首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Residue-specific chemical modification of amino acid residues of the microsomal epoxide hydrolase (mEH) from Rhodosporidium toruloides UOFS Y-0471 revealed that the enzyme is inactivated through modification of Asp/Glu and His residues, as well as through modification of Ser. Since Asp acts as the nucleophile, and Asp/Glu and His serve as charge relay partners in the catalytic triad of microsomal and soluble epoxide hydrolases during epoxide hydrolysis, inactivation of the enzyme by modification of the Asp/Glu and His residues agrees with the established reaction mechanism of these enzymes. However, the inactivation of the enzyme through modification of Ser residues is unexpected, suggesting that a Ser in the catalytic site is indispensable for substrate binding by analogy of the role of Ser residues in the related L-2-haloacid dehalogenases, as well as the ATPase and phosphatase enzymes. Co2+, Hg2+, Ag+, Mg2+ and Ca2+ inhibited enzyme activity and EDTA increased enzyme activity. The activation energy for inactivation of the enzyme was 167 kJ mol–1. Kinetic constants for the enzyme could not be determined since unusual behaviour was displayed during hydrolysis of 1,2-epoxyoctane by the purified enzyme. Enantioselectivity w as strongly dependent on substrate concentration. When the substrate was added in concentrations ensuring two-phase conditions, the enantioselectivity was greatly enhanced. On the basis of these results, it is proposed that this enzyme acts at an interface, analogous to lipases.  相似文献   

2.
The epoxide hydrolase from Rhodotorula glutinis was isolated and initially characterized. The enzyme was membrane associated and could be solubilized by Triton X-100. Purification yielded an enzyme with sp. act. of 66 mol 1,2-epoxyhexane hydrolyzed min–1 mg–1 protein. The enzyme was not completely purified to homogeneity but, nevertheless, a major protein was isolated by SDS-PAGE for subsequential amino acid determination of peptide fragments. From sequence alignments to related enzymes, a high homology towards the active site sequences of other microsomal epoxide hydrolases was found. Molecular mass determinations indicated that the native enzyme exists as a homodimer, with a subunit molecular mass of about 45 kDa. Based upon these, this epoxide hydrolase is structurally related to other microsomal epoxide hydrolases.  相似文献   

3.
Epoxides are often highly hydrophobic substrates and the presence of an organic co-solvent within an aqueous bioreactor is in such cases indicated. The effect of 40 water-miscible and -immiscible organic solvents on epoxide hydrolase activity in whole-cells of the yeast Rhodotorula sp. UOFS Y-0448 was investigated. No formal correlation between solvent biocompatibility and physicochemical properties was deductible, although the introduction of hydroxyl groups increased biocompatibility. 1-Pentanol, 2-methylcyclohexanol and 1-octanol were the most biocompatible resulting in relatively low activity losses when used at up to 20% (v/v).  相似文献   

4.
脂肪酸合酶(Fatty acid synthase,FAS)催化乙酰辅酶A和丙二酸单酰辅酶A反应生成脂肪酸,是油脂合成代谢途径中最重要的酶之一。在高产油脂的圆红冬孢酵母Rhodosporidium toruloides中发现了一种新颖的FAS,它含两个亚基,与其他物种的FAS相比,具有独特的结构域组成,尤其是含两个酰基载体蛋白(ACP)结构域。由于ACP在脂肪酸合成反应中起辅因子作用,推测多个ACP有利于提高FAS的催化活性,为研究该FAS的生物化学和结构特征,构建了表达FAS两个亚基的载体,并转化大肠杆菌Escherichia coli BL21(DE3),含pET22b-FAS1和pET24-FAS2质粒的重组菌株ZWE06可同时高表达两个亚基,经硫酸铵沉淀、蔗糖密度梯度离心和阴离子交换层析纯化,得到的重组FAS比活力达到548 mU/mg。纯化的FAS复合物可用于后续酶动力学和蛋白结构研究,且表达与纯化方法的建立对研究其他ACP的功能具有参考价值。  相似文献   

5.
Soluble epoxide hydrolase (sEH) contributes to cell growth, but the contribution of sEH to embryonic development is not well understood. In this study, Xenopus sEH cDNA was isolated from embryos of Xenopus laevis. The Xenopus sEH was expressed in Escherichia coli and was purified. The epoxide hydrolase and phosphatase activities of purified sEH were investigated. The Xenopus sEH did not show phosphatase activity toward 4-methylumbelliferyl phosphate or several lysophosphatidic acids although it had EH activity. The amino acid sequence of Xenopus sEH was compared with that reported previously. We found amino acid substitutions of the 29th Thr to Asn and the 146th Arg to His and prepared a sEH mutant (N29T/H146R), designed as mutant 1. Neither wild-type sEH nor mutant 1 had phosphatase activity. Additional substitution of the 11th Gly with Asp was found by comparison with human sEH which has phosphatase activity, but the Xenopus sEH mutant G11D prepared as mutant 2 did not have phosphatase activity. The epoxide hydrolase activity of sEH seemed to be similar to that of human sEH, while Xenopus sEH did not have phosphatase activity toward several substrates that human sEH metabolizes.  相似文献   

6.
Cisplatin is a highly effective chemotherapeutic agent against many tumors; however, it is also a potent nephrotoxicant. Given that there have been no significant advances in our ability to clinically manage acute renal failure since the advent of dialysis, the development of novel strategies to ablate nephrotoxicity would represent a significant development. In this study, we investigated the ability of an inhibitor of soluble epoxide hydrolase (sEH), n-butyl ester of 12-(3-adamantan-1-yl-ureiido)-dodecanoic acid (nbAUDA), to attenuate cisplatin-induced nephrotoxicity. nbAUDA is quickly converted to AUDA and results in maintenance of high AUDA levels in vivo. Subcutaneous administration of 40 mg/kg of nbAUDA to C3H mice every 24 h resulted in elevated blood levels of AUDA; this protocol was also associated with attenuation of nephrotoxicity induced by cisplatin (intraperitoneal injection) as assessed by BUN levels and histological evaluation of kidneys. This is the first report of the use of sEH inhibitors to protect against acute nephrotoxicity and suggests a therapeutic potential of these compounds.  相似文献   

7.
8.
Epoxide hydrolase (EC 3.3.2.3) purified from rat liver microsomes has been immobilized by covalent linking to dextran activated by imidazolyl carbamate groups, under mild conditions. Kappm values of free and dextran bound epoxide hydrolase toward benzo(a)pyrene-4,5-oxide were 0.5 and 0.35 μM respectively, while Vappmax was lowered from 300 to 120 nmol min?1mg?1protein. The activity lost upon coupling could not be restored by digestion of the support by dextranase (1,6-α-d-glucan 6-glucanohydrolase, EC 3.2.1.11) treatment. This fact, along with the similarity of the activation energy values for both native and bound epoxide hydrolase, indicated that steric hindrance effects due to the polymer support played only a minor role in this loss of activity. Evidences of changes in the conformation of epoxide hydrolase were obtained by a comparative study of u.v. circular dichroism and tryptophan fluorescence emission spectra of the native and dextran bound enzymes. On the other hand, the enzyme conjugate showed greater resistance than the free enzyme to thermal inactivation.  相似文献   

9.
ACaulobacter crescentus epoxide hydrolase (CCEH) from a recombinantEscherichia coli was purified to homogeneity using a three-step procedure. The CCEH protein was purified 7.3-fold with a 22.9% yield in overall activity. The optimal reaction temperature and pH were determined to be 37°C and pH 8.0, respectively. The addition of 10% (v/v) dimethylsulfoxide as a cosolvent improved the enantioselectivity of CCEH for a batch kinetic resolution of racemic indene oxide.  相似文献   

10.
We have developed a rapid screening procedure that enables the screening of hundreds of enzyme samples or variants for epoxide hydrolase activity towards any substrate. The procedure detects the products of the enzymatic reaction via periodate cleavage and remaining fluorescence of carboxyfluorescein.  相似文献   

11.
Deoxynivalenol (DON) transformation products from selected time course experiments were analyzed by thin-layer chromatography. With the strainAlternaria alternata f. sp.lycopersici AS27-3, one major metabolite of DON in ethyl acetate was observed. This unidentified metabolite was more polar than DON and has a Rf value of 0.71. Derivatization indicated that this metabolite was probably an unidentified trichothecene. Screening of 29 other microbial isolates (bacteria, yeast, filamentous fungi) for DON transformation did not result in any active organism. Presented at the 26th Mykotoxin-Workshop in Herrching, Germany, May 17–19, 2004  相似文献   

12.
13.
A series of inhibitors of the soluble epoxide hydrolase (sEH) containing one or two thiourea groups has been developed. Inhibition potency of the described compounds ranges from 50?μM to 7.2?nM. 1,7-(Heptamethylene)bis[(adamant-1-yl)thiourea] (6f) was found to be the most potent sEH inhibitor, among the thioureas tested. The inhibitory activity of the thioureas against the human sEH is closer to the value of activity against rat sEH rather than murine sEH. While being less active, thioureas are up to 7-fold more soluble than ureas, which makes them more bioavailable and thus promising as sEH inhibitors.  相似文献   

14.
A series of inhibitors of the soluble epoxide hydrolase (sEH) containing two urea groups has been developed. Inhibition potency of the described compounds ranges from 2.0 μM to 0.4 nM. 1,6-(Hexamethylene)bis[(adamant-1-yl)urea] (3b) was found to be a potent slow tight binding inhibitor (IC50 = 0.5 nM) with a strong binding to sEH (Ki = 3.1 nM) and a moderately long residence time on the enzyme (koff = 1.05 × 10−3 s−1; t1/2 = 11 min).  相似文献   

15.
Kinetic resolution of the enantiomers of trans -1-phenylpropene oxide and (2,3-epoxypropyl)benzene was achieved by yeasts from the genus Rhodotorula. The resolution of trans -1-phenylpropene oxide by Rhodotorula glutinis UOFS Y-0123 yielded (1R,2R)-epoxide (ee >98%, yield 30%) and (1R,2S)-diol (ee 95%, yield 40%). The highest enantio- and regioselectivity toward (2,3-epoxypropyl)benzene resided in Rhodotorula sp. UOFS Y-0448 (E = 6.16), yielding (S)-epoxide (ee 64%, yield 33%) and (R)-diol (ee 67%, yield 28%). This confirms the superiority of yeasts from the Basidiomycetes genera in the enantioselective hydrolysis of epoxides from different structural classes.  相似文献   

16.
Novel aliphatic epoxide hydrolase activities from dematiaceous fungi   总被引:4,自引:0,他引:4  
Abstract Epoxide hydrolases were found to be constitutively expressed in dematiaceous fungi coincident with secondary metabolite pigment production in stationary or idiophase. Washed-cell preparations of two fungi, Ulodadium atrum CMC 3280 and Zopfiella karachiensis CMC 3284, exhibited affinity for 2,2-dialkylated oxiranes, for which contrasting enantioselectivities were observed, but not for aromatic styrene oxide or alicyclic cyclohexene oxide type substrates. Lyophilised preparations of soluble epoxide hydrolase activities proved to be effective catalysts for the mild hydrolysis of aliphatic epoxides.  相似文献   

17.
cDNAs encoding two different epoxide hydrolases (nCfEH1 and nCfEH2) were cloned from a cDNA library prepared from the wandering larval stage of the cat flea, Ctenocephalides felis. Predicted translations of the open reading frames indicated the clones encoded proteins of 464 (CfEH1) and 465 (CfEH2) amino acids. These proteins have a predicted molecular weight of 53 kDa and a putative 22 amino acid N-terminal hydrophobic membrane anchor. The amino acid sequences are 77% identical, and both are homologous to previously isolated epoxide hydrolases from Manduca sexta, Trichoplusia ni, and Rattus norvegicus. Purification of native juvenile hormone epoxide hydrolase (JHEH) from unfed adult cat fleas generated a partially pure protein that hydrolyzed juvenile hormone III to juvenile hormone III-diol. The amino terminal sequence of this;50-kDa protein is identical to the deduced amino terminus of the protein encoded by the nCfEH1 clone. Affinity-purified rabbit polyclonal antibodies raised against Escherichia coli-expressed HisCfEH1 recognized a approximately 50-kDa protein present in the partially purified fraction containing JHEH activity. Immunohistochemistry experiments using the same affinity-purified rabbit polyclonal antibodies localized the epoxide hydrolase in developing oocytes, fat body, and midgut epithelium of the adult flea. The presence of JHEH in various flea life stages and tissues was assessed by Northern blot and enzymatic activity assays. JHEH mRNA expression remained relatively constant throughout the different flea larval stages and was slightly elevated in the unfed adult flea. JHEH enzymatic activity was highest in the late larval, pupal, and adult stages. In all stages and tissues examined, JHEH activity was significantly lower than juvenile hormone esterase (JHE) activity, the other enzyme responsible for JH catalysis.  相似文献   

18.
Safety and regulatory issues favor increasing use of enantiopure compounds in pharmaceuticals. Enantiopure epoxides and diols are valuable intermediates in organic synthesis for the production of optically active pharmaceuticals. Enantiopure epoxide can be prepared using epoxide hydrolase (EH)-catalyzed asymmetric hydrolysis of its racemate. Enantioconvergent hydrolysis of racemic epoxides by EHs possessing complementary enantioselectivity and regioselectivity can lead to the formation of enantiopure vicinal diols with high yield. EHs are cofactor-independent and easy-to-use catalysts. EHs will attract much attention as commercial biocatalysts for the preparation of enantiopure epoxides and diols. In this paper, recent progress in molecular engineering of EHs is reviewed. Some examples and prospects of asymmetric and enantioconvergent hydrolysis reactions are discussed as supplements to molecular engineering to improve EH performance.  相似文献   

19.
【背景】玉米赤霉烯酮(Zearalenone,ZEN)是污染最广泛的霉菌毒素之一,对饲料行业和畜牧业造成了巨大的经济损失。目前研究最为广泛的玉米赤霉烯酮降解酶ZHD101因其热稳定性较差,无法满足工业应用上的要求。【目的】为实现玉米赤霉烯酮降解酶在工业上的应用,寻找酶学性质更突出的ZEN降解酶。【方法】基于对Gen Bank数据库的挖掘,发现一个来源于麦氏喙枝孢霉(Rhinocladiella mackenziei CBS 650.93)的Rmzhd基因,构建p ET-46-Rmzhd质粒。利用大肠杆菌表达体系和亲和层析、离子交换纯化体系对蛋白进行表达和纯化,通过高效液相凝胶色谱分析酶学性质。【结果】发现一个新的ZEN水解酶Rm ZHD,RmZHD在pH 8.6和45°C条件下的活性最高,而且具有较高的耐热性。结构分析表明,较高的盐桥数目和溶剂暴露脯氨酸含量可能是造成其高耐热性的原因。【结论】本研究为促进玉米赤霉烯酮降解酶在工业上的应用打下基础。  相似文献   

20.
Soluble epoxide hydrolase (sEH) is highly expressed in human liver and contains a C-terminal epoxide hydrolase activity and an N-terminal phosphatase activity. Endogenous C-terminal hydrolase substrates include arachidonic acid epoxides, however, data are limited regarding possible endogenous substrates for the N-terminal phosphatase. Possible sEH N-terminal substrates include isoprenoid phosphate precursors of cholesterol biosynthesis and protein isoprenylation. Here, we report the kinetic analysis for a range of sEH isoprenoid substrates. We also provide an analysis of the effects of human sEH polymorphisms on isoprenoid hydrolysis. Interestingly, the Arg287Gln polymorphism recently suggested to be involved in hypercholesterolemia was found to possess a higher isoprenoid phosphatase activity than the wild type sEH. Consistent with the finding of isoprenoid phosphates as substrates for sEH, we identified isoprenoid-derived N-terminal inhibitors with IC50 values ranging from 0.84 (+/-0.9) to 55.1 (+/-30.7) microM. Finally, we evaluated the effects of the different isoprenoid compounds on the C-terminal hydrolase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号