首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gotohda T  Tokunaga I  Kubo S 《Life sciences》2005,76(17):1929-1937
Rats were exposed to toluene (1,500 ppm for 4 hr per day) for 7 days. The body weight of the rats was significantly lower and the weight of the adrenal gland was significantly higher in the toluene inhalation group compared to the controls. Microscopically, there was no obvious change in the medulla, but hypertrophy of the cortex was observed in the toluene inhalation group. And, the size of adrenocortical cells in treated-rats was also significantly enlarged than the control. Immunohistochemical staining did not show a clear difference in localization of aldosterone-positive cells between the control and inhalation groups. Expansion of the corticosterone-positive area consistent with the cortical hypertrophy was recognized in the inhalation group. Enhancement of 72 kD-heat-shock protein (HSP70)-expression in the toluene inhalation group was not observed. Neither stress nor damage to cortical cells due directly to toluene exposure was observed in the cortex. Also, there was no obvious difference in the anti-proliferating cell nucleus antigen (PCNA)-immunostaining between control and inhalation groups. Thus, it is suspected that cortical hypertrophy was the result of cell enlargement due to the stimulation of the cortical cells. Corticotropin-releasing factor (CRF) immunoreactivity in the paraventricular nucleus (PVN) was increased in the inhalation group. Concentration of plasma ACTH was elevated significantly by toluene exposure. The amounts of mRNA of adrenocortical steroid metabolism gene, cytochrome side-chain cleavage (P450scc), was also increased by toluene inhalation. Toluene exposure might induce adrenocortical hypertrophy via the hypothalamus-pituitary-adrenal gland (HPA) axis.  相似文献   

2.
The cerebellar nuclei of the lesser bushbaby (Galago senegalensis) and the tree shrew (Tupaia glis) were studied. The cerebellar nuclear grey of Galago is divisible into a medial nucleus, a nucleus interpositus anterior, a nucleus interpositus posterior, and a lateral nucleus. The lateral nucleus is slightly concave medially suggestive of a primitive hilus. The interpositus nucleus is divided into anterior and posterior portions by a delicate lamina of fibers. The medial cerebellar nucleus is an irregular mass of cells located dorsal to the fourth ventricle. The cerebellar nuclear grey of Tupaia is also divisible into a medial nucleus, a nucleus interpositus anterior, a nucleus interpositus posterior, and a lateral cerebellar nucleus. The medial cerebellar nucleus is located dorsal to the fourth ventricle. The nucleus interpositus anterior and nucleus interpositus posterior are joined together and with the lateral nucleus in the caudo-ventral region. The NIA and NIP have an anterior-posterior relationship to each other and the lateral nucleus has no apparent undulations suggestive of early sacculations. The configuration of the cerebellar nuclei of Tupaia more closely resembles the more primitive patterns of the rat, hedgehog, and mole than those of Galago or other primates.  相似文献   

3.
There is growing interest in the cerebellum as a site of neuropathological changes in schizophrenia. Reports showing that schizophrenics have higher nitric oxide synthase (NOS) activity and MAPKinase levels in the vermis, point to possible aberrations in the cerebellar signal transduction of schizophrenics. It has been speculated that Ca2+-dependent extracellular to intracellular signal transduction may be disrupted in the cerebellum of schizophrenics. We decided to test this hypothesis by studying the nitrergic system and markers of the Ca2+-triggered signal cascade in the cerebellum of schizophrenics, depressives and controls. The cellular distribution of two calcium sensor proteins (VILIP-1 and VILIP-3) and of neuronal NOS immunoreactivity was studied morphometrically in the flocculonodulus, the inferior vermis and the dentate nucleus of 9 schizophrenics, 7 depressive patients and 9 matched controls. In comparison to controls and depressed patients there were fewer Nissl-stained neurons in the dentate nucleus of schizophrenics. The number of NOS-expressing Purkinje neurons was however strongly increased. In the flocculonodulus and the vermis no differences between the groups were found with regard to the density of Nissl-stained Purkinje cells. The number of NOS-expressing Purkinje neurons was increased in schizophrenics, however. No differences between schizophrenics, depressives and controls were found in the number of VILIP-1 immunoreactive dentate nucleus neurons and VILIP-3 immunoreactive vermal and flocculonodular Purkinje cells. Our data provide further histochemical evidence in favor of structural abnormalities in discrete cerebellar regions of schizophrenics. They confirm and extend earlier reports of increased cerebellar NOS immunoreactivity in schizophrenia and point to possible neurodevelopmental disturbances. Our failure to show an altered expression of two calcium sensor proteins possibly points to a less important role of calcium signaling in cerebellar pathology of the disease.  相似文献   

4.
Benzodiazepine receptor binding was measured in cerebellar cortex of 15 patients with dominantly inherited olivopontocerebellar atrophy (OPCA). The majority of these patients had a moderate to marked Purkinje cell loss, as judged by the lowered levels of dentate nucleus gamma-aminobutyric acid (GABA), a marker of Purkinje cells. Despite the reduction in Purkinje cell number cerebellar cortical benzodiazepine receptor density was either normal or slightly elevated in the OPCA patients. These results are in contrast to the findings in a mutant strain of mice deficient in Purkinje cells in which the concentration of benzodiazepine receptors in cerebellum is greatly reduced. Our data indicate that in the human, cerebellar cortical benzodiazepine receptors are either not significantly associated with Purkinje cells or that in OPCA Purkinje cell loss triggers a de novo synthesis of extra benzodiazepine binding sites. It is concluded that, in contrast with the rodent, in the human benzodiazepine receptor binding may not serve as a marker for cerebellar Purkinje cells.  相似文献   

5.
In the cat the possible contribution of cerebellar afferents from the accessory oculomotor nuclei was investigated by means of retrograde transport of the wheat germ agglutinin-horseradish peroxidase complex. A sparse bilateral projection from the interstitial nucleus of Cajal was demonstrated. The fibres reach cerebellar cortical as well as nuclear regions. No retrogradely labelled cells were found in the nucleus of Darkschewitsch and the nucleus of the posterior commissure.  相似文献   

6.
Retrograde transport of fluorescent substances was used in order to investigate possible branching of axons from neurons in the oculomotor nucleus in the cat. Rhodamine-B-isothiocyanate (RITC) was injected into the cerebellar hemisphere, while Fluoro-Gold was implanted into the abducent nucleus. Neurons single-labelled with either of the dyes were found in the oculomotor nucleus in all cases, but no double-labelled neurons were found. The labelled cells were smaller than motoneurons and located in partly overlapping areas along the dorsal border of the oculomotor nucleus, with the RITC labelled cerebellar projecting cells concentrated medially and the Fluoro-Gold labelled neurons projecting to the abducent nucleus concentrated laterally. The RITC labelled cells were found throughout the rostrocaudal extent of the nucleus, while the Fluoro-Gold labelled cells were mainly found caudally. The present findings demonstrate that oculomotor neurons projecting to the feline cerebellum and abducent nucleus represent separate cell populations.  相似文献   

7.
The morphometric development of the human cerebellar nuclei was examined in 9 fetuses (16-40 weeks of gestation; WG), an infant (2 months old) and 2 adults (16 and 63 years old). With the morphological observation of serial sections of the brain containing the cerebellar nuclei, the authors measured sections to get several morphometric parameters: the volume of nuclear column and number, packing density and cell body area of neurons. Each nucleus (dentate, emboliform, globose and fastigial nucleus) was recognized even at 16 WG. Nerve cells containing Nissl bodies were observed in all nuclei after 23 WG. Degenerative changes were detected in some neurons for every nucleus at 21 and 23 WG. Three stages were observed in the developmental course of nuclear volume and neuronal packing density: the primary or undifferentiated stage at 16 WG, the secondary stage with variability at 21-32 WG and the tertiary stage with monotonous increase (nuclear volume) or gradual decrease (neuronal packing density) after 35 WG. No significant correlation between neuronal number and gestational age was noticed for every nucleus. The analysis of cell body area (neuronal size) demonstrated that the dentate neurons developed after the intermediate or fastigial neurons. It is concluded that there is a critical period between slightly before 20 WG and slightly after 30 WG, matched with the secondary stage in the development of the cerebellar nuclei.  相似文献   

8.
The occurrence and distribution of retrogradely labeled cells in the perihypoglossal nuclei of the monkey were mapped after injections of horseradish peroxidase in various cerebellar cortical regions. In general the findings are in accord with those made in the cat. The flocculus receives a heavy bilateral projection from the nucleus prepositus, particularly from its caudoventral part, and from the nucleus of Roller. There is an apparently scanty projection from the nucleus intercalatus. The uvula receives a rather similar projection, but in the prepositus the cells projecting to the uvula are on the whole situated more dorsally and rostrally than those supplying the flocculus. The projection to lobules VII-VIII is distinct. More scanty projections have been found to the paramedian lobule and the anterior lobe. The different but partially overlapping sites of origin in the prepositus of fibers to the flocculus and uvula indicate the presence of a topical pattern within the perihypoglosso-cerebellar projection, as in the cat (34). In the monkey the two regions of origin appear to coincide with two particular cell collections in the prepositus (12). Both small and middle sized cells project to the cerebellum, as they do in the cat (9, 48). The nucleus supragenualis nervi facialis in the macaque is morphologically different from the corresponding nucleus in most other mammalian species (12), but it contains labeled cells after injections in the flocculus, uvula and other cerebellar regions. A considerable number of cells in the abducent nucleus are labeled after injections in the flocculus and the posterior vermis.  相似文献   

9.
Recent progress in the comparative analysis of the vertebrate cerebellar organization shows that the cerebella of different tetrapods have a basically similar intrinsic organization, whereas the cerebellum of fishes displays a number of fundamental differences in this respect. Clear examples of teleostean cerebellar specializations are present in the gigantocerebellum of mormyrids, including a valvula cerebelli, the absence of a parasagittal zonal organization, the presence of eurydendroid projection neurons instead of deep cerebellar nuclei, a precerebellar nucleus lateralis valvulae, olivocerebellar fibers that do not climb into the molecular layer, uni- and bilateral locations of granule cells, parallel fibers without a T-shaped bifurcation and with a coextensive distribution in the transverse plane, and different Purkinje cell arrangements including a dendritic palisade pattern. A theoretical exploration of the possible significance of these configurations suggests that they all might be involved in a single main cerebellar function, i.e. coincidence detection of parallel fiber activity by Purkinje cells.  相似文献   

10.
Summary Interphase nuclei isolated from paraffin-embedded tissue of four normal brains were hybridized with biotinated repetitive DNA probes specific for the (peri) centromeric regions of chromosomes 1 and 7. Hybridization results were visualized with a peroxidase-DAB system after which the number of specific signals per nucleus was counted using bright field microscopy. Using the probe specific for chromosome 7 (p7t1), both the cerebral and the cerebellar samples showed 2 spots in 82% and 83%, respectively, of the nuclei. In situ hybridization with the chromosome 1 probe (pUC1. 77) showed two spots in 69% of the cerebral nuclei. In cerebellar samples, hybridization with pUC1.77 resulted in only one large spot per nucleus in 82% of the cells. The average spot size in nuclei with one signal was about 1.6 times as large as that in nuclei with two signals. These observations suggest that the single large spot in the cerebellar cells is not the result of monosomy of chromosome 1 but that it reflects somatic pairing of the two chromosome 1 centromeres. Based on the size and the fraction of nuclei with one large spot, the small granular neuron is the most likely candidate. The difference between cerebral and cerebellar samples indicates that this somatic pairing of chromosome 1 is a cell-type-dependent phenomenon.  相似文献   

11.
A flat cerebellar nucleus of melanin containing cells in the vicinity of the nucleus fastigii of man is described as part of the nucleus coeruleus.  相似文献   

12.
The role of the lateral reticular nucleus and nuclei of the inferior olive in the formation of cerebellar cortical evoked potentials in response to vagus nerve stimulation was determined in experiments on 28 cats anesthetized with chloralose and pentobarbital. After electrolytic destruction of the lateral reticular nucleus, in response to vagus nerve stimulation, especially ipsilateral, lengthening of the latent period and a decrease in amplitude of evoked potentials were observed; after bilateral destruction of this nucleus, evoked potentials could be completely suppressed. It is concluded that the lateral reticular nucleus relays interoceptive impulses in the vagus nerve system on to the cerebellar cortex. Additional evidence was given by the appearance of spike responses of Purkinje cells, in the form of mainly simple discharges, to stimulation of the vagus nerve. After destruction of the nuclei of the inferior olive, the latent period and the number of components of evoked potentials in response to vagus nerve stimulation remained unchanged but their amplitude was reduced. The role of the nuclei of the inferior olive as a regulator of the intensity of the flow of interoceptive impulses to the cerebellum is discussed.N. I. Pirogov Medical Institute, Vinnitsa. Translated from Neirofiziologiya, Vol. 9, No. 3, pp. 290–299, May–June, 1977.  相似文献   

13.
Neurones with chromatolysis, hyperchromatism and numerous nucleus have been counted of the paraffin cerebellar cortex sections coloured with kresil-violet and metil-green pironin. The alimentary deficiency has been shown to result in increase of cell number with chromatolysis and hyperchromatism and decrease of the number of numerous nucleus. The food rehabilitation doesn't take off completely damages caused by malnutrition. The use of carnitine leads to the complete rehabilitation that is due to the normalization of protein metabolism in cerebellum.  相似文献   

14.
S N Ivanova 《Tsitologiia》1975,17(8):979-981
Two cell types can be distinguished in granular cells of the chochlear complex of the rat by the form of their processes and the structure of the nuclear chromatin. It is shown cytophotometrically that the majority of the granular cells of the cochlear complex and in the cerebellar cortex are diploid. However, some cells contain DNA amount close to tetraploid. Some correlation between the size of the nucleus and its DNA amount was discovered both in the cerebellar cortex and in the cochlear complex.  相似文献   

15.
In order to investigate the mechanisms responsible for adaptation to altered gravity, we assessed the changes in mRNA expression of glutamate receptors in vestibular ganglion cells, medial vestibular nucleus, spinal vestibular nucleus/lateral vestibular nucleus, cerebellar flocculus, and uvula/nodulus from rats exposed to hypergravity for 2 h to 1 week using real-time quantitative RT-PCR methods. The mRNA expression of GluR2 and NR1 receptors in the uvula/nodulus and NR1 receptors in the medial vestibular nucleus increased in animals exposed to 2 h of hypergravity, and it decreased gradually to the control level. The mRNA expression of GluR2 receptors in vestibular ganglion cells decreased in animals exposed to 1 week of hypergravity. Neither the metabotropic glutamate receptor 1 nor delta2 glutamate receptor in flocculus and uvula/nodulus was affected by a hypergravity load for 2 h to 1 week. It is suggested that the animals adapted to the hypergravity by enhancing the cerebellar inhibition of the vestibular nucleus neurons through activation of the NR1 and GluR2 receptors on the Purkinje cells in uvula/nodulus especially at the early phase following hypergravity. In the later phase following hypergravity, the animals adapted to the hypergravity by reducing the neurotransmission between the vestibular hair cells and the primary vestibular neurons via down-regulation of the postsynaptic GluR2 receptors in the vestibular periphery.  相似文献   

16.
目的:研究人体小脑神经元的发育过程。方法:应用体视学方法,对18例不同时期人体小脑组织Golgi染色后进行观察,观测小脑皮质分层出现的时间,观测并计算神经元的数密度、体密度和表面积密度。结果:6月龄时,小脑皮质出现较明显的分子层、蒲肯野细胞层和颗粒层;星形细胞、篮状细胞、蒲肯野细胞、颗粒细胞和高尔基细胞的的数密度随月龄/年龄的增长而减少,体密度和表面积密度随月龄/年龄的增长而增加,但这些减小和增大是不等速的,6-8月龄变化最明显。结论:人体小脑神经元的发育呈现快慢交替、不均速发展,6~8月是小脑神经元发育的重要时期。  相似文献   

17.
The topographical distribution of vestibulospinal neurons in Deiters' nucleus was investigated by a microelectrode method. By contrast with observations made in morphological experiments, the localization of antidromically identified vestibulocervical (C-neurons) and vestibulolumbar (L-neurons) cells was found not to be limited to the ventral middle and rostral third of the nucleus (the forelimb region) and caudodorsal part of the nucleus (hind limb region), but to include the whole of the ventral and dorsal half of the nucleus, respectively. The zones of localization of these two groups of neurons are not confined to a single layer: C-neurons are found in the dorsal half of the nucleus and L-neurons in its ventrocaudal part also. Analysis of the distribution of monosynaptic IPSPs arising in response to activation of Purkinje cells in the vestibulospinal neurons showed that C-neurons are controlled chiefly from the forelimb zone of the cerebellar cortex whereas L-neurons are controlled equally by inhibitory influences from the forelimb and hind limb zones of the anterior lobe of the cerebellar cortex.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 11, No. 1, pp. 54–64, January–February, 1979.  相似文献   

18.
Perinatal and juvenile oral treatment of rats with the insecticide, methoxychlor (MXC), reduced testicular size and other reproductive indices including the number of epididymal spermatozoa in those animals as adults 161. The objective was to determine if these males exposed during development had fewer Sertoli cells which might explain these testicular effects. Rat dams were gavaged with MXC at 0, 5, 50, or 150 mg x kg(-1) x day(-1) for the week before and after they gave birth. Resulting male pups (15/group) then were dosed directly from postnatal day 7 to 42. Testes were fixed in Bouin's and in OsO4, embedded in Epon and sectioned at 0.5 microm, stained with toluidine blue, and evaluated stereologically or cut at 20 microm to measure Sertoli cell nuclei with Nomarski optics. Sertoli cell number was calculated as the volume density of the nucleus times the parenchymal weight (90% of testicular weight) divided by the volume of a single Sertoli cell nucleus. Across dose groups, there were no changes in the nuclear volume density, the volume of a single nucleus, or the number of Sertoli cells per g parenchyma. There were highly significant dose-related changes in the volume of Sertoli cell nuclei per testis and the number of Sertoli cells per testis. Reduced testicular weight (r = 0.94) and reduced numbers of epididymal spermatozoa (r = 0.43) were significantly (p < 0.01) correlated to reduced number of Sertoli cells per testis. Hence, perinatal and juvenile oral exposure to MXC can reduce spermatogenic potential of males as adults by reducing their number of Sertoli cells.  相似文献   

19.
The suprachiasmatic nucleus houses the central circadian clock and is characterized by the timely regulated expression of clock genes. However, neurons of the cerebellar cortex also contain a circadian oscillator with circadian expression of clock genes being controlled by the suprachiasmatic nucleus. It has been suggested that the cerebellar circadian oscillator is involved in food anticipation, but direct molecular evidence of the role of the circadian oscillator of the cerebellar cortex is currently unavailable. To investigate the hypothesis that the circadian oscillator of the cerebellum is involved in circadian physiology and food anticipation, we therefore by use of Cre‐LoxP technology generated a conditional knockout mouse with the core clock gene Arntl deleted specifically in granule cells of the cerebellum, since expression of clock genes in the cerebellar cortex is mainly located in this cell type. We here report that deletion of Arntl heavily influences the molecular clock of the cerebellar cortex with significantly altered and arrhythmic expression of other central clock and clock‐controlled genes. On the other hand, daily expression of clock genes in the suprachiasmatic nucleus was unaffected. Telemetric registrations in different light regimes did not detect significant differences in circadian rhythms of running activity and body temperature between Arntl conditional knockout mice and controls. Furthermore, food anticipatory behavior did not differ between genotypes. These data suggest that Arntl is an essential part of the cerebellar oscillator; however, the oscillator of the granular layer of the cerebellar cortex does not control traditional circadian parameters or food anticipation.  相似文献   

20.
向炜  罗学港  卢大华  贺立新 《生物磁学》2011,(10):1865-1868
目的:研究人体小脑神经元的发育过程。方法:应用体视学方法,对18例不同时期人体小脑组织Golgi染色后进行观察,观测小脑皮质分层出现的时间,观测并计算神经元的数密度、体密度和表面积密度。结果:6月龄时,小脑皮质出现较明显的分子层、蒲肯野细胞层和颗粒层;星形细胞、篮状细胞、蒲肯野细胞、颗粒细胞和高尔基细胞的的数密度随月龄/年龄的增长而减少,体密度和表面积密度随月龄/年龄的增长而增加,但这些减小和增大是不等速的,6-8月龄变化最明显。结论:人体小脑神经元的发育呈现快慢交替、不均速发展,6~8月是小脑神经元发育的重要时期。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号