首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental results have demonstrated a significant decrease in the level of alcohol consumption by albino rats immunized with heterologous horse alcohol dehydrogenase. The role of ADH epitopes 9–14, 93–115, and 265–276 in this phenomenon was examined, and it was established that the latter sequence (265–276) plays the biggest role. The inhibition of ADH activity in the adrenals of immunized rats was much higher compared to the liver. We propose a hypothesis that the effect of alcohol dehydrogenase on alcohol consumption is connected with its role in catecholamine metabolism.  相似文献   

2.
Two of the three class I alcohol dehydrogenase (ADH) genes (ADH2 and ADH3) encode known functional variants that act on alcohol with different efficiencies. Variants at both these genes have been implicated in alcoholism in some populations because allele frequencies differ between alcoholics and controls. Specifically, controls have higher frequencies of the variants with higher Vmax (ADH2*2 and ADH3*1). In samples both of alcoholics and of controls from three Taiwanese populations (Chinese, Ami, and Atayal) we found significant pairwise disequilibrium for all comparisons of the two functional polymorphisms and a third, presumably neutral, intronic polymorphism in ADH2. The class I ADH genes all lie within 80 kb on chromosome 4; thus, variants are not inherited independently, and haplotypes must be analyzed when evaluating the risk of alcoholism. In the Taiwanese Chinese we found that, only among those chromosomes containing the ADH3*1 variant (high Vmax), the proportions of chromosomes with ADH2*1 (low Vmax) and those with ADH2*2 (high Vmax) are significantly different between alcoholics and controls (P<10-5). The proportions of chromosomes with ADH3*1 and those with ADH3*2 are not significantly different between alcoholics and controls, on a constant ADH2 background (with ADH2*1, P=.83; with ADH2*2, P=.53). Thus, the observed differences in the frequency of the functional polymorphism at ADH3, between alcoholics and controls, can be accounted for by the disequilibrium with ADH2 in this population.  相似文献   

3.
Humans are polymorphic at two of the alcohol dehydrogenase (ADH) loci important in ethanol metabolism, ADH2 and ADH3. Although the coding regions of these genes are 94% identical, they produce subunits that differ greatly in kinetic properties in vitro. These differences are likely to be reflected in the pharmacokinetics of alcohol metabolism, but studies have been hampered by the need to use liver biopsy specimens to determine the ADH phenotype. This problem has now been overcome by determining the genotype at these loci using DNA that has been amplified in vitro by the polymerase chain reaction. We report here the identification of all three of the ADH2 alleles and both of the ADH3 alleles. Any pair of ADH2 or ADH3 alleles can be distinguished using allele-specific oligonucleotide probes directed at their single base pair difference. In addition, ADH2(2) can be distinguished from ADH2(1) and ADH2(3) by detecting a new MaeIII site created in the third exon by the single base pair alteration in ADH2(2).  相似文献   

4.
Retinoic acid regulation of one member of the human class I alcohol dehydrogenase (ADH) gene family was demonstrated, suggesting that the retinol dehydrogenase function of ADH may play a regulatory role in the biosynthetic pathway for retinoic acid. Promoter activity of human ADH3, but not ADH1 or ADH2, was shown to be activated by retinoic acid in transient transfection assays of Hep3B human hepatoma cells. Deletion mapping experiments identified a region in the ADH3 promoter located between -328 and -272 bp which confers retinoic acid activation. This region was also demonstrated to confer retinoic acid responsiveness on the ADH1 and ADH2 genes in heterologous promoter fusions. Within a 34-bp stretch, the ADH3 retinoic acid response element (RARE) contains two TGACC motifs and one TGAAC motif, both of which exist in RAREs controlling other genes. A block mutation of the TGACC sequence located at -289 to -285 bp eliminated the retinoic acid response. As assayed by gel shift DNA binding studies, the RARE region (-328 to -272 bp) of ADH3 bound the human retinoic acid receptor beta (RAR beta) and was competed for by DNA containing a RARE present in the gene encoding RAR beta. Since ADH catalyzes the conversion of retinol to retinal, which can be further converted to retinoic acid by aldehyde dehydrogenase, these results suggest that retinoic acid activation of ADH3 constitutes a positive feedback loop regulating retinoic acid synthesis.  相似文献   

5.
6.
为了从酿酒酵母Saccharomyces cerevisiae中克隆出乙醇脱氢酶2(Alcoholdehy drogenase2,ADH2)基因并使之在大肠杆菌中高效表达。以酿酒酵母细胞中提取的总RNA为模板,通过反转录获得酿酒酵母乙醇脱氢酶2基因,连接到表达载体pTAT上,得到重组表达质粒pTAT-ADH2,将此重组质粒转化到大肠杆菌BL21中,重组工程菌株经IPTG诱导表达得到ADH2蛋白。将该蛋白纯化后,在体外进行活性检测和小鼠体内进行毒理试验,检测ADH2的酶活性。测序结果表明克隆的基因与GenBank中所报道的adh2基因序列有90%的同源性,经SDS-PAGE电泳分析,目的蛋白得到了有效表达,蛋白条带扫描分析表明,表达量占总蛋白的50%左右,纯化得到的蛋白在小鼠体内进行毒理试验,显示出一定的活性。酿酒酵母adh2基因的克隆正确,不仅在大肠杆菌中进行了高效表达而且表现出了较好的酶活性。  相似文献   

7.
Haloarchaeal alcohol dehydrogenases are exciting biocatalysts with potential industrial applications. In this study, two alcohol dehydrogenase enzymes from the extremely halophilic archaeon Haloferax volcanii (HvADH1 and HvADH2) were homologously expressed and subsequently purified by immobilized metal-affinity chromatography. The proteins appeared to copurify with endogenous alcohol dehydrogenases, and a double Δadh2 Δadh1 gene deletion strain was constructed to prevent this occurrence. Purified HvADH1 and HvADH2 were compared in terms of stability and enzymatic activity over a range of pH values, salt concentrations, and temperatures. Both enzymes were haloalkaliphilic and thermoactive for the oxidative reaction and catalyzed the reductive reaction at a slightly acidic pH. While the NAD+-dependent HvADH1 showed a preference for short-chain alcohols and was inherently unstable, HvADH2 exhibited dual cofactor specificity, accepted a broad range of substrates, and, with respect to HvADH1, was remarkably stable. Furthermore, HvADH2 exhibited tolerance to organic solvents. HvADH2 therefore displays much greater potential as an industrially useful biocatalyst than HvADH1.  相似文献   

8.
The range of the biochemical reactions which can be catalyzed by ADH I and ADH IV is extremely wide. The most characterized functions of these enzymes are protection against excess endogenous acetaldehyde, products of lipid peroxidation, exogenous alcohols and some xenobiotics. It was found also that ADH I and ADH IV are important members of the enzyme system synthesizing retinoic acid (especially during embryogenesis). They can oxidize some steroids and participate in bioamine and prostaglandin metabolism but so far the extent of their contribution to the latter processes is under discussion. Recent data suggest a correlation between the activity of ADH I in some organs and fine physiological processes including behavior regulation and craving for alcohol in albino rats.  相似文献   

9.
《Genetika》2005,41(11):1563-1566
Frequencies of alleles and genotypes for alcohol dehydrogenase gene ADH1B (arg47his polymorphism), associated with alcohol tolerance/sensitivity, were determined. It was demonstrated that the frequency of allele ADH1B*47his, corresponding to atypical alcohol dehydrogenase variant in Russians, Ukrainians, Iranians, and mountain-dwellers of the Pamirs constituted 3, 7, 24, and 22%, respectively. The frequencies established were consistent with the allele frequency distribution pattern among the populations of Eurasia. Russians and Ukrainians were indistinguishable from other European populations relative to the frequency of allele ADH1B*47his, and consequently, relative to specific features of ethanol metabolic pathways. The data obtained provide refinement of the geographic pattern of ADH1B*47his frequency distribution in Eurasia.  相似文献   

10.
Alcohol metabolism in vivo cannot be explained solely by the action of the classical alcohol dehydrogenase, Class I ADH (ADH1). Over the past three decades, attempts to identify the metabolizing enzymes responsible for the ADH1-independent pathway have focused on the microsomal ethanol oxidizing system (MEOS) and catalase, but have failed to clarify their roles in systemic alcohol metabolism. In this study, we used Adh3-null mutant mice to demonstrate that Class III ADH (ADH3), a ubiquitous enzyme of ancient origin, contributes to alcohol metabolism in vivo dose-dependently resulting in a diminution of acute alcohol intoxication. Although the ethanol oxidation activity of ADH3 in vitro is low due to its very high Km, it was found to exhibit a markedly enhanced catalytic efficiency (kcat/Km) toward ethanol when the solution hydrophobicity of the reaction medium was increased with a hydrophobic substance. Confocal laser scanning microscopy with Nile red as a hydrophobic probe revealed a cytoplasmic solution of mouse liver cells to be much more hydrophobic than the buffer solution used for in vitro experiments. So, the in vivo contribution of high-Km ADH3 to alcohol metabolism is likely to involve activation in a hydrophobic solution. Thus, the present study demonstrated that ADH3 plays an important role in systemic ethanol metabolism at higher levels of blood ethanol through activation by cytoplasmic solution hydrophobicity.  相似文献   

11.
The activities of yeast ADH I and ADH II towards long chain alcohols and diols were studied using rather unusual conditions (1.0 M Tris pH 8.75, approximately 0.3 mg/ml enzyme and [S]相似文献   

12.
The Allele and genotype didtributions of the two alcohol dehydrogenase genes ADH1B (polymorphism A/G in exon 3, detected with restrictase MslI) and ADH7 (polymorphism G/C in intron 5, detected with restrictase StyI) was studied in three Russian populations from the Siberian region. The absence of interpopulation and intersexual differences in the allele frequency was determined. The allele ADH1B*G (+MslI, A2) was found in low frequency (3.6-7.5%), the mutant allele ADH7 (-StyI, B2) frequency in total population (n = 339) was 46.02%. The genotype distributions of the ADH1B and ADH7 in these populations were agreed with the Hardy-Weinberg equilibrium and linkage equilibrium. Increased frequency of ADH7 B2 allele was revealed in elder group (after 40 years) in the total sample and in the Tomsk city inhabitants (n = 113) on 11% (P = 0.001) and 9% (P = 0.017) accordingly. ADH7 and ADH1B genes polymorpisms did not show association with antioxidant activity, which was determined from the blood plasma ability to reduce the yield of products interacting with thiobarbituric acid in the lecitin-Fe2+ ions model system. The statistically significant decrease of serum very low density lipoproteins (LPVLD) level (on 9.95%, P = 0.045) and close to statistically significant decrease systolic pressure (on 6.80%, P = 0.068) and serum triglycerides level (on 6.16 of %, P = 0.058) were revealed among the A2 allele ADH1B gene carriers in Tomsk population.  相似文献   

13.
In Drosophila melanogaster, alcohol dehydrogenase (ADH) activity is essential for ethanol tolerance, but its role may not be restricted to alcohol metabolism alone. Here we describe ADH activity and Adh expression level upon selection for increased alcohol tolerance in different life-stages of D. melanogaster lines with two distinct Adh genotypes: Adh(FF) and Adh(SS). We demonstrate a positive within genotype response for increased alcohol tolerance. Life-stage dependent selection was observed in larvae only. A slight constitutive increase in adult ADH activity for all selection regimes and genotypes was observed, that was not paralleled by Adh expression. Larval Adh expression showed a constitutive increase, that was not reflected in ADH activity. Upon exposure to environmental ethanol, sex, selection regime life stage and genotype appear to have differential effects. Increased ADH activity accompanies increased ethanol tolerance in D. melanogaster but this increase is not paralleled by expression of the Adh gene.  相似文献   

14.
Alcohol dehydrogenase (ADH) is the primary enzyme responsible for metabolism of ethanol to acetaldehyde. One class of ADH has been described in fish, and has been found to be structurally similar to mammalian class III ADH (glutathione-dependent formaldehyde dehydrogenase) but functionally similar to class I ADH (primarily responsible for ethanol metabolism). We have cloned a cDNA by RT-PCR from zebrafish (Danio rerio) liver representing the zebrafish ADH3 gene product, with a coding region of 1131 nucleotides. The deduced amino acid sequences share 90% identity to ADH3 from the marine fish Sparus aurata, and 82 and 81% identity to the mouse and human sequences, respectively. Using a quantitative competitive RT-PCR assay, ADH3 mRNA was detected at all timepoints analyzed and was lowest between 8 and 24 h postfertilization. Thus, differential ADH3 expression may be at least partly responsible for temporal variations in the sensitivity of zebrafish embryos to developmental alcohol exposure.  相似文献   

15.
Four D. melanogaster strains characterized by different alcohol dehydrogenase (ADH) activities were compared for their oviposition site preferences. The comparison was made between different temperatures (15 °C, 20 °C, 25 °C, 30 °C), day and night, replicates, and different concentrations in ethanol (00%, 5%, 10%, 15%) in the medium. All these factors influence behaviour. ADH activities seem to affect the oviposition site preferences as they directly affect ethanol tolerance and the ability to use alcohol as a source of metabolic energy.  相似文献   

16.
The Saccharomyces cerevisiae nuclear gene, ADH3, that encodes the mitochondrial alcohol dehydrogenase isozyme ADH III was cloned by virtue of its nucleotide homology to ADH1 and ADH2. Both chromosomal and plasmid-encoded ADH III isozymes were repressed by glucose and migrated heterogeneously on nondenaturing gels. Nucleotide sequence analysis indicated 73 and 74% identity for ADH3 with ADH1 and ADH2, respectively. The amino acid identity between the predicted ADH III polypeptide and ADH I and ADH II was 79 and 80%, respectively. The open reading frame encoding ADH III has a highly basic 27-amino-acid amino-terminal extension relative to ADH I and ADH II. The nucleotide sequence of the presumed leader peptide has a high degree of identity with the untranslated leader regions of ADH1 and ADH2 mRNAs. A strain containing a null allele of ADH3 did not have a detectably altered phenotype. The cloned gene integrated at the ADH3 locus, indicating that this is the structural gene for ADH III.  相似文献   

17.
A self-cloning module for gene knock-out and knock-in in industrial brewing yeast strain was constructed that contains copper resistance and γ-glutamylcysteine synthetase gene cassette, flanked by alcohol dehydrogenase II gene ( ADH2 ) of Saccharomyces cerevisiae . The module was used to obtain recombined strains RY1 and RY2 by targeting the ADH2 locus of host Y1. RY1 and RY2 were genetically stable. PCR and enzyme activity analysis of RY1 and RY2 cells showed that one copy of ADH2 was deleted by GSH1 + CUP1 insertion, and an additional copy of wild type was still present. The fermentation ability of the recombinants was not changed after genetic modification, and a high level of glutathione (GSH) was secreted, resulting from GSH1 overexpression, which codes for γ-glutamylcysteine synthetase. A pilot-scale brewing test for RY1 and RY2 indicated that acetaldehyde content in fermenting liquor decreased by 21–22%, GSH content increased by 20–22% compared with the host, the antioxidizability of the recombinants was improved, and the sensorial evaluation was also better than that of the host. No heterologous DNA was harbored in the recombinants; therefore, they could be applied in the beer industry in terms of their biosafety.  相似文献   

18.
The activities of yeast ADH I and ADH II towards long chain alcohols and diols were studied using rather unusual conditions (1.0 M Tris pH 8.75, approximately 0.3 mg/ml enzyme and [S]< < <Km ) where the alcohols are oxidised quantitatively in a first-order manner. Plots of the apparent first-order rate constant versus primary alcohol chain length show double peaks with similar values for ethanol and 1-decanol and relatively low values for 1-butanol through to 1-octanol. With the α,ω diols only one peak of activity was observed with 1,14-tetradecanediol, the preferred substrate, being oxidised about the same rate as ethanol. Both enzymes were essentially inactive with short-chain diols (C2–C8). For all of these assays normalised rates with ADH II were about threefold faster than with ADH I.  相似文献   

19.
Lee SL  Wang MF  Lee AI  Yin SJ 《FEBS letters》2003,544(1-3):143-147
Human class III alcohol dehydrogenase (ADH3), also known as glutathione-dependent formaldehyde dehydrogenase, exhibited non-hyperbolic kinetics with ethanol at a near physiological pH 7.5. The S(0.5) and k(cat) were determined to be 3.4+/-0.3 M and 33+/-3 min(-1), and the Hill coefficient (h) 2.21+/-0.09, indicating positive cooperativity. Strikingly, the S(0.5) for ethanol was found to be 5.4 x 10(6)-fold higher than the K(m) for S-(hydroxymethyl)glutathione, a classic substrate for the enzyme, whereas the k(cat) for the former was 41% lower than that for the latter. Isotope effects on enzyme activity suggest that hydride transfer may be rate-limiting in the oxidation of ethanol. Kinetic simulations using the experimentally determined Hill constant suggest that gastric ADH3 may highly effectively contribute to the first-pass metabolism at 0.5-3 M ethanol, an attainable range in the gastric lumen during alcohol consumption. The positive cooperativity mainly accounts for this metabolic role of ADH3.  相似文献   

20.
Mammalian alcohol dehydrogenase (ADH) catalyzes the oxidation of retinol to retinaldehyde, the rate-limiting step in the synthesis of retinoic acid. There exists a family of ADH isozymes encoded by unique genes, and it is unclear which isozymes are most important for regulation of retinoic acid synthesis during differentiation or development. A region in the human ADH3 promoter from -328 to -272 base pairs was shown previously to function as a retinoic acid response element (RARE), prompting an hypothesis for a positive feedback mechanism controlling retinoic acid synthesis (Duester, G., Shean, M. L., McBride, M. S., and Stewart, M. J. (1991) Mol. Cell. Biol. 11, 1638-1646). The ADH3 RARE contains three direct AGGTCA repeats which constitute the critical nucleotides of RAREs present in other genes. We dissected the ADH3 RARE and determined that receptor binding as well as transactivation are dependent upon only the two downstream AGGTCA motifs separated by 5 base pairs, a structure noticed previously for a RARE in the promoter for the retinoic acid receptor beta (RAR beta) gene. ADH3 and RAR beta RAREs functioned similarly in transfection assays, suggesting that the feedback mechanisms controlling ADH3 and RAR beta utilize a common RARE. We also found that the normal functioning of the ADH3 RARE was abrogated by thyroid hormone receptor in the presence of thyroid hormone. A negative thyroid hormone response element in the human ADH3 promoter was found to colocalize with the RARE. Since ADH production in rat liver is known to be repressed by thyroid hormone, these findings suggest that human ADH production may also be subject to thyroid hormone repression and that the mechanism involves an interference with retinoic acid induction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号