inhibited [3H]LTB4 and [3H]fMLP binding to their receptor sites on human neutrophils with KD values of 0.2 microM and 2 microM, respectively. SC-41930 also inhibited neutrophil chemotaxis induced by 20-OH LTB or 12(R)-HETE. At concentrations up to 10 microM, SC-41930 alone did not cause neutrophil degranulation, but inhibited LTB4-induced degranulation in a noncompetitive manner. SC-41930 also inhibited fMLP- or C5a-induced degranulation, but was about 8 and 10 times less effective for fMLP and C5a, respectively. The results indicate that SC-41930 is a human neutrophil LTB4 receptor antagonist with greater specificity for LTB4 than for fMLP or C5a receptors.  相似文献   

16.
We assessed the effects of several leukotrienes and of f-Met-Leu-Phe on oxygen consumption in neutrophils and on the initial burst of chemiluminescence (CL) in both neutrophils and eosinophils. It was found that f-Met-Leu-Phe initiated 2.6 times higher oxygen consumption in neutrophils than did leukotriene B4 (LTB4). f-Met-Leu-Phe also stimulated five to 10 times more CL from both types of granulocytes than LTB4, which was at least five times more potent than its omega-hydroxylated metabolite, 20-OH-LTB4, whereas the corresponding 20-COOH derivative was effective only in eosinophils. The double dioxygenation product 5(S), 12(S)- DHETE caused no CL. Neutrophils from patients with chronic granulomatous disease did not respond with CL to any of the agents. The peak of CL occurred 50 to 60 sec after the addition of fMLP, whereas the LTB4-associated peak occurred after 5 to 6 sec and then rapidly subsided. The treatment of cells with sodium azide to inhibit the myeloperoxidase system did not change the kinetics or the rapid decline of the LTB4-induced CL. The CL response to LTB4 could be inhibited to 85% by 0.5 microgram/ml of superoxide dismutase, to 72% by 200 mg/ml of catalase, and to 50% by 80 microM of mannitol. The corresponding figures for f-Met-Leu-Phe-induced CL were 80, 58, and 16%, suggesting that, although a substantial part of the CL appears to be due to superoxide ion production, other oxygen radicals are involved in luminol-enhanced CL production. Thus, in contrast to some previous reports that leukotrienes do not stimulate an oxidative metabolic response in granulocytes despite their potent activity as chemotactic factors, our studies show that leukotrienes are definite inducers of granulocyte oxidative metabolism.  相似文献   

17.
Rabbit anti-idiotypic IgG antibodies to the combining site of a mouse monoclonal IgG2b antibody to leukotriene B4 (LTB4) cross-reacted with human polymorphonuclear (PMN) leukocyte receptors for LTB4. Anti-idiotypic IgG and Fab both inhibited the binding of [3H]LTB4, but not [3H]N-formylmethionyl-leucylphenylalanine (fMLP), to PMN leukocytes with similar concentration-effect relationships, whereas neither nonimmune rabbit IgG nor Fab had any inhibitory activity. At a concentration of anti-idiotypic IgG that inhibited by 50% the binding of [3H] LTB4 to PMN leukocytes, the antibodies preferentially recognized high affinity receptors. Anti-idiotypic IgG and Fab inhibited PMN leukocyte chemotactic responses to LTB4, but not fMLP, with concentration-effect relationships resembling those characteristic of the inhibition of binding of [3H] LTB4, without altering the LTB4-induced release of beta-glucuronidase. Chemotaxis and increases in the cytoplasmic concentration of calcium equal in magnitude to those elicited by optimal concentrations of LTB4 were attained at respective concentrations of anti-idiotypic IgG equal to and 1/25 the level required for inhibition of binding of [3H]LTB4 by approximately 50%. Thus, the anti-idiotypic antibodies bound to PMN leukocyte receptors for LTB4 with a specificity, preference for high affinity sites, and capacity to alter PMN leukocyte functions that were similar to LTB4.  相似文献   

18.
The induction of the respiratory burst in human neutrophils by combinations of fMLP and either PAF or LTB4 was studied. Pretreatment with PAF (0.0001 to 10 uM), which by itself did not elicit the burst, greatly enhanced the rate and extent of fMLP-induced superoxide production. A synergism of a different kind was observed with the reversed stimulus sequence: Pretreatment with fMLP made the neutrophils capable to respond to PAF with superoxide production. A moderate enhancement of the fMLP response was also obtained following pretreatment with LTB4. The response of the cells to LTB4, however, was not influenced by fMLP, and no synergism was observed between the two neutrophil products PAF and LTB4. The results of this study demonstrate a marked synergism between fMLP and PAF and suggest that PAF may function as an amplifier of the respiratory burst response of stimulated neutrophils.  相似文献   

19.
Peripheral blood neutrophils from patients with allergic rhinitis and from normal subjects were incubated for 5 min at 37 degrees C with 0.15 microM calcium ionophore A23187 in the absence or presence of exogenous arachidonic acid (2.5 to 10 microM). In neutrophils from allergic patients, the leukotriene B4 (LTB4) level was significantly increased by exogenous arachidonic acid in a concentration-dependent manner (16.2 +/- 4.2 and 38.1 +/- 6.8 pmol/5 min per 2 X 10(6) cells in the absence and presence of 10 microM arachidonic acid, respectively; P less than 0.005; n = 8). The LTB4 level in neutrophils from healthy subjects was only 0.97 +/- 0.17 pmol/5 min per 2 x 10(6) cells (n = 5) and was not enhanced by exogenous arachidonate. When cells from allergic patients were challenged in the presence of exogenous [1-14C]arachidonic acid, released LTB4 was radiolabeled and the incorporated radioactivity increased with the labeled arachidonate concentration. Labeled LTB4 was never detectable after incubating neutrophils from normal donors with exogenous labeled arachidonate. When neutrophils were incubated with [1-14C]arachidonate for 1 h, the different lipid pools of the two cell populations were labeled but both types of neutrophils produced unlabeled LTB4 in response to ionophore stimulation. The hydrolysis of choline and ethanolamine phospholipids into diacyl-, alkenylacyl- and alkylacyl-species revealed that solely the alkylacyl-subclass of phosphatidylcholine was unlabeled. We conclude (i) that neutrophils from allergic patients stimulated by low ionophore concentration produce more LTB4 than neutrophils from healthy subjects and incorporate exogenous arachidonate, (ii) that endogenous arachidonate converted to LTB4 by the 5-lipoxygenase pathway may provide only from 1-O-alkyl-2-arachidonoyl-glycero-3-phosphocholine.  相似文献   

20.
A real-time study of the initiation of the respiratory burst in human neutrophils was made. The cells were stimulated with fMet-Leu-Phe (fMLP) C5a, platelet-activating factor, leukotriene B4, phorbol myristate acetate (PMA), or ionomycin, and H2O2 production was determined by chemiluminescence. Identical average onset times (2.4 s) and closely comparable values for the apparent first-order rate constant (kapp) for the induction of NADPH-oxidase activity (0.21-0.29 s-1) were obtained following stimulation with fMLP, C5a, platelet-activating factor, or leukotriene B4, suggesting that different agonists act through a common transduction sequence. Much longer onset times and lower kapp values were obtained upon stimulation with PMA or ionomycin. Pretreatment with PMA consistently shortened the onset time of the neutrophil's responses to agonists by about 1 s. When H2O2 production was initiated with PMA, a subsequent stimulation with the agonist fMLP elicited an immediate response (onset time less than 0.2 s) which preceded further changes in fura-2-detected [Ca2+]i. The results are consistent with a mechanism in which agonist signals appear to be transduced by two sequences acting in concert--a rate-limiting one liberating Ca2+ and diacylglycerol and turning on the Ca2+/phospholipid-dependent enzyme protein kinase C, and an essentially instantaneous one which does not appear to require further changes in cytosolic Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号