共查询到20条相似文献,搜索用时 8 毫秒
1.
Interactions between viral nonstructural proteins and host protein hVAP-33 mediate the formation of hepatitis C virus RNA replication complex on lipid raft 总被引:8,自引:0,他引:8 下载免费PDF全文
The lipid raft membrane has been shown to be the site of hepatitis C virus (HCV) RNA replication. The mechanism of formation of the replication complex is not clear. We show here that the formation of the HCV RNA replication complex on lipid raft (detergent-resistant membranes) requires interactions among the HCV nonstructural (NS) proteins and may be initiated by the precursor of NS4B, which has the intrinsic property of anchoring to lipid raft membrane. In hepatocyte cell lines containing an HCV RNA replicon, most of the other NS proteins, including NS5A, NS5B, and NS3, were also localized to the detergent-resistant membranes. However, when individually expressed, only NS4B was associated exclusively with lipid raft. In contrast, NS5B and NS3 were localized to detergent-sensitive membrane and cytosolic fractions, respectively. NS5A was localized to both detergent-sensitive and -resistant membrane fractions. Furthermore, we show that a cellular vesicle membrane transport protein named hVAP-33 (the human homologue of the 33-kDa vesicle-associated membrane protein-associated protein), which binds to both NS5A and NS5B, plays a critical role in the formation of HCV replication complex. The hVAP-33 protein is partially associated with the detergent-resistant membrane fraction. The expression of dominant-negative mutants and small interfering RNA of hVAP-33 in HCV replicon cells resulted in the relocation of NS5B from detergent-resistant to detergent-sensitive membranes. Correspondingly, the amounts of both HCV RNA and proteins in the cells were reduced, indicating that hVAP-33 is critical for the formation of HCV replication complex and RNA replication. These results indicate that protein-protein interactions among the various HCV NS proteins and hVAP-33 are important for the formation of HCV replication complex. 相似文献
2.
The hepatitis C virus (HCV) RNA replicates in hepatic cells by forming a replication complex on the lipid raft (detergent-resistant membrane [DRM]). Replication complex formation requires various viral nonstructural (NS) proteins as well as host cellular proteins. In our previous study (C. K. Lai, K. S. Jeng, K. Machida, and M. M. Lai, J. Virol. 82:8838-8848, 2008), we found that a cellular protein, annexin A2 (Anxa2), interacts with NS3/NS4A. Since NS3/NS4A is a membranous protein and Anxa2 is known as a lipid raft-associated scaffold protein, we postulate that Anxa2 helps in the formation of the HCV replication complex on the lipid raft. Further studies showed that Anxa2 was localized at the HCV-induced membranous web and interacted with NS4B, NS5A, and NS5B and colocalized with them in the perinuclear region. The silencing of Anxa2 decreased the formation of membranous web-like structures and viral RNA replication. Subcellular fractionation and bimolecular fluorescence complementation analysis revealed that Anxa2 was partially associated with HCV at the lipid raft enriched with phosphatidylinositol-4-phosphate (PI4P) and caveolin-2. Further, the overexpression of Anxa2 in HCV-nonsusceptible HEK293 cells caused the enrichment of HCV NS proteins in the DRM fraction and increased the colony-forming ability of the HCV replicon. Since Anxa2 is known to induce the formation of the lipid raft microdomain, we propose that Anxa2 recruits HCV NS proteins and enriches them on the lipid raft to form the HCV replication complex. 相似文献
3.
Selena M Sagan Yanouchka Rouleau Cynthia Leggiadro Lubica Supekova Peter G Schultz Andrew I Su John Paul Pezacki 《Biochimie et biologie cellulaire》2006,84(1):67-79
The hepatitis C virus (HCV) replicates on a membrane protein complex composed of viral proteins, replicating RNA, and altered cellular membranes. Small-molecule inhibitors of cellular lipid-cholesterol metabolism such as 25-hydroxycholesterol, cerulenin, lovastatin, and GGTI-286 all show a negative effect on HCV replication. Perturbation of host cell lipid and cholesterol metabolism can disrupt replication complexes by altering membranous structures where replication occurs. Changes in cholesterol and (or) lipid composition can have a general effect on membrane structure. Alternatively, metabolic changes can exert a more subtle influence over replication complexes by altering localization of host proteins through alterations in lipid anchoring. Here, we use Huh-7 cells harboring subgenomic HCV replicons to demonstrate that 25-hydroxycholesterol, cerulenin, lovastatin, and GGTI-286 do not disrupt the membranous web where replication occurs, whereas cholesterol-depleting agents such as beta-cyclodextrin do. Cellular imaging suggests that the HCV RNA can remain associated with subcellular compartments connected with replication complexes in the presence of metabolic inhibitors. Therefore, at least 2 different molecular mechanisms are possible for the inhibition of HCV replication through the modulation of cellular lipid and cholesterol metabolism. 相似文献
4.
Eukaryotic lipid rafts are membrane microdomains that have significant amounts of cholesterol and a selective set of proteins that have been associated with multiple biological functions. The Lyme disease agent, Borrelia burgdorferi, is one of an increasing number of bacterial pathogens that incorporates cholesterol onto its membrane, and form cholesterol glycolipid domains that possess all the hallmarks of eukaryotic lipid rafts. In this study, we isolated lipid rafts from cultured B. burgdorferi as a detergent resistant membrane (DRM) fraction on density gradients, and characterized those molecules that partitioned exclusively or are highly enriched in these domains. Cholesterol glycolipids, the previously known raft‐associated lipoproteins OspA and OpsB, and cholera toxin partitioned into the lipid rafts fraction indicating compatibility with components of the DRM. The proteome of lipid rafts was analyzed by a combination of LC‐MS/MS or MudPIT. Identified proteins were analyzed in silico for parameters that included localization, isoelectric point, molecular mass and biological function. The proteome provided a consistent pattern of lipoproteins, proteases and their substrates, sensing molecules and prokaryotic homologs of eukaryotic lipid rafts. This study provides the first analysis of a prokaryotic lipid raft and has relevance for the biology of Borrelia, other pathogenic bacteria, as well as for the evolution of these structures. All MS data have been deposited in the ProteomeXchange with identifier PXD002365 ( http://proteomecentral.proteomexchange.org/dataset/PXD002365 ). 相似文献
5.
6.
Sarah Hofmann Matthias Krajewski Christina Scherer Verena Scholz Valerie Mordhorst Pavel Truschow Anja Schöbel Rudolph Reimer Dominik Schwudke Eva Herker 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2018,1863(9):1041-1056
The hepatitis C virus (HCV) life cycle is tightly linked to the host cell lipid metabolism with the endoplasmic reticulum–derived membranous web harboring viral RNA replication complexes and lipid droplets as virion assembly sites. To investigate HCV-induced changes in the lipid composition, we performed quantitative shotgun lipidomic studies of whole cell extracts and subcellular compartments. Our results indicate that HCV infection reduces the ratio of neutral to membrane lipids. While the amount of neutral lipids and lipid droplet morphology were unchanged, membrane lipids, especially cholesterol and phospholipids, accumulated in the microsomal fraction in HCV-infected cells. In addition, HCV-infected cells had a higher relative abundance of phosphatidylcholines and triglycerides with longer fatty acyl chains and a strikingly increased utilization of C18 fatty acids, most prominently oleic acid (FA [18:1]). Accordingly, depletion of fatty acid elongases and desaturases impaired HCV replication. Moreover, the analysis of free fatty acids revealed increased levels of polyunsaturated fatty acids (PUFAs) caused by HCV infection. Interestingly, inhibition of the PUFA synthesis pathway via knockdown of the rate-limiting Δ6-desaturase enzyme or by treatment with a high dose of a small-molecule inhibitor impaired viral progeny production, indicating that elevated PUFAs are needed for virion morphogenesis. In contrast, pretreatment with low inhibitor concentrations promoted HCV translation and/or early RNA replication. Taken together our results demonstrate the complex remodeling of the host cell lipid metabolism induced by HCV to enhance both virus replication and progeny production. 相似文献
7.
Zhu R Wang M Xia Y Qu F Neyts J Peng L 《Bioorganic & medicinal chemistry letters》2008,18(11):3321-3327
Novel acyclic triazole nucleosides with various ethynyl moieties appended on the triazole nucleobase were synthesized efficiently using a convenient one-step Sonogashira reaction in aqueous solution and under microwave irradiation. One of the compounds, 1f, inhibited HCV subgenomic replication with a 50% effective concentration (EC(50)) of 22 microg/ml and did not inhibit proliferation of the host cell at a concentration of 50 microg/ml. A preliminary SAR study suggests that the appended phenyl ring as well as the rigid triple bond linker contributes importantly to the anti-HCV activity. 相似文献
8.
《Autophagy》2013,9(8):1224-1225
Autophagy is a fundamental process for anti-viral defense. Not surprisingly, viruses have developed strategies to subvert or use autophagy for their own benefit. In cell culture, autophagy proteins are proviral factors that favor initiation of hepatitis C virus (HCV) infection. Autophagy proteins are required for translation of incoming viral RNA. We propose that autophagy factors might support the delivery of incoming RNA to the translation apparatus and/or the recruitment of cellular factors required to initiate HCV translation. 相似文献
9.
10.
11.
Hepatitis delta virus (HDV) infection and spread in vivo are dependent upon coinfection by hepatitis B virus (HBV), and dual HDV/HBV infection is frequently more severe than HBV infection alone, raising the possibility that HDV infection may be deleterious to cells. Here we have examined the effects of HDV replication on the long-term growth of cultured cells. Our results show that most cells transfected with HDV cDNA do not give rise to stable cell lines expressing viral antigens or replicative intermediates; in addition, cotransfection of HDV replicons with a plasmid vector expressing a hygromycin resistance marker results in a dose-dependent impairment of hygromycin-resistant colony formation. When cells transfected with replication-competent HDV cDNA are followed prospectively, a progressive decline in viral RNA replication and a steady decrease in the proportion of cells expressing delta antigen are observed. However, in transient transfection assays, no evidence was found to link HDV replication to apoptosis or to cell cycle arrest, nor did HDV replication confer on host cells enhanced sensitivity to inducers of apoptosis. Thus, HDV replication does not appear to be acutely cytotoxic. However, in dividing cells HDV replication is associated with a subtler growth disadvantage, leading to selection in culture for cells displaying diminished HDV expression. This effect would not be expected to cause hepatitis in vivo but might contribute to impaired liver regeneration in the setting of ongoing hepatocellular injury. 相似文献
12.
ABSTRACT: BACKGROUND: Persistent infection with hepatitis C virus (HCV) is a leading cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Standard therapy consists of a combination of interferon-alpha and ribavirin, but many patients respond poorly, especially those infected with HCV genotypes 1 and 4. Furthermore, standard therapy is associated with severe side-effects. Thus, alternative therapeutic approaches against HCV are needed. FINDINGS: Here, we studied the effect of a new class of antiviral agents against HCV, short, partially double-stranded oligodeoxynucleotides (ODNs), on viral replication. We targeted the 5' nontranslated region (5' NTR) of the HCV genome that has previously been shown as effective target for small interfering RNAs (siRNAs) in vitro. One of the investigated ODNs, ODN 320, significantly and efficiently reduced replication of HCV replicons in a sequence-, time- and dose-dependent manner. ODN 320 targets a genomic region highly conserved among different HCV genotypes and might thus be able to inhibit a broad range of genotypes and subtypes. CONCLUSIONS: ODNs provide an additional approach for inhibition of HCV, might be superior to siRNAs in terms of stability and cellular delivery, and suitable against HCV resistant to standard therapy. This study underlines the potential of partially double-stranded ODNs as antiviral agents. 相似文献
13.
14.
Hepatitis C virus (HCV) replicates its genome in a membrane-associated replication complex (RC). Specific membrane alterations, designated membranous webs, represent predominant sites of HCV RNA replication. The principles governing HCV RC and membranous web formation are poorly understood. Here, we used replicons harboring a green fluorescent protein (GFP) insertion in nonstructural protein 5A (NS5A) to study HCV RCs in live cells. Two distinct patterns of NS5A-GFP were observed. (i) Large structures, representing membranous webs, showed restricted motility, were stable over many hours, were partitioned among daughter cells during cell division, and displayed a static internal architecture without detectable exchange of NS5A-GFP. (ii) In contrast, small structures, presumably representing small RCs, showed fast, saltatory movements over long distances. Both populations were associated with endoplasmic reticulum (ER) tubules, but only small RCs showed ER-independent, microtubule (MT)-dependent transport. We suggest that this MT-dependent transport sustains two distinct RC populations, which are both required during the HCV life cycle. 相似文献
15.
The hepatitis C virus (HCV) contains a plus-strand RNA genome. The 5' noncoding region (NCR) of the viral genome functions as an internal ribosome entry site, and its unique 3' NCR is required for the assembly of the replication complex during initiation of HCV RNA replication. Lohmann et al. (V. Lohmann, F. Korner, J.-O. Koch, U. Herian, L. Theilman, and R. Batenschlager, Science 285:110-113, 1999) developed a subgenomic HCV replicon system, which represents an important tool in studying HCV replication in cultured cells. In this study, we describe a cell-free replication system that utilizes cytoplasmic lysates prepared from Huh-7 cells harboring the HCV subgenomic replicons. These lysates, which contain ribonucleoprotein complexes associated with cellular membranes, were capable of incorporating [alpha(32)P]CTP into newly synthesized RNA from subgenomic replicons in vitro. Replicative forms (RFs) and replicative intermediates (RIs) were synthesized from the endogenous HCV RNA templates. Consistent with previous observations, RFs were found to be resistant to RNase A digestion, whereas RIs were sensitive to RNase treatment. The radiolabeled HCV RF-RI complexes contained both minus and plus strands and were specific to the lysates derived from replicon-expressing cells. The availability of a cell-free replication system offers opportunities to probe the mechanism(s) of HCV replication. It also provides a novel assay for potential therapeutic agents. 相似文献
16.
The hepatitis C virus (HCV) encodes a large polyprotein; therefore, all viral proteins are produced in equimolar amounts regardless of their function. The aim of our study was to determine the ratio of nonstructural proteins to RNA that is required for HCV RNA replication. We analyzed Huh-7 cells harboring full-length HCV genomes or subgenomic replicons and found in all cases a >1,000-fold excess of HCV proteins over positive- and negative-strand RNA. To examine whether all nonstructural protein copies are involved in RNA synthesis, we isolated active HCV replication complexes from replicon cells and examined them for their content of viral RNA and proteins before and after treatment with protease and/or nuclease. In vitro replicase activity, as well as almost the entire negative- and positive-strand RNA, was resistant to nuclease treatment, whereas <5% of the nonstructural proteins were protected from protease digest but accounted for the full in vitro replicase activity. In consequence, only a minor fraction of the HCV nonstructural proteins was actively involved in RNA synthesis at a given time point but, due to the high amounts present in replicon cells, still representing a huge excess compared to the viral RNA. Based on the comparison of nuclease-resistant viral RNA to protease-resistant viral proteins, we estimate that an active HCV replicase complex consists of one negative-strand RNA, two to ten positive-strand RNAs, and several hundred nonstructural protein copies, which might be required as structural components of the vesicular compartments that are the site of HCV replication. 相似文献
17.
Yoshida T Kondoh M Ojima M Mizuguchi H Yamagishi Y Sakamoto N Yagi K 《Nucleic acids research》2011,39(10):e64
The efficient delivery of the hepatitis C virus (HCV) RNA subgenomic replicon into cells is useful for basic and pharmaceutical studies. The adenovirus (Ad) vector is a convenient and efficient tool for the transduction of foreign genes into cells in vitro and in vivo. However, an Ad vector expressing the HCV replicon has never been developed. In the present study, we developed Ad vector containing an RNA polymerase (pol) I-dependent expression cassette and a tetracycline-controllable RNA pol I-dependent expression system. We prepared a hybrid promoter from the tetracycline-responsive element and the RNA pol I promoter. Ad vector particles coding the hybrid promoter-driven HCV replicon could be amplified, and interferon, an inhibitor of HCV replication, reduced HCV replication in cells transduced with the Ad vector coding HCV replicon. This is the first report of the development of an Ad vector-mediated HCV replicon system. 相似文献
18.
Lambda interferon (IFN-lambda) induces an intracellular IFN-alpha/beta-like antiviral response through a receptor complex distinct from the IFN-alpha/beta receptor. We therefore determined the ability of IFN-lambda to inhibit hepatitis B virus (HBV) and hepatitis C virus (HCV) replication. IFN-lambda inhibits HBV replication in a differentiated murine hepatocyte cell line with kinetics and efficiency similar to IFN-alpha/beta and does not require the expression of IFN-alpha/beta or IFN-gamma. Furthermore, IFN-lambda blocked the replication of a subgenomic and a full-length genomic HCV replicon in human hepatocyte Huh7 cells. These results suggest the possibility that IFN-lambda may be therapeutically useful in the treatment of chronic HBV or HCV infection. 相似文献
19.
Intrahepatic hepatitis C virus replication correlates with chronic hepatitis C disease severity in vivo 下载免费PDF全文
Pal S Shuhart MC Thomassen L Emerson SS Su T Feuerborn N Kae J Gretch DR 《Journal of virology》2006,80(5):2280-2290
The role of viral factors in the pathogenesis of chronic hepatitis C is unknown. The objective of the present study was to characterize markers of hepatitis C virus (HCV) infection and replication in liver biopsy specimens obtained from 65 genotype 1-infected subjects, including 31 who were coinfected with human immunodeficiency virus (HIV), and to analyze associations between intrahepatic viral markers and hepatitis C disease severity. The percentages of liver cells harboring HCV genomes (%G) and replicative-intermediate RNAs (%RI) were evaluated using strand-specific in situ hybridization, while HCV core and NS3 antigens were assessed by immunocytochemistry. HIV-positive and HIV-negative subjects had similar mean grades and stages of liver disease and had similar indices of HCV infection and replication in liver, even though coinfected subjects had significantly shorter mean disease duration (P = 0.0003). Multivariate analysis showed that %G was not associated with grade or stage of liver disease (P = 0.5 and 0.4, respectively), while %RI was strongly associated with liver inflammation (P < 0.001), liver fibrosis (P < 0.001), and serum alanine aminotransferase levels (P = 0.01). NS3 antigen (but not core) was more frequently detected in HCV RI-positive versus RI-negative specimens (P = 0.028). These findings demonstrate a link between HCV proliferation and hepatitis C disease severity and suggest similar pathogenic mechanisms in HIV-positive and HIV-negative individuals. 相似文献
20.
Hepatitis C virus (HCV) infects approximately 180 million people worldwide. Significant progress has been made since the establishment of in vitro HCV infection models in cells. However, the replication of HCV is complex and not completely understood. Here, we found that the expression of host prion protein (PrP) was induced in an HCV replication cell model. We then showed that increased PrP expression facilitated HCV genomic replication. Finally, we demonstrated that the KKRPK motif on the N-terminus of PrP bound nucleic acids and facilitated HCV genomic replication. Our results provided important insights into how viruses may harness cellular protein to achieve propagation. 相似文献