首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The type-1 insulin-like growth factor receptor (IGF-1R) is over-expressed by endometrial carcinoma, level of IGF-1R has been correlated with tumor progression, and high IGF-1R expression has been found to be an important prognostic factor. In the study, we used lentivirus-mediated shRNA targeting IGF-1R to silence its expression, then assessed the effect of down-regulation of this receptor on cell growth and chemosensitivity to cisplatin. Lentivirus-mediate shRNA was designed and transfected to the endometrial carcinoma HEC-1B cell. The IGF-1R mRNA and related protein expression, cell proliferation ability, cell apoptosis, and cell cycle change were detected. Cell proliferation inhibition rates, cell apoptosis, and level of cleaved caspase-9 were measured in various concentrations of cisplatin. The mRNA and protein level of IGF-1R, and the phosphorylated protein p-Akt, p-Erk were all suppressed after transfection. Cell proliferation was inhibited in successive five days after transfection, the highest inhibition rate was 43.28 ± 3.55% on day 5. After transfection, 24.96 ± 1.05% cells were in G(2)/M phase, and cell apoptotic rate increased from 10.66 ± 0.08 to 19.92 ± 1.34%. In various concentrations of cisplatin, transfected cells proliferation was significantly inhibited which made the IC50 value drop from 21.85 uM to 10.58 uM. Incubation with different concentrations of cisplatin for 48 h, cells apoptotic rate increased to 41.92 ± 2.5, 31.13 ± 2.76, 22.21 ± 4.63%, respectively, which was accompanied with increased cleaved caspase-9 expression. Lentivirus-mediated shRNA targeting IGF-1R has the potential to develop as a clinical treatment method in advanced and chemoresistant endometrial carcinoma.  相似文献   

2.
Advanced glycation end products (AGEs) have been confirmed to induce bone quality deterioration in diabetes mellitus (DM), and to associate with abnormal expression of miRNAs in DM patients or in vitro. Recently, miRNAs have been recognized to mediate the onset or progression of DM. In the present study, we investigated the regulation on miR-223 level by AGE-BSA treatment in osteoblast-like MC3T3-E1 cells, with real-time quantitative PCR assay. And then we examined the inhibition of insulin-like growth factor 1 receptor (IGF-1R) expression by miR-223, via targeting of the 3′ UTR of IGF-1R with real-time quantitative PCR, western blotting and luciferase reporter assay. Then we explored the regulation of miR-223 and IGF-1R levels, via the lentivirus-mediated miR-223 inhibition and IGF-1R overexpression in the AGE-BSA-induced apoptosis in MC3T3-E1 cells. It was demonstrated that AGE-BSA treatment with more than 100 μg/ml significantly up-regulated miR-223 level, whereas down-regulated IGF-1R level in MC3T3-E1 cells. And the up-regulated miR-223 down-regulated IGF-1R expression in both mRNA and protein levels, via targeting the 3′ UTR of IGF-1R. Moreover, though the AGE-BSA treatment promoted apoptosis in MC3T3-E1 cells, the IGF-1R overexpression or the miR-223 inhibition significantly attenuated the AGE-BSA-promoted apoptosis in MC3T3-E1 cells. In summary, our study recognized the promotion of miR-223 level by AGE-BSA treatment in osteoblast-like MC3T3-E1 cells. The promoted miR-223 targeted IGF-1R and mediated the AGE-BSA-induced apoptosis in MC3T3-E1 cells. It implies that miR-223 might be an effective therapeutic target to antagonize the AGE-induced damage to osteoblasts in DM.  相似文献   

3.
Radiotherapy is an effective treatment for some esophageal cancers, but the molecular mechanisms of radiosensitivity remain unknown. Ubiquitin-like with PHD and ring finger domains 1 (UHRF1) is a novel nuclear protein which is overexpressed in various cancers but not yet examined in esophageal squamous cell carcinoma (ESCC). The correlation between UHRF1 and the radioresistance in ESCC is still unclear. In the present study, the expression of UHRF1 was examined by immunohistochemistry in specimens of ESCC patients treated with radiotherapy. The results showed that UHRF1 was significantly overexpressed in ESCC specimens. Overexpression of UHRF1 correlated significantly with advanced T-stage, positive lymph node metastasis and poor differentiation. In addition, UHRF1 was associated with radiotherapy response, in which overexpression of UHRF1 was observed more frequently in the radioresistant group than in the effective group. At the molecular level, inhibition of UHRF1 by lentivirus-mediated shRNA targeting UHRF1 increased the radiosensitivity and apoptosis, while decreased radiation-induced G2/M phase arrest in TE-1 cells. Moreover, inhibition of UHRF1 resulted in higher residual γH2AX expression after irradiation, but not initial γH2AX. Further study showed that inhibition of UHRF1 down-regulated the endogenous expressions of DNA repair protein Ku70 and Ku80 in TE-1 cells, and significantly inhibited the increase of these proteins after irradiation. Above all, our data suggested that UHRF1 might play an important role in radioresistance of ESCC, and inhibition of UHRF1 can increase the radiosensitivity of TE-1 cells by altering cell cycle progression, enhancing apoptosis, and decreasing DNA damage repair capacity.  相似文献   

4.
The insulin-like growth factor-1 receptor (IGF-1R) and ErbB family of receptors are receptor tyrosine kinases that play important roles in cancer. Lack of response and resistance to therapies targeting ErbB receptors occur and are often associated with activation of the IGF-1R pathway. Combinations of agents that inhibit IGF-1R and ErbB receptors have been shown to synergistically block cancer cell proliferation and xenograft tumor growth. To determine the mechanism by which targeting both IGF-1R and ErbB receptors causes synergistic effects on cell growth and survival, we investigated the effects of combinations of selective IGF-1R and ErbB kinase inhibitors on proliferative and apoptotic signaling. We identified A431 squamous cell carcinoma cells as most sensitive to combinations of ErbB and IGF-1R inhibitors. The inhibitor combinations resulted in not only blockade of A431 cell proliferation, but also induced apoptosis, which was not seen with either agent alone. Upon examining phosphorylation states and expression levels of proteins in the IGF-1R and ErbB signaling pathways, we found a correlation between the ability of combinations to inhibit proliferation and to decrease levels of phosphorylated Akt and cyclin D1. In addition, the massive cell death induced by combined IGF-1R/ErbB inhibition was associated with Mcl-1 reduction and Bax activation. Thus, targeting both IGF-1R and ErbB receptors simultaneously results in cell cycle arrest and apoptosis through combined effects on Akt, cyclin D1, and Bax activation.  相似文献   

5.
Osteosarcoma is the most common primary malignant tumor, and its treatments require more effective therapeutic approaches. Paclitaxel has a broad range of antitumor activities, including apoptosis-inducing effects. However, the majority of tumors in patients with advanced cancer eventually develop chemoresistance. Connective tissue growth factor (CTGF) is a secreted protein that modulates the invasiveness of certain human cancer cells by binding to integrins. However, the effect of CTGF in paclitaxel-mediated chemotherapy is unknown. Here, we report that the expression of CTGF in osteosarcoma patients was significantly higher than that of the CTGF expression in normal bone tissues. Overexpression of CTGF increased the resistance to paclitaxel-mediated cell apoptosis. In contrast, knockdown of CTGF expression by CTGF shRNA increased the chemotherapeutic effect of paclitaxel. In addition, CTGF increased resistance to paclitaxel-induced apoptosis through upregulation of survivin expression. Moreover, the AMP-activated protein kinase (AMPK)-dependent nuclear factor kappa B (NF-κB) pathway mediated paclitaxel-increased chemoresistance and survivin expression. In a mouse xenograft model, overexpression of CTGF promoted resistance to paclitaxel. In contrast, knockdown of CTGF expression increased the therapeutic effect of paclitaxel in this model. In conclusion, our data indicate that CTGF might be a critical oncogene of human osteosarcoma involved in resistance to paclitaxel treatment.  相似文献   

6.
Bone marrow mesenchymal stem cells (BMSCs), tissue-engineered cardiac patch, and therapeutic gene have all been proposed as promising therapy strategies for cardiac repair after myocardial infarction. In our study, BMSCs were modified with insulin-like growth factor-1 (IGF-1) gene, loaded into a fibrin patch, and then transplanted into a porcine model of ischemia/reperfusion (I/R) myocardium injury. The results demonstrated that IGF-1 gene overexpression could promote proliferation of endothelial cells and cardiomyocyte-like differentiation of BMSCs in vitro. Four weeks after transplantation of fibrin patch loaded with gene-modified BMSCs, IGF-1 overexpression could successfully promote angiogenesis, inhibit remodeling, increase grafted cell survival and reduce apoptosis. In conclusion, the integrated strategy, which combined fibrin patch with IGF-1 gene modified BMSCs, could promote the histological cardiac repair for a clinically relevant porcine model of I/R myocardium injury.  相似文献   

7.
8.
Recently we demonstrated that the synovial sarcoma specific fusion gene SS18-SSX is crucial for cyclin D1 expression and is linked to cell proliferation. In this report we explore the role of SS18-SSX and IGF-1R for their potential functions in cellular proliferation and survival in cultured synovial sarcoma cells. We found that targeting of SS18-SSX mRNA by antisense oligonucleotide treatment drastically and rapidly decreased cell proliferation but caused only a slight increase of apoptosis. The synovial sarcoma cells were confirmed to express IGF-1R, and treatment with an IGF-1R inhibitor resulted in substantially reduced cell viability by inducing apoptosis in these cells. Conversely, inhibition of the IGF-1R resulted only in a slight to moderate decrease in DNA synthesis. In conclusion, SS18-SSX and IGF-1R seem to play important but different roles in maintaining malignant growth of synovial sarcoma cells. Whereas SS18-SSX maintains cyclin D1 and cell proliferation, IGF-1R protects from apoptosis.  相似文献   

9.
Although numerous miRNAs are reported to contribute to the carcinogenesis of malignant tumor, the specific role of miR-424 in endometrial carcinoma is seldom reported. To explore the effect of miR-424 on epithelial-mesenchymal transition and its underlying mechanism, we detected miR-424 expression in endometrial carcinoma tissue and cells. We found that miR-424 was significantly downregulated in endometrial carcinoma tissues and cells, especially in HEC-1B cells. To perform the functional analysis, we transfected HEC-1B with miR-424-mi, miR-424-inh, mi-control, and inh-control, respectively. We found that overexpression of miR-424 significantly decreases cell proliferation and migration, accompanied with the increased E-cadherin/Vimentin expression and the transition of mesenchymal to epithelial cell phenotype. We identified that insulin-like growth factor-1 receptor (IGF-1R) was a potential target of miR-424 by computational analysis followed by luciferase reporter assays. Of note, we found that the downregulation of miR-424 in HEC-1B cells enhanced endogenous IGF-1R expression. Further mechanistic analysis revealed that forced expression of IGF-1R in miR-424-mim transfected cells remedied the weakened migration resulting from overexpression of IGF-1R. Taken together, the results of the current study demonstrated that miR-424 was a tumor suppressor for endometrial carcinoma and a favorable factor against tumor progression through targeting IGF-1R, thus providing a target for the treatment of endometrial carcinoma.  相似文献   

10.
Recent progress in chemotherapy has significantly increased its efficacy, yet the development of chemoresistance remains a major drawback. In this study, we show that GFRA1/GFRα1 (GDNF family receptor α 1), contributes to cisplatin-induced chemoresistance by regulating autophagy in osteosarcoma. We demonstrate that cisplatin treatment induced GFRA1 expression in human osteosarcoma cells. Induction of GFRA1 expression reduced cisplatin-induced apoptotic cell death and it significantly increased osteosarcoma cell survival via autophagy. GFRA1 regulates AMPK-dependent autophagy by promoting SRC phosphorylation independent of proto-oncogene RET kinase. Cisplatin-resistant osteosarcoma cells showed NFKB1/NFκB-mediated GFRA1 expression. GFRA1 expression promoted tumor formation and growth in mouse xenograft models and inhibition of autophagy in a GFRA1-expressing xenograft mouse model during cisplatin treatment effectively reduced tumor growth and increased survival. In cisplatin-treated patients, treatment period and metastatic status were associated with GFRA1-mediated autophagy. These findings suggest that GFRA1-mediated autophagy is a promising novel target for overcoming cisplatin resistance in osteosarcoma.  相似文献   

11.
Deregulation of tripartite motif (TRIM) family proteins contribute to multiple biological processes such as neurodegeneration, development, inflammation, cell survival, apoptosis, and carcinogenesis. However, the biological function and molecular mechanism of TRIM family proteins in osteosarcoma chemoresistance remain unclear. In the current study, we found the protein expression of TRIM10 was markedly overexpressed in cisplatin resistance's osteosarcoma tissues and TRIM10 overexpression was inversely correlated with osteosarcoma patient survival. Furthermore, overexpression of TRIM10 confers cisplatin resistance on osteosarcoma cells; however, repressing TRIM10 sensitized osteosarcoma cell lines to cisplatin cytotoxicity in vitro. Mechanically, TRIM10 upregulated the nuclear levels of p65, thereby activating canonical NF-κB signaling. Taken together, our results suggest that TRIM10 contributed to cisplatin resistance in osteosarcoma cells, and targeting the TRIM10/p65 axis may represent a promising strategy to enhance cisplatin response in osteosarcoma patients with chemoresistance.  相似文献   

12.
Almost all of the previous studies with growth hormone (GH) have been done with exogenously supplied GH and, therefore, involve actions of the hormone through its receptor. However, the actions of endogenous or lymphocyte GH are still unclear. In a previous study, we showed that overexpression of GH (GHo) in a lymphoid cell line resulted in protection of the cells to apoptosis mediated by nitric oxide (NO). In the present study, we show that the protection from apoptosis could be transferred to control cells with culture fluids obtained from GHo cells and blocked by antibodies to the insulin-like growth factor-1 (IGF-1) or antibodies to the IGF-1-receptor (IGF-1R). Northern and Western blot analysis detected significantly higher levels of IGF-1 in cells overexpressing GH. An increase in the expression of the IGF-1R in GHo cells was also detected by Western blot analysis, (125)I-IGF-1 binding and analysis of IGF-1R promoter luciferase constructs. Transfection of GHo cells with a dominant negative IGF-1R mutant construct blocked the generation of NO and activation of Akt seen in GHo cells compared to vector alone control EL4 cells. The results suggest that one of the consequences of the overexpression of GH, in cells lacking the GH receptor, is an increase in the expression of IGF-1 and the IGF-1R which mediate the protection of EL4 lymphoma cells from apoptosis.  相似文献   

13.

Background

Chemoresistance is the principal reason for poor survival and disease recurrence in osteosarcoma patients. Inosine 5′-monophosphate dehydrogenase type II (IMPDH2) encodes the rate-limiting enzyme in the de novo guanine nucleotide biosynthesis and has been linked to cell growth, differentiation, and malignant transformation. In a previous study we identified IMPDH2 as an independent prognostic factor and observed frequent IMPDH2 overexpression in osteosarcoma patients with poor response to chemotherapy. The aim of this study was to provide evidence for direct involvement of IMPDH2 in the development of chemoresistance.

Methodology/Principal Findings

Stable cell lines overexpressing IMPDH2 and IMPDH2 knock-down cells were generated using the osteosarcoma cell line Saos-2 as parental cell line. Chemosensitivity, proliferation, and the expression of apoptosis-related proteins were analyzed by flow cytometry, WST-1-assay, and western blot analysis. Overexpression of IMPDH2 in Saos-2 cells induced strong chemoresistance against cisplatin and methotrexate. The observed chemoresistance was mediated at least in part by increased expression of the anti-apoptotic proteins Bcl-2, Mcl-1, and XIAP, reduced activation of caspase-9, and, consequently, reduced cleavage of the caspase substrate PARP. Pharmacological inhibition of IMPDH induced a moderate reduction of cell viability and a strong decrease of cell proliferation, but no increase in chemosensitivity. However, chemoresistant IMPDH2-overexpressing cells could be resensitized by RNA interference-mediated downregulation of IMPDH2.

Conclusions

IMPDH2 is directly involved in the development of chemoresistance in osteosarcoma cells, suggesting that targeting of IMPDH2 by RNAi or more effective pharmacological inhibitors in combination with chemotherapy might be a promising means of overcoming chemoresistance in osteosarcomas with high IMPDH2 expression.  相似文献   

14.
The insulin-like growth factor I receptor (IGF1-R) system has long been implicated in cancer and is a promising target for tumor therapy. Besides in vitro screening assays, the discovery of specific inhibitors against IGF-1R requires relevant cellular models, ideally applicable to both in vitro and in vivo studies. With this aim in mind, the authors generated an inducible cell line using the tetracycline-responsive gene expression system to mimic the effects of therapeutic inhibition of the IGF-1R both in vitro and on established tumors in vivo. Inducible overexpression of IGF-1R in murine embryonic fibroblasts was achieved and resulted in the transformation of the cells as verified by their ability to grow in soft agar and in nude mice. Continuous repression of exogenous IGF-1R expression completely prevented outgrowth of the tumors. Furthermore, induced repression of IGF-1R expression in established tumors resulted in regression of the tumors. Interestingly, however, IGF-1R-independent relapse of tumor growth was observed upon prolonged IGF-1R repression. The IGF-1R cell line generated using this approach was successfully employed to test reference small-molecule inhibitors in vitro and an IGF-1R-specific inhibitory antibody, EM164, in vivo. Besides efficacy as a read-out, phospho-AKT could be identified as a pharmacodynamic biomarker, establishing this cell line as a valuable tool for the preclinical development of IGF-1R inhibitors.  相似文献   

15.
16.
This study was performed to investigate the role of galectin-1 (Gal-1) in epithelial ovarian cancer (EOC) progression and chemoresistance. Tissue samples from patients with EOC were used to examine the correlation between Gal-1 expression and clinical stage of EOC. The role of Gal-1 in EOC progression and chemoresistance was evaluated in vitro by siRNA-mediated knockdown of Gal-1 or lentivirus-mediated overexpression of Gal-1 in EOC cell lines. To elucidate the molecular mechanisms underlying Gal-1-mediated tumor progression and chemoresistance, the expression and activities of some signaling molecules associated with Gal-1 were analyzed. We found overexpression of Gal-1 in advanced stages of EOC. Knockdown of endogenous Gal-1 in EOC cells resulted in the reduction in cell growth, migration, and invasion in vitro, which may be caused by Gal-1''s interaction with H-Ras and activation of the Raf/extracellular signal-regulated kinase (ERK) pathway. Additionally, matrix metalloproteinase-9 (MMP-9) and c-Jun were downregulated in Gal-1-knockdown cells. Notably, Gal-1 overexpression could significantly decrease the sensitivities of EOC cells to cisplatin, which might be ascribed to Gal-1-induced activation of the H-Ras/Raf/ERK pathway and upregulation of p21 and Bcl-2. Taken together, the results suggest that Gal-1 contributes to both tumorigenesis and cisplatin resistance in EOC. Thus, Gal-1 is a potential therapeutic target for EOC.  相似文献   

17.

Background

Proteins that are required for anchorage-independent survival of tumor cells represent attractive targets for therapeutic intervention since this property is believed to be critical for survival of tumor cells displaced from their natural niches. Anchorage-independent survival is induced by growth factor receptor hyperactivation in many cell types. We aimed to identify molecules that critically regulate IGF-1-induced anchorage-independent survival.

Methods and Results

We conducted a high-throughput siRNA screen and identified PTK6 as a critical component of IGF-1 receptor (IGF-1R)-induced anchorage-independent survival of mammary epithelial cells. PTK6 downregulation induces apoptosis of breast and ovarian cancer cells deprived of matrix attachment, whereas its overexpression enhances survival. Reverse-phase protein arrays and subsequent analyses revealed that PTK6 forms a complex with IGF-1R and the adaptor protein IRS-1, and modulates anchorage-independent survival by regulating IGF-1R expression and phosphorylation. PTK6 is highly expressed not only in the previously reported Her2+ breast cancer subtype, but also in high grade ER+, Luminal B tumors and high expression is associated with adverse outcomes.

Conclusions

These findings highlight PTK6 as a critical regulator of anchorage-independent survival of breast and ovarian tumor cells via modulation of IGF-1 receptor signaling, thus supporting PTK6 as a potential therapeutic target for multiple tumor types. The combined genomic and proteomic approaches in this report provide an effective strategy for identifying oncogenes and their mechanism of action.  相似文献   

18.
The receptor tyrosine kinase (RTK)/phosphoinositide 3-kinase (PI3K) pathway is fundamental for cancer cell proliferation and is known to be frequently altered and activated in neoplasia, including embryonal tumors. Based on the high frequency of alterations, targeting components of the PI3K signaling pathway is considered to be a promising therapeutic approach for cancer treatment. Here, we have investigated the potential of targeting the axis of the insulin-like growth factor-1 receptor (IGF-1R) and PI3K signaling in two common cancers of childhood: neuroblastoma, the most common extracranial tumor in children and medulloblastoma, the most frequent malignant childhood brain tumor. By treating neuroblastoma and medulloblastoma cells with R1507, a specific humanized monoclonal antibody against the IGF-1R, we could observe cell line-specific responses and in some cases a strong decrease in cell proliferation. In contrast, targeting the PI3K p110α with the specific inhibitor PIK75 resulted in broad anti-proliferative effects in a panel of neuro- and medulloblastoma cell lines. Additionally, sensitization to commonly used chemotherapeutic agents occurred in neuroblastoma cells upon treatment with R1507 or PIK75. Furthermore, by studying the expression and phosphorylation state of IGF-1R/PI3K downstream signaling targets we found down-regulated signaling pathway activation. In addition, apoptosis occurred in embryonal tumor cells after treatment with PIK75 or R1507. Together, our studies demonstrate the potential of targeting the IGF-1R/PI3K signaling axis in embryonal tumors. Hopefully, this knowledge will contribute to the development of urgently required new targeted therapies for embryonal tumors.  相似文献   

19.
为了研究短发夹RNA(shRNA)介导的RNA干扰对麻疹病毒体外复制的抑制作用,构建靶向与麻疹病毒复制密切相关的宿主细胞基因Rab9 GTPase基因特异性shRNA表达载体,分别转染Vero-E6和B95a细胞后感染麻疹病毒Edmonston株和野生株。逆转录聚合酶链反应(RT-PCR)和免疫印迹技术(Western-blot)检测转染细胞内Rab9 GTPase基因表达水平;标准蚀斑试验测定麻疹病毒滴度。结果显示转染细胞内Rab9 GTPase mRNA和蛋白质的表达水平同对照组相比明显降低,标准蚀斑试验显示麻疹病毒的复制受到显著抑制,抑制率达到90%以上。结果表明载体介导的shRNAs能通过特异性下调Rab9 GTPase基因表达抑制麻疹病毒体外复制,Rab9 GTPase可能成为治疗麻疹病毒感染的RNA干扰靶。  相似文献   

20.
目的探讨慢病毒介导的靶向SIRTlshRNA对肝癌细胞生长和凋亡的影响。方法Western印迹分析SIRT1在多个肝癌细胞系中的表达;通过慢病毒介导的shRNA干扰技术靶向沉默SIRT1的表达,并通过Western印迹验证SIRTl基因的沉默效果。台盼蓝排斥实验分析SIRT1基因沉默对肝癌细胞生长的影响;流式细胞术和Western印迹检测PARP蛋白的剪切物观察细胞凋亡状态。结果SIRT1在多个肝癌细胞系中表达水平明显上调;慢病毒介导的shRNA能显著抑制细胞中SIRT1的表达。流式细胞术及Western印迹结果均显示SIRT1表达沉默显著诱导了肝癌细胞的凋亡。结论慢病毒介导的靶向SIRT1shRNA显著地抑制SIRT1的表达;SIRT1基因沉默抑制肝癌细胞生长并促进了细胞凋亡。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号