首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhang Q  Liang X  Zhu B  Dong Q  Xu L  Xia L  Hu J  Fu J  Liu M 《Cell biology international》2006,30(9):714-720
The present study was designed to determine the effects of fluid shear stress on the mRNA expression of carbonic anhydrase II (CAII) in polarized rat osteoclasts. Cellular morphology of the polarized osteoclasts generated by a mechanical anatomical technique was examined by tartrate-resistant acid phosphatase (TRAP) staining and the osteoclastic resorption of dentine slices. The polarized osteoclasts were then stress-loaded by using a flow shear stress device newly developed by the osteoclast research group (patent number 200420034438; China), at 9 dyne/cm(2) for various time periods [0 (control group), 15, 30, 60, and 120 min], or at various stress levels [0 (control), 0.9, 2.9, 8.7, and 26.3 dyne/cm(2)] for 30 min. The mRNA expression of CAII was quantified using real-time fluorescent quantitative PCR (RT-PCR) and the data were analyzed with SPSS 12.0 software. The polarized osteoclasts were larger than regular monocytes (about 30 microm diameter) with irregular configuration, and the majority of polarized osteoclasts appeared to be spherical and had approximately 2-20 nuclei. The TRAP positive polarized osteoclasts showed asymmetrical red staining in the cytoplasm, and had many filaments and vacuoles. These cells formed resorptive pits in dentine slices. The levels of CAII mRNA expression were shown to be time-dependent, with the E+5 copy numbers being 7.88+/-0.09, 11.14+/-0.12, 15.83+/-0.18, 1.94+/-0.02, and 1.37+/-0.01 in cells treated at 9 dyne/cm(2) for 0, 15, 30, 60 and 120 min, respectively (P < 0.05). The levels of CAII mRNA expression (E+5 copy numbers) in cells treated with the stress levels of 0, 0.9, 2.9, 8.7 and 26.3 dyne/cm(2) were 7.97+/-0.201, 11.26+/-0.688, 15.94+/-0.201, 31.88+/-1.496, and 45.08+/-2.639, respectively (P < 0.05). These results indicate that there is a relationship between the fluid shear stress and the mRNA expression of CAII in polarized rat osteoclasts.  相似文献   

2.
This study was designed to explore the effects of rotative stress on carbonic anhydrase II (CAII), TNF receptor superfamily member 6 (FAS), FAS ligand (FASL), osteoclast‐associated receptor (OSCAR), and tartrate‐resistant acid phosphatase (TRAP) gene expression in osteoclasts. Osteoclasts were induced from RAW264.7 cells cultured in medium containing recombinant murine soluble receptor activator of NF‐Kβ ligand (sRANKL). The mRNA and protein expression of CAII, FAS, FASL, OSCAR, and TRAP genes in osteoclasts was detected by RT‐PCR and Western blot, respectively, after osteoclasts were loaded at various rotative stress strengths and times. No significant differences in mRNA and protein expression were observed between any of the control groups (P > 0.05). Importantly, rotative stress had a significant effect on the mRNA and protein expression of these genes (P < 0.05). We found a negative relationship between rotative stress strength and prolonged loading time and the expression of FAS/FASL genes in osteoclasts. In addition, there was a positive relationship between rotative stress strength and prolonged loading time and the expression of CAII, OSCAR, or TRAP genes in osteoclasts. Based on these results, rotative stress has a significant effect on CAII, FAS, FASL, OSCAR, and TRAP gene expression in osteoclasts. J. Cell. Biochem. 114: 388–397, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
目的在粪肠球菌脂磷壁酸(LTA)作用的炎症环境下,研究布鲁顿酪氨酸激酶(BTK)在破骨细胞中的作用,从而为根尖周炎的治疗提供实验依据。方法 PCR检测粪肠球菌LTA刺激破骨细胞后BTK基因水平的表达情况。以浓度300ng/mL的人重组蛋白BTK(recombinant human BTK,rhBTK)刺激破骨细胞,用CCK8法检测破骨细胞增殖和RT-PCR检测破骨细胞分化标志因子TRAP基因水平表达情况。结果破骨前体细胞5d诱导成功。PCR结果发现粪肠球菌LTA刺激后BTK和TRAP的mRNA表达量明显增高;免疫荧光可见LTA刺激后BTK在破骨细胞中的定位情况;300ng/mL rhBTK组可以促进破骨细胞增殖;PCR结果显示,加入rhBTK后,破骨细胞分化标志因子TRAP的mRNA水平升高。结论在粪肠球菌LTA作用的炎症环境下,BTK表达升高;增高BTK后,可以促进破骨细胞的增殖及分化。研究发现BTK参与了破骨细胞的炎症反应进程。  相似文献   

4.
5.
Osteoclasts are specialized cells that secrete lysosomal acid hydrolases at the site of bone resorption, a process critical for skeletal formation and remodeling. However, the cellular mechanism underlying this secretion and the organization of the endo-lysosomal system of osteoclasts have remained unclear. We report that osteoclasts differentiated in vitro from murine bone marrow macrophages contain two types of lysosomes. The major species is a secretory lysosome containing cathepsin K and tartrate-resistant acid phosphatase (TRAP), two hydrolases critical for bone resorption. These secretory lysosomes are shown to fuse with the plasma membrane, allowing the regulated release of acid hydrolases at the site of bone resorption. The other type of lysosome contains cathepsin D, but little cathepsin K or TRAP. Osteoclasts from Gnptab(-/-) (gene encoding GlcNAc-1-phosphotransferase α, β-subunits) mice, which lack a functional mannose 6-phosphate (Man-6-P) targeting pathway, show increased secretion of cathepsin K and TRAP and impaired secretory lysosome formation. However, cathepsin D targeting was intact, showing that osteoclasts have a Man-6-P-independent pathway for selected acid hydrolases.  相似文献   

6.
Osteoclasts are multinucleated cells specialized in degrading bone and characterized by high expression of the enzymes tartrate-resistant acid phosphatase (TRAP) and cathepsin K (CtsK). Recent studies show that osteoclasts exhibit phenotypic differences depending on their anatomical site of action.Using immunohistochemistry, RT-qPCR, FPLC chromatography and immunoblotting, we compared TRAP expression in calvaria and long bone. TRAP protein and enzyme activity levels were higher in long bones compared to calvaria. In addition, proteolytic processing of TRAP was more extensive in long bones than calvaria which correlated with higher cysteine proteinase activity and protein expression of CtsK. These two types of bones also exhibited a differential expression of monomeric TRAP and CtsK isoforms. Analysis of CtsK−/− mice revealed that CtsK is involved in proteolytic processing of TRAP in calvaria. Moreover, long bone osteoclasts exhibited higher expression of not only TRAP and CtsK but also of the membrane markers CD68 and CD163.The results suggest that long bone osteoclasts display an augmented osteoclastic phenotype with stronger expression of both membranous and secreted osteoclast proteins.  相似文献   

7.
Osteoclasts dissolve bone through acidification of an extracellular compartment by means of a multimeric vacuolar type H+-ATPase (V-ATPase). In mammals, there are four isoforms of the 100-kDa V-ATPase "a" subunit. Mutations in the a3 isoform result in deficient bone resorption and osteopetrosis, suggesting that a3 has a unique function in osteoclasts. It is thus surprising that several studies show a basal level of a3 expression in most tissues. To address this issue, we have compared a3 expression in bone with expression in other tissues. RNA blots revealed that the a3 isoform was expressed highest in bone and confirmed its expression (in decreasing order) in liver, kidney, brain, lung, spleen, and muscle. In situ hybridization on bone tissue sections revealed that the a3 isoform was highly expressed in multinucleated osteoclasts but not in mononuclear stromal cells, whereas the a1 isoform was expressed in both cell types at about the same level. We also found that a3 expression was greater in osteoclasts with 10 or more nuclei as compared with osteoclasts with five or fewer nuclei. We hypothesize that these differences in a3 expression may be associated with previously demonstrated differences between large and small osteoclasts with reference to their resorptive activity.  相似文献   

8.
9.
IL-4 is an important immune cytokine that regulates bone homeostasis. We investigated the molecular mechanism of IL-4 action on bone-resorbing mature osteoclasts. Using a highly purified population of mature osteoclasts, we show that IL-4 dose-dependently inhibits receptor activator of NF-kappaB ligand (RANKL)-induced bone resorption by mature osteoclasts. We detected the existence of IL-4R mRNA in mature osteoclasts. IL-4 decreases TRAP expression without affecting multinuclearity of osteoclasts, and inhibits actin ring formation and migration of osteoclasts. Interestingly, IL-4 inhibition of bone resorption occurs through prevention of RANKL-induced nuclear translocation of p65 NF-kappaB subunit, and intracellular Ca(2+) changes. Moreover, IL-4 rapidly decreases RANKL-stimulated ionized Ca(2+) levels in the blood, and mature osteoclasts in IL-4 knockout mice are sensitive to RANKL action to induce bone resorption and hypercalcemia. Furthermore, IL-4 inhibits bone resorption and actin ring formation by human mature osteoclasts. Thus, we reveal that IL-4 acts directly on mature osteoclasts and inhibits bone resorption by inhibiting NF-kappaB and Ca(2+) signaling.  相似文献   

10.
11.
12.
This study sought to test whether targeted overexpression of osteoactivin (OA) in cells of osteoclastic lineage, using the tartrate-resistant acid phosphase (TRAP) exon 1B/C promoter to drive OA expression, would increase bone resorption and bone loss in vivo. OA transgenic osteoclasts showed ~2-fold increases in OA mRNA and proteins compared wild-type (WT) osteoclasts. However, the OA expression in transgenic osteoblasts was not different. At 4, 8, and 15.3 week-old, transgenic mice showed significant bone loss determined by pQCT and confirmed by μ-CT. In vitro, transgenic osteoclasts were twice as large, had twice as much TRAP activity, resorbed twice as much bone matrix, and expressed twice as much osteoclastic genes (MMP9, calciton receptor, and ADAM12), as WT osteoclasts. The siRNA-mediated suppression of OA expression in RAW264.7-derived osteoclasts reduced cell size and osteoclastic gene expression. Bone histomorphometry revealed that transgenic mice had more osteoclasts and osteoclast surface. Plasma c-telopeptide (a resorption biomarker) measurements confirmed an increase in bone resorption in transgenic mice in vivo. In contrast, histomorphometric bone formation parameters and plasma levels of bone formation biomarkers (osteocalcin and pro-collagen type I N-terminal peptide) were not different between transgenic mice and WT littermates, indicating the lack of bone formation effects. In conclusion, this study provides compelling in vivo evidence that osteoclast-derived OA is a novel stimulator of osteoclast activity and bone resorption.  相似文献   

13.
Osteoclasts modulate bone resorption under physiological and pathological conditions. Previously, we showed that both estrogens and retinoids regulated osteoclastic bone resorption and postulated that such regulation was directly mediated through their cognate receptors expressed in mature osteoclasts. In this study, we searched for expression of other members of the nuclear hormone receptor superfamily in osteoclasts. Using the low stringency homologous hybridization method, we isolated the peroxisome proliferator-activated receptor delta/beta (PPARdelta/beta) cDNA from mature rabbit osteoclasts. Northern blot analysis showed that PPARdelta/beta mRNA was highly expressed in highly enriched rabbit osteoclasts. Carbaprostacyclin, a prostacyclin analogue known to be a ligand for PPARdelta/beta, significantly induced both bone-resorbing activities of isolated mature rabbit osteoclasts and mRNA expression of the cathepsin K, carbonic anhydrase type II, and tartrate-resistant acid phosphatase genes in these cells. Moreover, the carbaprostacyclin-induced bone resorption was completely blocked by an antisense phosphothiorate oligodeoxynucleotide of PPARdelta/beta but not by the sense phosphothiorate oligodeoxynucleotide of the same DNA sequence. Our results suggest that PPARdelta/beta may be involved in direct modulation of osteoclastic bone resorption.  相似文献   

14.
Enoxacin has been identified as a small molecule inhibitor of binding between the B2-subunit of vacuolar H+-ATPase (V-ATPase) and microfilaments. It inhibits bone resorption by calcitriol-stimulated mouse marrow cultures. We hypothesized that enoxacin acts directly and specifically on osteoclasts by disrupting the interaction between plasma membrane-directed V-ATPases, which contain the osteoclast-selective a3-subunit of V-ATPase, and microfilaments. Consistent with this hypothesis, enoxacin dose-dependently reduced the number of multinuclear cells expressing tartrate-resistant acid phosphatase (TRAP) activity produced by RANK-L-stimulated osteoclast precursors. Enoxacin (50 μM) did not induce apoptosis as measured by TUNEL and caspase-3 assays. V-ATPases containing the a3-subunit, but not the "housekeeping" a1-subunit, were isolated bound to actin. Treatment with enoxacin reduced the association of V-ATPase subunits with the detergent-insoluble cytoskeleton. Quantitative PCR revealed that enoxacin triggered significant reductions in several osteoclast-selective mRNAs, but levels of various osteoclast proteins were not reduced, as determined by quantitative immunoblots, even when their mRNA levels were reduced. Immunoblots demonstrated that proteolytic processing of TRAP5b and the cytoskeletal protein L-plastin was altered in cells treated with 50 μM enoxacin. Flow cytometry revealed that enoxacin treatment favored the expression of high levels of DC-STAMP on the surface of osteoclasts. Our data show that enoxacin directly inhibits osteoclast formation without affecting cell viability by a novel mechanism that involves changes in posttranslational processing and trafficking of several proteins with known roles in osteoclast function. We propose that these effects are downstream to blocking the binding interaction between a3-containing V-ATPases and microfilaments.  相似文献   

15.
Osteoclasts are large multinucleated cells responsible for bone resorption. Bone resorption is dependent on the liberation of calcium by acid and protease destruction of the bone matrix by proteinases. The key proteinase produced by the osteoclast is cathepsin K. Targeted knock-down of cathepsin K was performed using small inhibitory RNA (siRNA). siRNA is a method that introduces short double-stranded RNA molecules that instruct the RNA-induced silencing complex (RISC) to degrade mRNA species complementary to the siRNA. Transfection of siRNA by lipid cations allows for short-term inhibition of expression of the targeted gene. We show that transfection of primary human osteoclasts with siRNA to cathepsin K reduces expression by > or = 60% and significantly inhibits bone resorption with a reduction of both resorption pit numbers (P = 0.018) and resorbed area (P = 0.013). We also show that FuGENE 6 is an effective lipid transfection reagent with which to transfect primary human osteoclasts, that does not produce off-target effects.  相似文献   

16.
We report the effects of pulsed electromagnetic fields (PEMFs) on the responsiveness of osteoclasts to cellular, hormonal, and ionic signals. Osteoclasts isolated from neonatal rat long bones were dispersed onto either slices of devitalised cortical bone (for the measurement of resorptive activity) or glass coverslips (for the determination of the cytosolic free Ca2+ concentration, [Ca2+]). Osteoclasts were also cocultured on bone with osteoblastlike, UMR-106 cells. Bone resorption was quantitated by scanning electron microscopy and computer-assisted morphometry. PEMF application to osteoblast–osteoclast cocultures for 18 hr resulted in a twofold stimulation of bone resorption. In contrast, resorption by isolated osteoclasts remained unchanged in the presence of PEMFs, suggesting that osteoblasts were necessary for the PEMF-induced resorption simulation seen in osteoblast–osteoclast cocultures. Furthermore, the potent inhibitory action of the hormone calcitonin on bone resorption was unaffected by PEMF application. However, PEMFs completely reversed another quite distinct action of calcitonin on the osteoclast: its potent inhibitory effect on the activation of the divalent cation-sensing (or Ca2+) receptor. For these experiments, we made fura 2-based measurements of cytosolic [Ca2+] in single osteoclasts in response to the application of a known Ca2+ receptor agonist, Ni2+. We first confirmed that activation of the osteoclast Ca2+ receptor by Ni2+ (5 mM) resulted in a characteristic monophasic elevation of cytosolic [Ca2+]. As shown previously, this response was attenuated strongly by calcitonin at concentrations between 0.03 and 3 nM but remained intact in response to PEMFs. PEMF application, however, prevented the inhibitory effect of calcitonin on Ni2+-induced cytosolic Ca2+ elevation. This suggested that the fields disrupted the interaction between the calcitonin and Ca2+ receptor systems. In conclusion, we have shown that electromagnetic fields stimulate bone resorption through an action on the osteoblast and, by abolishing the inhibitory effects of calcitonin, also restore the responsiveness of osteoclasts to divalent cations. J. Cell. Physiol. 176:537–544, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
Protein sorting in eukaryotic cells is mainly done by specific targeting of polypeptides. The present evidence from oocytes, neurons, and some other polarized cells suggests that protein sorting can be further facilitated by concentrating mRNAs to their corresponding subcellular areas. However, very little is known about the mechanism(s) involved in mRNA targeting, or how widespread and dynamic such mRNA sorting might be. In this study, we have used an in vitro cell culture system, where large multinucleated osteoclasts undergo continuous structural and functional changes from polarized (resorbing) to a nonpolarized (resting) stage. We demonstrate here, using a nonradioactive in situ hybridization technique and confocal microscopy, that mRNAs for several vacuolar H(+)-ATPase subunits change their localization and polarity in osteoclasts according to the resorption cycle, whereas mRNA for cytoplasmic carbonic anhydrase II is found diffusely located throughout the osteoclast during the whole resorption cycle. Antisense RNA against the 16-kDa or 60-kDa V-ATPase subunit inhibits polarization of the osteoclasts, as determined by cytoskeleton staining. Antisense RNA against carbonic anhydrase II, however, has no such effect.  相似文献   

18.
Osteoclasts are the only bone-resorbing cells. In addition to other specific properties, osteoclasts are characterized by their expression of tartrate-resistant acidic phosphatase (TRAP), which is usually detected using a histochemical method for light microscopy. Using ELF97 phosphatase substrate, this study describes a new fluorescence-based method for TRAP detection. The fluorescence-based ELF97 TRAP stain not only results in a better resolution of the TRAP-positive granules, because confocal microscopy can be applied for image acquisition and analysis, but it reveals additional and more specific information about osteoclasts because it can be combined with other fluorescence-based methods.  相似文献   

19.
Osteoclasts are large, multinucleated cells responsible for the resorption of mineralized bone matrix. These cells are critical players in the bone turnover involved in bone homeostasis. Osteoclast activity is connected to the establishment and expansion of skeletal metastases from a number of primary neoplasms. Thus, the formation and activation of osteoclasts is an area of research with many potential avenues for clinical translation. Past studies of osteoclast biology have utilized primary murine cells cultured in vitro. Recently, techniques have been described that involve the generation of osteoclasts from human precursor cells. However, these protocols are often time-consuming and insufficient for generating large numbers of osteoclasts. We therefore developed a simplified protocol by which human osteoclasts may be easily and reliably generated in large numbers in vitro. In this study, osteoclasts were differentiated from bone marrow cells that had been aliquotted and frozen. Cells were generated by culture with recombinant macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL). Both human and murine RANKL were shown to efficiently generate osteoclasts, although higher concentrations of murine RANKL were required. Formation of osteoclasts was demonstrated qualitatively by tartrate-resistant acid phosphatase (TRAP) staining. These cells were fully functional, as confirmed by their ability to form resorption pits on cortical bone slices. Functional human osteoclasts can be difficult to generate in vitro by current protocols. We have demonstrated a simplified system for the generation of human osteoclasts in vitro that allows for large numbers of osteoclasts to be obtained from a single donor.  相似文献   

20.
Osteoclasts are unique cells that resorb bone, and are involved in not only bone remodeling but also pathological bone loss such as osteoporosis and rheumatoid arthritis. The regulation of osteoclasts is based on a number of molecules but full details of these molecules have not yet been understood. MicroRNAs are produced by Dicer cleavage an emerging regulatory system for cell and tissue function. Here, we examine the effects of Dicer deficiency in osteoclasts on osteoclastic activity and bone mass in vivo. We specifically knocked out Dicer in osteoclasts by crossing Dicer flox mice with cathepsin K‐Cre knock‐in mice. Dicer deficiency in osteoclasts decreased the number of osteoclasts (N.Oc/BS) and osteoclast surface (Oc.S/BS) in vivo. Intrinsically, Dicer deficiency in osteoclasts suppressed the levels of TRAP positive multinucleated cell development in culture and also reduced NFATc1 and TRAP gene expression. MicroRNA analysis indicated that expression of miR‐155 was suppressed by RANKL treatment in Dicer deficient cells. Dicer deficiency in osteoclasts suppressed osteoblastic activity in vivo including mineral apposition rate (MAR) and bone formation rate (BFR) and also suppressed expression of genes encoding type I collagen, osteocalcin, Runx2, and Efnb2 in vivo. Dicer deficiency in osteoclasts increased the levels of bone mass indicating that the Dicer deficiency‐induced osteoclastic suppression was dominant over Dicer deficiency‐induced osteoblastic suppression. On the other hand, conditional Dicer deletion in osteoblasts by using 2.3 kb type I collagen‐Cre did not affect bone mass. These results indicate that Dicer in osteoclasts controls activity of bone resorption in vivo. J. Cell. Biochem. 109: 866–875, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号