首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent reports provide cogent evidence that the average individual becomes chromium deficient with age. Unfortunately, chromium deficiency is strongly associated with many aspects of the Metabolic Syndrome, including insulin resistance and type 2 diabetes. Since replacement of chromium, per os, often ameliorates many deleterious manifestations associated with insulin resistance and diabetes, it is not surprising that many different, commercial trivalent chromium compounds are available on the market. However, previous reports have shown that the form of trivalent chromium (negative charges) can influence effectiveness markedly. We compared various commercial forms of trivalent chromium commonly used alone or in formulations, to examine whether they are equally effective and non-toxic. In the first study, five different chromium products were examined - citrate, amino acid chelate (AAC), chelavite, polynicotinate (NBC), and nicotinate. In the second study, effects of NBC and picolinate were assessed. Results demonstrated that only chelavite and NBC improved insulin sensitivity, and only NBC decreased systolic blood pressure (SBP) significantly. In the second study, both picolinate and NBC significantly decreased SBP compared to control. NBC and picolinate decreased malonyldialdehyde concentrations (free radical formation) and DNA fragmentation in hepatic and renal tissues. No evidence of adverse effects was noted with any of the compounds tested. In conclusion, while all the trivalent chromium compounds tested seem safe, only three enhanced insulin sensitivity (NBC, chelavite, and picolinate) and only two decreased SBP significantly (NBC and picolinate). Furthermore, both NBC and picolinate were protective in lessening free radical formation and DNA damage in the liver and kidneys.  相似文献   

2.
We simultaneously assessed benefits and risks of niacin-bound chromium (NBC) intake at varying doses over a prolonged period of time (>1.2 years) in male and female Sprague-Dawley (SD) rats. We performed the study in two phases. First, we followed 60 male and 60 female SD rats, each gender divided into six groups. Through day 150 (phase 1A), all SD rats received a high sucrose diet (30% w/w) with or without different concentrations of NBC. The male/female groups were: 1] control without NBC n = 10, 2] low NBC (2.8 ppm, n = 10), 3] medium NBC (8.7 ppm, n = 20), 4] high NBC (28.0 ppm, n = 20). Based on dosing, we refer to the three treatment groups as 1X, 3X, and 10X. During days 151–312 (phase 1B), NBC was removed from diets of one half of the 3X and 10X groups. These are referred to as 3X satellite and 10X satellite. In phase 2 (days 313–460), males from groups 1X, 3X, 10X, 3X satellite, and 10X satellite received the same 3X dose of NBC (8.7 ppm). The last two groups also ingested different doses of a formulation of natural products in addition to NBC. We examined blood pressure, the renin–angiotensin system (RAS), nitric oxide (NO), and insulin systems and inflammatory parameters. Results in male and female SD rats were comparable. NBC lowered systolic blood pressure (SBP) in a dose-dependent fashion; however, after 200 days, the SBP of the low dose group (1X) began to rise and returned to baseline control. After raising the dose of NBC to 3X, the SBP in the 1X group decreased significantly once more. When half the test rats (3X and 10X) were deprived of NBC, SBP rose gradually to control levels after 2 to 3 months. However, the SBP decreased significantly once more when each satellite group returned to the 3X dose. Special testing suggests that NBC at adequate dosing increases insulin sensitivity, lowers HbA1C, decreases activity of the RAS, at least in part, through ACE inhibition, enhances NO activity, and is without signs of toxicity. The addition of a formula composed of antioxidants and immune modulators to the chromium regimen caused even faster and more profound changes in SBP than with NBC alone. We conclude that NBC at adequate dosing is effective in male and female SD rats on certain metabolic parameters over a prolonged period, effects that disappear over months after NBC is removed. When dosing is returned, the effectiveness of NBC returns. Low doses of NBC may lose their effect over time. No signs of toxicity were observed.  相似文献   

3.
The present work was focused to evaluate the ameliorative property of aqueous extract of Trichosanthes dioica fruit (AQ T. dioica fruit) against arsenic-induced toxicity in male Wistar albino rats. AQ T. dioica fruit was administered orally to rats at 50 and 100 mg/kg body weight for 20 consecutive days prior to oral administration of sodium arsenite (10 mg/kg) for 10 days. Then the rats were sacrificed for the evaluation of body weights, organ weights, hematological profile, serum biochemical profile, and hepatic and renal antioxidative parameters viz. lipid peroxidation, reduced and oxidized glutathione, glutathione-S-transferase, glutathione peroxidase, glutathione reductase, superoxide dismutase, catalase, and DNA fragmentation. Pretreatment with AQ T. dioica fruit at both doses markedly and significantly normalized body weights, organ weights, hematological profiles, and serum biochemical profile in arsenic-treated animals. Further, AQ T. dioica fruit pretreatment significantly modulated all the aforesaid hepatic and renal biochemical perturbations and reduced DNA fragmentation in arsenic-intoxicated rats. Therefore, from the present findings, it can be concluded that T. dioica fruit possessed remarkable value in amelioration of arsenic-induced hepatic and renal toxicity, mediated by alleviation of arsenic-induced oxidative stress by multiple mechanisms in male albino rats.  相似文献   

4.
The mitochondrial theory of aging suggests that this phenomenon is the consequence of random somatic mutations in mitochondrial DNA, induced by long-term exposure to free radical attack. There are two potential dietary means of delaying the effects of free radicals on cellular aging, i.e., enrichment of mitochondrial membranes with monounsaturated fatty acids and supplementation with antioxidants. We have performed a preliminary study on male rats, 6 or 12 month old, fed with diets differing in the nature of the fat (virgin olive oil or sunflower oil) and/or with antioxidant supplementation (coenzyme Q10), analysing hydroperoxide and coenzyme Q9 and Q10 in heart mitochondria. Preliminary results allow us to conclude that the CoQ10 dietetic supplementation as well as the enrichment of the cellular membranes with monounsaturated fatty acids, successfully protect mitochondrial membranes from aged rats against the free radical insult.  相似文献   

5.
The therapeutic potential of lipoic acid (LA) in diabetes and diabetic nephropathy treatment was elucidated. Alloxan diabetic rabbits were treated daily for three weeks with either 10 or 50 mg of LA per kg body weight (i.p.). The following parameters were measured: 1) serum glucose, urea, creatinine and hydroxyl free radical (HFR) levels; 2) blood glutathione redox state; 3) urine albumin concentration; 4) hepatic and renal HFR levels, GSH/GSSG ratios, cysteine contents and the activities of the enzymes of glutathione metabolism; and 5) the activity of renal NADPH oxidase. Histological studies of kidneys were also performed. The treatment of diabetic rabbits with 50 mg of LA resulted in lethal hypoglycaemia in 50% of animals studied. Although the low dose of LA did not change serum glucose concentration, it decreased serum urea and creatinine concentrations, attenuated diabetes-induced decline in GSH/GSSG ratio and abolished hydroxyl free radicals accumulation in serum, liver and kidney cortex. LA did not change the activities of the enzymes of glutathione metabolism, but it elevated hepatic content of cysteine, which limits the rate of glutathione biosynthesis. Moreover, LA lowered urine albumin concentration and attenuated glomerulopathy characteristic of diabetes. However, it did not affect diabetes-stimulated activity of renal NADPH oxidase. In view of these data, it is concluded that low doses of LA might be useful for the therapy of diabetes and diabetic nephropathy. Beneficial action of LA seems to result mainly from direct scavenging of HFR and restoring glutathione redox state due to elevation of intracellular cysteine levels.  相似文献   

6.
BACKGROUND: The aim of this study was to analyze the effects of 45min of hepatic ischemia and 1h of reperfusion on renal oxidative stress parameters, on renal tissue damage, and the role of Desferrioxamin (Dfx) and Q on these parameters. METHODS: Thirty Wistar albino rats were randomized to five groups. Group I was the control group. Group II received no treatment. Groups III and IV received intramuscular injections of desferrioxamine (100mg/kg) and quercetin (50mg/kg), respectively. Group V was administered Dfx and quercetin in combination. After treatment for 3 days, groups II, III, IV, and V were exposed to total hepatic ischemia for 45min. Plasma alanine aminotransferase levels, renal malondialdehyde and reduced glutathione (GSH) activities were measured after reperfusion for 1h. Histopathological and ultrastructural analysis of renal tissues was carried out. RESULTS: Plasma creatinine and BUN levels were markedly increased in the IR group and pretreated groups. Kidney MDA increased in the IR group, Q and Dfx+Q significantly decreased kidney MDA Kidney GSH levels markedly decreased in the IR group, Dfx significantly increased kidney GSH. No evidence of overt injury was observed in any renal tissue under light and electron microscopy. CONCLUSIONS: Our data demonstrated that 45min of hepatic ischemia and 1h of reperfusion may alter renal functions and may cause oxidative stress on renal tissue. Q and Dfx seem to have a beneficial effect via the GSH system and modulation of MDA levels.  相似文献   

7.
Tumor necrosis factor induced DNA fragmentation of HL-60 cells   总被引:1,自引:0,他引:1  
Tumor necrosis factor (TNF) induces differentiation of HL-60 cells, with only slight effects upon proliferation and little or no cytotoxicity. TNF induced cytotoxicity of other target cell lines has been associated with DNA fragmentation. To assess whether TNF-induced DNA fragmentation might also contribute to HL-60 differentiation, studies were performed using a [3H]-dThd release assay. Between 1 and 2 hours of culture, significant [3H]-dThd release was induced by TNF at concentrations of 10 U/ml and greater. This response was blocked by inhibiting energy metabolism, but not by several inhibitors of cell surface signal transduction, protein or RNA synthesis, or free radical scavengers. DNA electrophoresis of the released DNA disclosed a wide range of low molecular weight fragments. It is possible that TNF-induced DNA fragmentation contributes to HL-60 differentiation.  相似文献   

8.
Linnane AW  Eastwood H 《Mitochondrion》2004,4(5-6):779-789
In this communication, the concept is developed that coenzyme Q10 has a toti-potent role in the regulation of cellular metabolism. The redox function of coenzyme Q10 leads to a number of outcomes with major impacts on sub-cellular metabolism and gene regulation. Coenzyme Q10's regulatory activities are achieved in part, through the agency of its localization in the various sub-cellular membrane compartments. Its fluctuating redox poise within these membranes reflects the cell's metabolic micro-environments. As an integral part of this process, H2O2 is generated as a product of the normal electron transport systems to function as a mitogenic second messenger informing the nuclear and mitochondrial (chloroplast) genomes on a real-time basis of the status of the sub-cellular metabolic micro-environments and the needs of that cell. Coenzyme Q10 plays a major role both in energy conservation, and energy dissipation as a component of the uncoupler protein family. Coenzyme Q10 is both an anti-oxidant and a pro-oxidant and of the two the latter is proposed as its more important cellular function. Coenzyme Q10 has been reported, to be of therapeutic benefit in the treatment of a wide range of age related degenerative systemic diseases and mitochondrial disease. Our over-arching hypotheses on the central role played by coenzyme Q10 in redox poise changes, the generation of H2O2, consequent gene regulation and metabolic flux control may account for the wide ranging therapeutic benefits attributed to coenzyme Q10.  相似文献   

9.
The liver, through the afferent ways of the vagus hepatic nerve, may influence metabolic adaptations during exercise. This study assesses the functional significance of this hepatic innervation by determining the effect of a selective hepatic vagotomy (HV) on running endurance time during submaximal activity in rats subjected to an overnight 50% food restriction. The time to exhaustion was similar for the groups of HV and sham-operated (SHM) rats [66 +/- 15 vs. 64 +/- 21 (SD) min]. The HV group was associated with higher resting levels (P less than 0.05) of hepatic glycogen and plasma glucose. No significant differences were observed between HV and SHM rats at rest and after exercise for muscle glycogen, free fatty acids, insulin, glucagon, and lactate concentrations. These data indicate that if hepatic glucoreceptors do exist and contribute to the metabolic regulation of exercise, their functional significance is secondary to more important regulatory mechanisms.  相似文献   

10.
These experiments were designed to determine whether green tea extract (GTE), which contains polyphenolic free radical scavengers, prevents ischemia-reperfusion injury to the liver. Rats were fed a powdered diet containing 0-0.3% GTE starting 5 days before hepatic warm ischemia and reperfusion. Free radicals in bile were trapped with the spin-trapping reagent alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone (4-POBN) and measured using electron spin resonance spectroscopy. Hepatic ischemia-reperfusion increased transaminase release and caused pathological changes including focal necrosis and hepatic leukocyte infiltration in the liver. Transaminase release was diminished by over 85% and pathological changes were almost totally blocked by 0.1% dietary GTE. Ischemia-reperfusion increased 4-POBN/radical adducts in bile nearly twofold, an effect largely blocked by GTE. Epicatechin, one of the major green tea polyphenols, gave similar protection as GTE. In addition, hepatic ischemia-reperfusion activated NF-kappa B and increased TNF-alpha mRNA and protein expression. These effects were all blocked by GTE. Taken together, these results demonstrate that GTE scavenges free radicals in the liver after ischemiareoxygenation, thus preventing formation of toxic cytokines. Therefore, GTE could prove to be effective in decreasing hepatic injury in disease states where ischemia-reperfusion occurs.  相似文献   

11.
Solanum nigrum L. (SN) is an herbal plant that has been used as hepatoprotective and anti-inflammation agent in Chinese medicine. In this study, the protective effects of water extract of SN (SNE) against liver damage were evaluated in carbon tetrachloride (CCl4)-induced chronic hepatotoxicity in rats. Sprague-Dawley (SD) rats were orally fed with SNE (0.2, 0.5, and 1.0 g kg(-1) bw) along with administration of CCl4 (20% CCl4/corn oil; 0.5 mL kg(-1) bw) for 6 weeks. The results showed that the treatment of SNE significantly lowered the CCl4-induced serum levels of hepatic enzyme markers (GOT, GPT, ALP, and total bilirubin), superoxide and hydroxyl radical. The hepatic content of GSH, and activities and expressions of SOD, GST Al, and GST Mu that were reduced by CCl4 were brought back to control levels by the supplement of SNE. Liver histopathology showed that SNE reduced the incidence of liver lesions including hepatic cells cloudy swelling, lymphocytes infiltration, hepatic necrosis, and fibrous connective tissue proliferation induced by CCl4 in rats. Therefore, the results of this study suggest that SNE could protect liver against the CCl4-induced oxidative damage in rats, and this hepatoprotective effect might be contributed to its modulation on detoxification enzymes and its antioxidant and free radical scavenger effects.  相似文献   

12.
The beneficial effect of a microencapsulated feruloyl esterase producing Lactobacillus fermentum ATCC 11976 formulation for use in non-alcoholic fatty liver disease (NAFLD) was investigated. For which Bio F1B Golden Syrian hamsters were fed a methionine deficient/choline devoid diet to induce non-alcoholic fatty liver disease. Results, for the first time, show significant clinical benefits in experimental animals. Examination of lipids show that concentrations of hepatic free cholesterol, esterified cholesterol, triglycerides and phospholipids were significantly lowered in treated animals. In addition, serum total cholesterol, triglycerides, uric acid and insulin resistance were found to decrease in treated animals. Liver histology evaluations showed reduced fat deposits. Western blot analysis shows significant differences in expression levels of key liver enzymes in treated animals. In conclusion, these findings suggest the excellent potential of using an oral probiotic formulation to ameliorate NAFLD.  相似文献   

13.
Free radicals have been implicated in the action of many chemotherapeutic drugs. Here we tested the hypothesis that camptothecin and other chemotherapeutic drugs, such as etoposide, doxorubicin, and methotrexate, induce an increase in coenzyme Q(10) levels as part of the antioxidant defense against free radical production under these anticancer treatments in cancer cell lines. Chemotherapy treatment induced both free radical production and an increase in coenzyme Q(10) levels in all the cancer cell lines tested. Reduced coenzyme Q(10) form levels were particularly enhanced. Coenzyme Q(10)-increased levels were associated with up-regulation of COQ genes expression, involved in coenzyme Q(10) biosynthesis. At the translational level, COQ7 protein expression levels were also increased. Furthermore, coenzyme Q(10) biosynthesis inhibition blocked camptothecin-induced coenzyme Q(10) increase, and enhanced camptothecin cytotoxicity. Our findings suggest that coenzyme Q(10) increase is implicated in the cellular defense under chemotherapy treatment and may contribute to cell survival.  相似文献   

14.
1. Chicken embryos aged 12, 16, 18 and 20 (externally pipped) days of incubation were exposed to graded reductions (2 degrees C) in ambient temperature from 38 to 28 degrees C, exposure to each temperature lasting up to 9 hr. 2. Oxygen uptake was measured first at 38 degrees C and then in the quasi-equilibrium state at lowered temperatures. The temperature coefficient (Q10) was calculated for each egg. 3. For mild cooling (32 degrees C), the Q10 in 18-day-old embryos was about 1.5, while 12- and 16-day-old embryos had a Q10 value of about 2, indicating that a feeble homeothermic metabolic response to cooling appears in late prenatal embryos. It became more marked in externally pipped embryos and further augmented in hatchlings.  相似文献   

15.
Low-molecular-weight aldehydes (glyoxal, methylglyoxal, 3-deoxyglucosone) generated on autooxidation of glucose under conditions of carbonyl stress react much more actively with amino groups of L-lysine and epsilon-amino groups of lysine residues of apoprotein B-100 in human blood plasma low density lipoproteins (LDL) than their structural analogs (malonic dialdehyde (MDA), 4-hydroxynonenal) resulting on free radical oxidation of lipids under conditions of oxidative stress. Glyoxal-modified LDL aggregate in the incubation medium with a significantly higher rate than LDL modified by MDA, and MDA-modified LDL are markedly more poorly absorbed by cultured human macrophages and significantly more slowly eliminated from the rat bloodstream upon intravenous injection. Studies on kinetics of free radical oxidation of rat liver membrane phospholipids have shown that ubiquinol Q(10) is the most active lipid-soluble natural antioxidant, and suppression of ubiquinol Q(10) biosynthesis by beta-hydroxy-beta-methylglutaryl coenzyme A reductase inhibitors (statins) is accompanied by intensification of lipid peroxidation in rat liver biomembranes and in LDL of human blood plasma. Injection of ubiquinone Q(10) protects the human blood plasma LDL against oxidation and prevents oxidative stress-induced damages to rat myocardium. A unified molecular mechanism of atherogenic action of carbonyl-modified LDL in disorders of lipid and carbohydrate metabolism is discussed.  相似文献   

16.
Chronic exposure to the pesticide rotenone induces a selective degeneration of nigrostriatal dopaminergic neurons and reproduces the features of Parkinson's disease in experimental animals. This action is thought to be relevant to its inhibition of the mitochondrial complex I, but the precise mechanism of this suppression in selective neuronal death is still elusive. Here we investigate the mechanism of dopaminergic neuronal death mediated by rotenone in primary rat mesencephalic neurons. Low concentrations of rotenone (5-10 nM) induce the selective death of dopaminergic neurons without significant toxic effects on other mesencephalic cells. This cell death was coincident with apoptotic events including capsase-3 activation, DNA fragmentation, and mitochondrial membrane depolarization. Pretreatment with coenzyme Q10, the electron transporter in the mitochondrial respiratory chain, remarkably reduced apoptosis as well as the mitochondrial depolarization induced by rotenone, but other free radical scavengers such as N-acetylcysteine, glutathione, and vitamin C did not. Furthermore, the selective neurotoxicity of rotenone was mimicked by the mitochondrial protonophore carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP), a cyanide analog that effectively collapses a mitochondrial membrane potential. These data suggest that mitochondrial depolarization may play a crucial role in rotenone-induced selective apoptosis in rat primary dopaminergic neurons.  相似文献   

17.
In a surgical model of liver ischemia lipid peroxidation occurs, as shown by increase of lipid peroxidation end products, endogenous CoQ9 is oxidized and mitochondrial respiration is lowered; however, pre-treatment of the rats by i.p. injection of CoQ10 for 14 days normalizes the above parameters, presumably by way of the observed high extent of reduction of the incorporated quinone; moreover, liver homogenates of the CoQ10-treated rats are more resistant than those of non-treated rats to oxidative stress induced by an azido free radical initiator. This preliminary study suggests that CoQ10 pre-treatment can be of beneficial effect against oxidative damage during liver surgery transplantation.  相似文献   

18.
As continuous production of free radicals and reactive oxygen species is a normal metabolic process, increased metabolism during exercise/workload should increase free radical generation and oxidative stress. Oxidative stress intensity should then depend on the intensity of metabolic stress effects. Intensity of stress is usually reflected in norepinephrine (NE) levels, which correlate linearly and significantly with changes in blood gases, blood buffer systems, blood electrolytes, blood glucose and lactate [Porta, S., Leitner, G., Heidinger, D., Lang, T., Weiss, U., Smolle, K.H., Hasiba, K., 1997. Magnesium w?hrend der Alpinausbildung bringt um 30% bessere Energieverwertung. Magnesium-Bulletin 19(2), 59-61]. Those parameters were used in an open study design to screen 64 subjects for metabolic stress effects along with their antioxidative capacity using both venous and capillary blood. To compare venous and capillary blood, we took venous blood samples from 12 healthy volunteers and capillary blood from 52 other healthy subjects. To show whether free radical changes indeed go along with metabolic stress effects, we tried to quantify relations between metabolic stress effects and oxidative stress by linear correlations. In conclusion, both venous and capillary blood are suitable for determining at least those parameters of the oxidative state that we used. All significant correlations of peroxidase activity and oxidation lag time (OLT) with pH, bicarbonate (HCO3), base excess (BE) and magnesium (Mg) indicate that free radical production increases with metabolism. Those relationships could help to evaluate the oxidative state more precisely.  相似文献   

19.
The vital role of coenzyme Q in mitochondrial electron transfer and its regulation, and in energy conservation, is well established. However, the role of coenzyme Q in free oxyradical formation and as an antioxidant remains controversial. Demonstration of the existence of the semiquinone form of coenzyme Q during electron transport, coupled with recent evidence that hydrogen peroxide (but not molecular oxygen) may act as an oxidant of the semiquinone, suggests that the highly reactive OH. radical may be formed from the semiquinone. On the other hand, data exist implicating the Fe-S species as the source of electron transfer chain, free radical production. Additional data exist suggesting instead that the unpaired electron of the coenzyme Q semiquinone most likely dismutases superoxide radicals. These concepts and those arising from observations at several levels of organization including subcellular systems, intact animals, and human subjects in the clinical setting, supporting the concept of reduced coenzyme Q as an antioxidant, will be presented. The results of recent studies on the interaction between the two-electron quinone reductase--DT diaphorase and coenzyme Q10 will be presented. The possibility that superoxide dismutase may interact with reduced coenzyme Q, in conjunction with DT diaphorase inhibiting its autoxidation, will be described. The regulation of cellular coenzyme Q concentrations during oxidative stress accompanying aerobic exercise, resulting in increased protection from free radical damage, will also be presented.  相似文献   

20.
The influence of dietary iron deficiency on acute nickel, lead or cadmium toxicity as reflected by the induction of hepatic, renal and intestinal metallothionein (MT), disposition of the metals, and alterations in hematological parameters was investigated in rats. The administration of cadmium induced the hepatic, renal and intestinal MT while that of nickel or lead induced hepatic MT only. However, dietary iron deficiency did not influence the cadmium induced tissue MT but enhanced the ability of nickel or lead to restore the normal synthesis of renal and intestinal MT lowered under the influence of reduced body iron status. The accumulation of lead in liver and kidney and that of cadmium enhanced in liver only, while tissue deposition of nickel remained unaffected by iron deficiency. The induction of hepatic MT by three metals appears related to the concomitant rise in the hepatic zinc, calcium and iron levels in normal rats. However, dietary iron deficiency increased the hepatic zinc in response to nickel or cadmium and that of heptic calcium in response to lead.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号