首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Synechocystis sp. strain PCC 6803 GTP cyclohydrolase I and human 6-pyruvoyltetrahydropterin synthase were coexpressed in Escherichia coli. The E. coli transformant produced sepiapterin, which was identified by high-performance liquid chromatography and enzymatically converted to dihydrobiopterin by sepiapterin reductase. Aldose reductase, another indispensable enzyme for sepiapterin production, may be endogenous in E. coli.  相似文献   

2.
A cDNA clone (SSC801) putatively encoding sepiapterin reductase (SR) was obtained from the expressed sequence tag clones of Dictyostelium discoideum. The cDNA sequence of 878 nucleotides constituted an ORF of 265 amino acid residues but was missing a few N-terminal residues. The deduced amino acid sequence showed 29.8% identity with mouse SR sequence and a molecular mass of 29,969 Da. The coding sequence was cloned in E. coli expression vector and overexpressed. The purified His-tag recombinant enzyme was confirmed to have the genuine activity of SR to produce tetrahydrobiopterin from 6-pyruvoyltetrahydropterin in a coupled assay with 6-pyruvoyltetrahydropterin synthase as well as dihydrobiopterin from sepiapterin. However, dictyopterin was not observed in our assay condition. The enzyme was also inhibited by N-acetylserotonin and to a lesser extent by melatonin. Km values for NADPH and sepiapterin were 51.8+/-2.7 microM and 40+/-2 microM, respectively. Vmax was determined as 0.14 micromol/min/mg of protein.  相似文献   

3.
Rat erythrocyte sepiapterin reductase can catalyze the NADPH-dependent reduction of tetrahydropterin substrates with relative velocities of sepiapterin greater than lactoyltetrahydropterin greater than or equal to pyruvoyltetrahydropterin greater than 1'-hydroxy-2'-oxopropyltetrahydropterin; L-erythrotetrahydrobiopterin is the product of the reduction of all three tetrahydropterins. The 1' position of the 1',2'-diketone, pyruvoyltetrahydropterin, is reduced first; the product of this first reduction is 1'-hydroxy-2'-oxopropyltetrahydropterin. Both steps are inhibited by N-acetylserotonin. An antibody to sepiapterin reductase purified from rat erythrocytes was produced in rabbits, and the purified antibody is highly specific for sepiapterin reductase. This antibody is an inhibitor of both sepiapterin reductase activity and tetrahydrobiopterin biosynthesis in crude extracts of rat adrenal and brain. The antibody inhibits the production of both the biosynthetic intermediate, 1'-hydroxy-2'-oxopropyltetrahydropterin, and tetrahydrobiopterin. The results indicate that sepiapterin reductase is on the biosynthetic pathway to tetrahydrobiopterin, and catalyzes the complete reduction of pyruvoyltetrahydropterin to tetrahydrobiopterin. In contrast, homogenates of whole rat adrenal also produce large quantities of lactoyltetrahydropterin which suggests that in some tissues this compound may also be an intermediate in tetrahydrobiopterin biosynthesis. The synthesis of lactoyltetrahydropterin is not inhibited by the antibody to sepiapterin reductase and therefore does not appear to be catalyzed by sepiapterin reductase. However, sepiapterin reductase is responsible for the conversion of lactoyltetrahydropterin to tetrahydrobiopterin. The source of sepiapterin in biosynthetic reactions was found to be oxidative decomposition of lactoyltetrahydropterin.  相似文献   

4.
Sepiapterin reductase, a homodimer composed of two subunits, plays an important role in the biosynthesis of tetrahydrobiopterin. Furthermore, sepiapterin reductase exhibits a wide distribution in different tissues and is associated with many diseases, including brain dysfunction, chronic pain, cardiovascular disease and cancer. With regard to drugs targeting sepiapterin reductase, many compounds have been identified and provide potential methods to treat various diseases. However, the underlying mechanism of sepiapterin reductase in many biological processes is unclear. Therefore, this article summarized the structure, distribution and function of sepiapterin reductase, as well as the relationship between sepiapterin reductase and different diseases, with the aim of finding evidence to guide further studies on the molecular mechanisms and the potential clinical value of sepiapterin reductase. In particular, the different effects induced by the depletion of sepiapterin reductase or the inhibition of the enzyme suggest that the non‐enzymatic activity of sepiapterin reductase could function in certain biological processes, which also provides a possible direction for sepiapterin reductase research.  相似文献   

5.
Specific antibodies to sepiapterin reductase were used to investigate its involvement in de novo (6R)-5,6,7,8-tetrahydrobiopterin (BH4) biosynthesis in rat brain. Antisepiapterin reductase (anti-SR) serum totally inhibited NADPH-dependent sepiapterin reductase activity in supernatants from discrete rat brain areas and liver. The anti-SR serum also inhibited the conversion of 7,8-dihydroneopterin triphosphate to BH4 in rat brain extracts. The inhibition was accompanied by a concentration-dependent increase in the formation of 6-lactoyltetrahydropterin (6LPH4), a proposed intermediate in BH4 biosynthesis. In addition, anti-SR serum was used to characterize the distribution and molecular properties of sepiapterin reductase in rat tissues. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by Western blotting indicated that there was a single polypeptide with the same molecular weight (28,000) as that of the subunit of pure sepiapterin reductase present in all tissues examined except for liver, where an immunoreactive protein of higher molecular weight (30,500) also was detected. Two-dimensional gel electrophoresis of rat striatum and liver demonstrated that the isoelectric point of sepiapterin reductase from both tissues was 6.16 and that the higher molecular weight immunoreactive material in liver had an isoelectric point of 7.06. Our studies with specific anti-SR serum confirmed the results of previous studies using chemical inhibitors of sepiapterin reductase, which suggested that sepiapterin reductase activity was essential for BH4 biosynthesis in the CNS and that 6LPH4 could be a precursor of BH4.  相似文献   

6.
The diketone compound, benzil is reduced to (S)-benzoin with living Bacillus cereus cells. Recently, we isolated a gene responsible for benzil reduction, and Escherichia coli cells in which this gene was overexpressed transformed benzil to (S)-benzoin. Although this benzil reductase showed high identity to the short-chain dehydrogenase/reductase (SDR) family, enzymological features were unknown. Here, we demonstrated that many B. cereus strains had benzil reductase activity in vivo, and that the benzil reductases shared 94-100% amino acid identities. Recombinant B. cereus benzil reductase produced optically pure (S)-benzoin with NADPH in vitro, and the ketone group distal to a benzene ring was asymmetrically reduced. B. cereus benzil reductase showed 31% amino acid identity to the yeast open reading frame YIR036C protein and 28-30% to mammalian sepiapterin reductases, sharing the seven residues consensus for the SDR family. We isolated the genes encoding yeast YIR036C protein and gerbil sepiapterin reductase, and both recombinant proteins also reduced benzil to (S)-benzoin in vitro. Green fluorescent protein-tagged B. cereus benzil reductase distributed in the bipolar cytoplasm in B. cereus cells. Asymmetric reduction with B. cereus benzil reductase, yeast YIR036C protein and gerbil sepiapterin reductase will be utilized to produce important chiral compounds.  相似文献   

7.
7,8-Dihydrobiopterin is not an intermediate in the de novo biosynthesis of tetrahydrobiopterin, the cofactor required for aromatic amino acid hydroxylations. However, N-acetyl-serotonin inhibition of sepiapterin reductase, an enzyme whose previously only known function was the reduction of sepiapterin to 7,8-dihydrobiopterin, completely inhibited biosynthesis of tetrahydrobiopterin by bovine adrenal medulla extracts. We have now shown that sepiapterin reductase catalyzes the reduction of tetrahydro-sepiapterin to tetrahydrobiopterin and that this reaction is N-acetyl-serotonin-sensitive. A new pathway for tetrahydrobiopterin biosynthesis is proposed which takes these observations into account and which involves tetrahydro intermediates.  相似文献   

8.
Tetrahydrobiopterin (BH4) is an essential cofactor for various enzymes in mammals. In vivo, it is synthesized from GTP via the three-step pathway of GTP cyclohydrolase I (GCHI), 6-pyruvoyl-tetrahydropterin synthase (PTPS) and sepiapterin reductase (SPR). BH4 is a medicine used to treat atypical hyperphenylalaninemia. It is currently synthesized by chemical means, which consists of many steps, and requires costly materials and complicated procedures. To explore an alternative microbial method for BH4 production, we utilized recombinant DNA technology to construct recombinant Escherichia coli (E. coli) strains carrying genes expressing GCHI, PTPS and SPR enzymes. These strains successfully produced BH4, which was detected as dihydrobiopterin and biopterin, oxidation products of BH4. In order to increase BH4 productivity we made further improvements. First, to increase the de novo GTP supply, an 8-azaguanine resistant mutant was isolated and an additional guaBA operon was introduced. Second, to augment the activity of GCHI, the folE gene from E. coli was replaced by the mtrA gene from Bacillus subtilis. These modifications provided us with a strain showing significantly higher productivity, up to 4.0 g of biopterin/L of culture broth. The results suggest the possibility of commercial BH4 production by our method.  相似文献   

9.
Benzil was reduced stereospecifically to (S)-benzoin by Bacillus cereus strain Tim-r01. To isolate the gene responsible for asymmetric reduction, we constructed a library consisting of Escherichia coli clones that harbored plasmids expressing Bacillus cereus genes. The library was screened using the halo formation assay, and one clone showed benzil reduction to (S)-benzoin. Thus, this clone seemed to carry a plasmid encoding a Bacillus cereus benzil reductase. The deduced amino acid sequence had marked homologies to the Bacillus subtilis yueD protein (41% identity), the yeast open reading frame YIR036C protein (31%), and the mammalian sepiapterin reductases (28% to 30%), suggesting that benzil reductase is a novel short-chain de-hydrogenases/ reductase.  相似文献   

10.
The biosynthesis of tetrahydrobiopterin from either dihydroneopterin triphosphate, sepiapterin, dihydrosepiapterin or dihydrobiopterin was investigated using extracts from human liver, dihydrofolate reductase and purified sepiapterin reductase from human liver and rat erythrocytes. The incorporation of hydrogen in tetrahydrobiopterin was studied in either 2H2O or in H2O using unlabeled NAD(P)H or (R)-(4-2H)NAD(P)H or (S)-(4-2H)NAD(P)H. Dihydrofolate reductase catalyzed the transfer of the pro-R hydrogen of NAD(P)H during the reduction of 7,8-dihydrobiopterin to tetrahydrobiopterin. Sepiapterin reductase catalyzed the transfer of the pro-S hydrogen of NADPH during the reduction of sepiapterin to 7,8-dihydrobiopterin. In the presence of partially purified human liver extracts one hydrogen from the solvent is introduced at position C(6) and the 4-pro-S hydrogen from NADPH is incorporated at each of the C(1') and C(2') position of BH4. Label from the solvent is also introduced into position C(3'). These results suggest that dihydrofolate reductase is not involved in the biosynthesis of tetrahydrobiopterin from dihydroneopterin triphosphate. They are consistent with the assumption of the occurrence of a 6-pyruvoyl-tetrahydropterin intermediate, which is proposed to be formed upon triphosphate elimination from dihyroneopterin triphosphate, and via an intramolecular redox reaction. Our results suggest that the reduction of 6-pyruvoyl-tetrahydropterin might be catalyzed by sepiapterin reductase.  相似文献   

11.
A full-length cDNA clone for sepiapterin reductase, an enzyme involved in tetrahydrobiopterin biosynthesis, was isolated from a human liver cDNA library by plaque hybridization. The nucleotide sequence of hSPR 8-25, which contained an entire coding region of the enzyme, was determined. The clone encoded a protein of 261 amino acids with a calculated molecular mass of 28,047 daltons. The predicted amino acid sequence of human sepiapterin reductase showed a 74% identity with the rat enzyme. We further found a striking homology between human SPR and carbonyl reductase, estradiol 17 beta-dehydrogenase, and 3 beta-hydroxy-5-ene steroid dehydrogenase, especially in their N-terminal region.  相似文献   

12.
The biosynthetic pathway of tetrahydrobiopterin (BH4) from dihydroneopterin triphosphate (NH2P3) was studied in fresh as well as heat-treated human liver extracts. The question of NAD(P)H dependency for the formation of sepiapterin was examined. NH2P3 was converted by fresh extracts to sepiapterin in low quantities (2% conversion) in the absence of exogenously added NADPH as well as under conditions that ensured the destruction of endogenous, free NAD(P)H. The addition of NADPH to the fresh liver extracts stimulated the synthesis of BH4 to a much higher yield (17% conversion), and the amount of sepiapterin formed was reduced to barely detectable levels. In contrast, the heat-treated extract (enzyme A2 fraction) formed sepiapterin (1.3% conversion) only in the presence and not in the absence of NADPH. These results indicate that sepiapterin may not be an intermediate on the pathway leading to BH4 biosynthesis under normal in vivo conditions. Rather, sepiapterin may result from the breakdown of an as yet unidentified intermediate that is actually on the pathway. It is speculated that NH2P3 may be converted to a diketo-tetrahydropterin intermediate (or an equivalent tautomeric structure) by a mechanism involving an intramolecular oxidoreduction reaction. A diketo-tetrahydropterin intermediate could be converted to 5,6-dihydrosepiapterin, which also has a tetrahydropterin ring system and can be converted directly to BH4 by sepiapterin reductase. This proposed pathway can explain ho the tetrahydropterin ring system can be formed without sepiapterin, dihydrobiopterin, or dihydrofolate reductase being involved in BH4 biosynthesis in vivo.  相似文献   

13.
An enzyme with 6-pyruvoyl tetrahydropterin (6PPH4) (2'-oxo)reductase activity was purified to near homogeneity from whole rat brains by a rapid method involving affinity chromatography on Cibacron blue F3Ga-agarose followed by high performance ion exchange chromatography and high performance gel filtration. The enzyme has a single subunit of Mr 37,000 and has a similar amino acid composition to previously described aldoketo reductases. The reductase activity is absolutely dependent on NADPH, will only catalyze the reduction of the C-2'-oxo group of 6PPH4, and is inactive towards the C-1'-oxo group. However, the enzyme also shows high activity towards nonspecific substrates, such as 4-nitrobenzaldehyde, phenanthrenequinone, and menadione. The role of this 6PPH4 reductase in the formation of tetrahydrobiopterin (BH4) was investigated. Measurements were made of the rate of conversion of 6PPH4, generated from dihydroneopterin triphosphate with purified 6PPH4 synthase, to BH4 in the presence of mixtures of pure sepiapterin reductase and the 6PPH4 (2'-oxo)reductase purified from rat brains. The results suggest that when sepiapterin reductase activity is limiting, a large proportion of BH4 synthesis proceeds through the 6-lactoyl intermediate. However, when sepiapterin reductase is not limiting, most of the BH4 is probably formed via reduction of the other mono-reduced intermediate which is produced from 6PPH4 by sepiapterin reductase alone.  相似文献   

14.
In the lung, chemical redox cycling generates highly toxic reactive oxygen species that can cause alveolar inflammation and damage to the epithelium, as well as fibrosis. In this study, we identified a cytosolic NADPH-dependent redox cycling activity in mouse lung epithelial cells as sepiapterin reductase (SPR), an enzyme important for the biosynthesis of tetrahydrobiopterin. Human SPR was cloned and characterized. In addition to reducing sepiapterin, SPR mediated chemical redox cycling of bipyridinium herbicides and various quinones; this activity was greatest for 1,2-naphthoquinone followed by 9,10-phenanthrenequinone, 1,4-naphthoquinone, menadione, and 2,3-dimethyl-1,4-naphthoquinone. Whereas redox cycling chemicals inhibited sepiapterin reduction, sepiapterin had no effect on redox cycling. Additionally, inhibitors such as dicoumarol, N-acetylserotonin, and indomethacin blocked sepiapterin reduction, with no effect on redox cycling. Non-redox cycling quinones, including benzoquinone and phenylquinone, were competitive inhibitors of sepiapterin reduction but noncompetitive redox cycling inhibitors. Site-directed mutagenesis of the SPR C-terminal substrate-binding site (D257H) completely inhibited sepiapterin reduction but had minimal effects on redox cycling. These data indicate that SPR-mediated reduction of sepiapterin and redox cycling occur by distinct mechanisms. The identification of SPR as a key enzyme mediating chemical redox cycling suggests that it may be important in generating cytotoxic reactive oxygen species in the lung. This activity, together with inhibition of sepiapterin reduction by redox-active chemicals and consequent deficiencies in tetrahydrobiopterin, may contribute to tissue injury.  相似文献   

15.
Thioredoxin from Escherichia coli B and phage T4-infected E. coli B are small hydrogen carrier proteins which in their reduced forms are specific hydrogen donors to E. coli and T4-induced ribonucleotide reductase, respectively. The oxidation-reduction active group of both thioredoxins consists of a single cystine residue which is reduced to sulfhydryl form by NADPH in the presence of E. coli thioredoxin reductase. Reduction of T4 thioredoxin-S2 to thioredoxin-(SH)2 led to a 3-fold increase in the quantum yield of tyrosine fluorescence. By using the spectrofluorimetric properties of T4 thioredoxin and E. coli thioredoxin as markers for their oxidized and reduced forms we have shown that E. coli thioredoxin reductase catalyzed the reaction: (see article) whose equilibrium constant favors formation of E. coli thioredoxin-S2 and T4 thioredoxin-(SH)2. This finding suggests that in the T4-infected cell most of the deoxyribonucleotides required for the viral DNA might be synthesized by the T4-induced ribonucleotide reductase while the host ribonucleotide reductase is inactive due to the shortage of reduced E. coli thioredoxin.  相似文献   

16.
The genes that encode thioredoxin and thioredoxin reductase of Streptomyces clavuligerus were cloned, and their DNA sequences were determined. Previously, we showed that S. clavuligerus possesses a disulfide reductase with broad substrate specificity that biochemically resembles the thioredoxin oxidoreductase system and may play a role in the biosynthesis of beta-lactam antibiotics. It consists consists of two components, a 70-kDa NADPH-dependent flavoprotein disulfide reductase with two identical subunits and a 12-kDa heat-stable protein general disulfide reductant. In this study, we found, by comparative analysis of their predicted amino acid sequences, that the 35-kDa protein is in fact thioredoxin reductase; it shares 48.7% amino acid sequence identity with Escherichia coli thioredoxin reductase, the 12-kDa protein is thioredoxin, and it shares 28 to 56% amino acid sequence identity with other thioredoxins. The streptomycete thioredoxin reductase has the identical cysteine redox-active region--Cys-Ala-Thr-Cys--and essentially the same flavin adenine dinucleotide- and NADPH dinucleotide-binding sites as E. coli thioredoxin reductase and is partially able to accept E. coli thioredoxin as a substrate. The streptomycete thioredoxin has the same cysteine redox-active segment--Trp-Cys-Gly-Pro-Cys--that is present in virtually all eucaryotic and procaryotic thioredoxins. However, in vivo it is unable to donate electrons to E. coli methionine sulfoxide reductase and does not serve as a substrate in vitro for E. coli thioredoxin reductase. The S. clavuligerus thioredoxin (trxA) and thioredoxin reductase (trxB) genes are organized in a cluster. They are transcribed in the same direction and separated by 33 nucleotides. In contrast, the trxA and trxB genes of E. coli, the only other organism in which both genes have been characterized, are physically widely separated.  相似文献   

17.
Carbonyl reductase activity of sepiapterin reductase from rat erythrocytes   总被引:3,自引:0,他引:3  
A homogeneous preparation of sepiapterin reductase, an enzyme involved in the biosynthesis of tetrahydrobiopterin, from rat erythrocytes was found to be responsible for the reduction with NADPH of various carbonyl compounds of non-pteridine derivatives including some vicinal dicarbonyl compounds which were reported in the previous paper (Katoh, S. and Sueoka, T. (1984) Biochem, Biophys. Res. Commun. 118, 859-866) in addition to the general substrate, sepiapterin (2-amino-4-hydroxy-6-lactoyl-7,8-dihydropteridine). The compounds sensitive as substrates of the enzyme were quinones, e.g., p-quinone and menadione; other vicinal dicarbonyls, e.g., methylglyoxal and phenylglyoxal; monoaldehydes, e.g., p-nitrobenzaldehyde; and monoketones, e.g., acetophenone, acetoin, propiophenone and benzylacetone. Rutin, dicoumarol, indomethacin, and ethacrynic acid inhibited the enzyme activity toward either a carbonyl compound of a non-pteridine derivative or sepiapterin as substrate. Sepiapterin reductase is quite similar to general aldo-keto reductases, especially to carbonyl reductase.  相似文献   

18.
The natural killer-like cell line YT constitutively expresses GTP-cyclohydrolase activity whereas 6-pyruvoyltetrahydropterin synthase and sepiapterin reductase are absent. The product, dihydroneopterin triphosphate, is dephosphorylated and oxidized causing neopterin to accumulate in the cells. The activities of the H4biopterin synthesizing enzymes are not controlled by IFN-gamma or the synergistic action of both IFN-gamma and IL-2 as has been shown for monocytes/macrophages (Huber C. et al. (1984) J. Exp. Med. 160, 310) and CD4+ T cells, respectively (Ziegler I. et al. (1990) J. Biol. Chem. 265, 17026). Sepiapterin reductase specifically is induced by incubation of the cells with sepiapterin, leaving GTP-cyclohydrolase, 6-pyruvoyltetrahydropterin synthase and other enzymes related to pteridine metabolism (dihydropteridine reductase, dihydrofolate reductase) unaffected. The data indicate that H4biopterin synthesis is individually regulated in the diverse cellular components of the immune system.  相似文献   

19.
1. Pteridine cofactor of phenylalanine hydroxylase (EC 1.14.16.1) and dihydropteridine reductase (EC 1.6.99.7) in the phenylalanine hydroxylating system have been studied in the fetal rat liver. 2. Activities of pteridine cofactor and dihydropteridine reductase were measured as about 6 and 50%, respectively, of the levels of adult liver in the liver from fetuses on 20 days of gestation, at this stage the activity of phenylalanine hydroxylase was almost negligible in the liver. 3. Development of the activity of sepiapterin reductase (EC 1.1.1.153), an enzyme involved in the biosynthesis of pteridine cofactor, was studied in rat liver during fetal (20-22 days of gestation), neonatal and adult stages comparing with the activity of dihydrofolate reductase (EC 1.5.1.3). Activities of the enzymes were about 80 and 50%, respectively, of the adult levels at 20 days of gestation. 4. Some characteristics of sepiapterin reductase and dihydropteridine reductase of fetal liver were reported.  相似文献   

20.
Interferon-gamma induces tetrahydrobiopterin biosynthesis in human cells and cell lines. Macrophages are peculiar in the formation of large amounts of neopterin derivatives as compared to tetrahydrobiopterin (Werner, E. R., Werner-Felmayer, G., Fuchs, D., Hausen, A., Reibnegger, G., and Wachter, H. (1989) Biochem J. 262, 861-866). Here we compare the impact of interferon-gamma treatment on activities of GTP-cyclohydrolase I (EC 3.5.4.16), 6-pyruvoyl tetrahydropterin synthase, and sepiapterin reductase (EC 1.1.1.153) in human peripheral blood-derived macrophages, normal dermal fibroblasts, THP-1 myelomonocytic cells, and the T 24 bladder transitional-cell carcinoma line. Upon interferon-gamma treatment, GTP-cyclohydrolase I activity is increased 7- to 40-fold, whereas 6-pyruvoyl tetrahydropterin synthase and sepiapterin reductase activities, which are constitutively present in all four investigated cells, remain unchanged. In fibroblasts and T 24 cells GTP cyclohydrolase I activity is the rate-limiting step of tetrahydrobiopterin biosynthesis. In macrophages and in THP-1 cells, however, the induced GTP cyclohydrolase I activity is higher than the 6-pyruvoyl tetrahydropterin synthase activity, leading to the accumulation of neopterin and neopterin phosphates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号