首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract

Probucol, a clinically used cholesterol lowering and antioxidant drug, was investigated for possible protection against lipid peroxidation and DNA damage induced by iron nitrilotriacetate (Fe-NTA) plus hydrogen peroxide (H2O2). Fe-NTA is a potent nephrotoxic agent and induces acute and subacute renal proximal tubular necrosis by catalyzing the decomposition of H2O2-derived production of hydroxyl radicals, which are known to cause lipid peroxidation and DNA damage. Fe-NTA is associated with a high incidence of renal adenocarcinoma in rodents. Lipid peroxidation and DNA damage are the principal manifestation of Fe-NTA induced toxicity, which could be mitigated by probucol. Incubation of renal microsomal membrane and/or calf thymus DNA with H2O2 (40 mM) in the presence of Fe-NTA (0.1 mM) induces renal microsomal lipid peroxidation and DNA damage to about 2.4-fold and 5.9-fold, respectively, as compared to control (P < 0.05). Induction of renal microsomal lipid peroxidation and DNA damage was inhibited by probucol in a concentration-dependent manner. In lipid peroxidation protection studies, probucol treatment showed a concentration-dependent inhibition (10–34% inhibition; P <0.05) of Fe-NTA plus H2O2-induced lipid peroxidation as measured by thiobarbituric acid reacting species' (TBARS) formation in renal microsomes. Similarly, in DNA damage protection studies, probucol treatment also showed a concentration-dependent strong inhibition (36–71% inhibition; P < 0.05) of DNA damage. From these studies, it was concluded that probucol inhibits peroxidation of microsomal membrane lipids and DNA damage induced by Fe-NTA plus H2O2. However, because the lipid peroxidation and DNA damage studied here are regarded as early markers of carcinogenesis, we suggest that probucol may be developed as a cancer chemopreventive agent against renal carcinogenesis and other adverse effects of Fe-NTA exposure in experimental animals, in addition to being a cholesterol-lowering drug, useful for the control of hypercholestrolemia.  相似文献   

2.
Probucol, a clinically used cholesterol lowering and antioxidant drug, was investigated for possible protection against lipid peroxidation and DNA damage induced by iron nitrilotriacetate (Fe-NTA) plus hydrogen peroxide (H2O2). Fe-NTA is a potent nephrotoxic agent and induces acute and subacute renal proximal tubular necrosis by catalyzing the decomposition of H2O2-derived production of hydroxyl radicals, which are known to cause lipid peroxidation and DNA damage. Fe-NTA is associated with a high incidence of renal adenocarcinoma in rodents. Lipid peroxidation and DNA damage are the principal manifestation of Fe-NTA induced toxicity, which could be mitigated by probucol. Incubation of renal microsomal membrane and/or calf thymus DNA with H2O2 (40 mM) in the presence of Fe-NTA (0.1 mM) induces renal microsomal lipid peroxidation and DNA damage to about 2.4-fold and 5.9-fold, respectively, as compared to control (P < 0.05). Induction of renal microsomal lipid peroxidation and DNA damage was inhibited by probucol in a concentration-dependent manner. In lipid peroxidation protection studies, probucol treatment showed a concentration-dependent inhibition (10-34% inhibition; P < 0.05) of Fe-NTA plus H2O2-induced lipid peroxidation as measured by thiobarbituric acid reacting species' (TBARS) formation in renal microsomes. Similarly, in DNA damage protection studies, probucol treatment also showed a concentration-dependent strong inhibition (36-71% inhibition; P < 0.05) of DNA damage. From these studies, it was concluded that probucol inhibits peroxidation of microsomal membrane lipids and DNA damage induced by Fe-NTA plus H2O2. However, because the lipid peroxidation and DNA damage studied here are regarded as early markers of carcinogenesis, we suggest that probucol may be developed as a cancer chemopreventive agent against renal carcinogenesis and other adverse effects of Fe-NTA exposure in experimental animals, in addition to being a cholesterol-lowering drug, useful for the control of hypercholestrolemia.  相似文献   

3.
Ferric nitrilotriacetate (Fe-NTA) is a well-established renal carcinogen. Here, we have shown that Pluchea lanceolata (PL) belonging to the family Asteraceae. PL attenuates Fe-NTA induced renal oxidative stress, hyperproliferative response and renal carcinogenesis in rats. It promoted DEN (N-diethyl nitrosamine) initiated renal carcinogenesis by increasing the percentage incidence of tumors and induces early tumor markers viz. ornithine decarboxylase (ODC) and renal DNA synthesis. Fe-NTA (9 mg Fe/kg body weight, intraperitoneally) also enhances renal lipid peroxidation (LPO), xanthine oxidase (XO) and hydrogen peroxide (H2O2) generation with reduction in renal glutathione content (GSH), antioxidant enzymes, viz., glutathione peroxidase (GPx), glutathione reductase (GR), catalase (CAT), glucose-6-phosphate dehydrogenase and phase-II metabolizing enzymes such as glutathione-S-transferase and quinone reductase (QR). It also enhances blood urea nitrogen (BUN) and serum creatinine. Oral treatment of rats with PL extract (100 and 200 mg/kg body weight) resulted in significant decrease in lipid peroxidation (LPO), xanthine oxidase (XO), H2O2 generation, blood urea nitrogen (BUN), serum creatinine, renal ODC activity, DNA synthesis (p < 0.001) and incidence of tumors. Renal glutathione content (p < 0.01), its metabolizing enzymes (p < 0.001) and antioxidant enzymes were also recovered to significant level (p < 0.001). Thus, present study supports PL as a potent chemopreventive agent and suppresses Fe-NTA-induced renal carcinogenesis and oxidative damage response in Wistar rat.  相似文献   

4.
Oxidative stress mediates the cell damage in several ailments including neurodegenerative conditions. Ocimum sanctum is widely used in Indian ayurvedic medications to cure various ailments. The present study was carried out to investigate the antioxidant activity and neuroprotective effects of hydroalcoholic extract of O. sanctum (OSE) on hydrogen peroxide (H2O2)-induced oxidative challenge in SH-SY5Y human neuronal cells. The extract exhibited strong antioxidant activity against DPPH, 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) radical and hydroxyl radicals with IC50 values of 395 ± 16.2, 241 ± 11.5 and 188.6 ± 12.2 μg/ml respectively, which could be due to high amount of polyphenols and flavonoids. The observed data demonstrates 41.5 % cell survival with 100 μM H2O2 challenge for 24 h, which was restored to 73 % by pre-treatment with OSE for 2 h. It also decreased the lactate dehydrogenase leakage and preserved the cellular morphology. Similarly OSE inhibited lipid peroxidation, DNA damage, reactive oxygen species generation and depolarization of mitochondrial membrane. The extract restored superoxide dismutase and catalase enzyme/protein levels and further downregulated HSP-70 over-expression. These findings suggest that OSE ameliorates H2O2 induced neuronal damage via its antioxidant defence mechanism and might be used to treat oxidative stress mediated neuronal disorders.  相似文献   

5.
Summary

Glutathione (GSH) plays several important roles in the protection of cells against oxidative damage, particularly following exposure to xenobiotics. Ferric nitrilotriacetate (Fe-NTA) is a potent depletor of GSH and also enhances tissue lipid peroxidation. In this study, we show the effect of Fe-NTA treatment on hepatic GSH and some of the glutathione metabolizing enzymes, oxidant generation and liver damage. The level of hepatic GSH and the activities of glutathione reductase, glutathione S-transferase, glutathione peroxidase, and glucose 6-phosphate dehydrogenase all decrease following Fe-NTA administration. In these parameters the maximum decrease occurred at 12 h following Fe-NTA treatment. In contrast, γ-glutamyl transpeptidase was increased at this time. Not surprisingly, the increase in the activity of γ-glutamyl transpeptidase and decreases in GSH, glutathione peroxidase, glutathione reductase, glucose 6-phosphate dehydrogenase and glutathione S-transferase were found to be dependent on the dose of Fe-NTA administered. Fe-NTA administration also enhances the production of H2O2 and increases hepatic lipid peroxidation. Parallel to these changes, Fe-NTA enhances liver damage as evidenced by increases in serum transaminases. Once again, the liver damage is dependent on the dose of Fe-NTA and is maximal at 12 h. Pretreatment of animals with antioxidant, butylated hydroxy anisole (BHA), protects against Fe-NTA-mediated hepatotoxicity further supporting the involvement of oxidative stress in Fe-NTA-mediated hepatic damage. In aggregate, our results indicate that Fe-NTA administration eventuates in decreased hepatic GSH, a fall in the activities of glutathione metabolizing enzymes and excessive production of oxidants, all of which are involved in the cascade of events leading to iron-mediated hepatic injury.  相似文献   

6.
Ionic liquids (ILs) are generally considered as the green replacement for conventional volatile organic solvents. Nonetheless, their high solubility in water with proven toxic effects on aquatic biota has questioned their green credentials. In the present study, the detoxification potential of Acadian marine plant extract powder (AMPEP) prepared from the brown alga Ascophyllum nodosum was investigated against the 1-alkyl-3-methylimidazolium bromide [C12mim]Br ionic liquid-induced toxicity and oxidative stress in marine macroalga Ulva lactuca. The IL ([C12mim]Br) at LC50 (70 μM) exposure triggered the generation of reactive oxygen species (ROS) such as O 2 ·? , H2O2 and OH· causing membrane and DNA damage together with inhibition of antioxidant systems in the alga. The supplementation of AMPEP (150 μg mL?1) to the culture medium significantly reduced the accumulation of ROS and lipid peroxidation together with the inhibition of lipoxygenase (LOX) activity specially LOX-2 and LOX-3 isoforms. This is for the first time wherein comet assay was performed to ascertain the protective role of AMPEP against DNA damage in algal tissue grown in medium supplemented with IL and AMPEP. The AMPEP showed protective role against DNA damage (5–45 % tail DNA) when compared to those of grown in IL alone (45–70 % tail DNA). Further, specific isomorphs of different antioxidant enzymes such as superoxide dismutase (Mn-SOD-1, ~150 kDa), ascorbate peroxidase (APX-4, ~55 kDa), glutathione peroxidase (GSH-Px-2, ~55 kDa) and glutathione reductase (GR-1, ~180 kDa) responded specifically to AMPEP supplementation. It is evident from these findings that AMPEP could possibly be used for circumventing the negative effects arising from ILs-induced toxicity in marine ecosystem.  相似文献   

7.
It has been widely suggested that selenium (Se) deficiency play an important role in the pathophysiology of epilepsy. It has been reported that Se provides protection against the neuronal damage in patients and animals with epilepsy by restoring the antioxidant defense mechanism. The neuroprotective effects of topiramate (TPM) have been reported in several studies but the putative mechanism of action remains elusive. We investigated effects of Se and TPM in neuronal PC12 cell by evaluating Ca2+ mobilization, lipid peroxidation and antioxidant levels. PC12 cells were divided into eight groups namely control, TPM, Se, H2O2, TPM + H2O2, Se + H2O2, Se + TPM and Se + TPM + H2O2. The toxic doses and times of H2O2, TPM and Se were determined by cell viability assay which is used to evaluate cell viability. Cells were incubated with 0.01 mM TPM for 5 h and 500 nM Se for 10 h. Then, the cells were exposed to 0.1 mM H2O2 for 10 h before analysis. The cells in all groups except control, TPM and Se were exposed to H2O2 for 15 min before analysis. Cytosolic Ca2+ release and lipid peroxidation levels were higher in H2O2 group than in control, Se and TPM combination groups although their levels were decreased by incubation of Se and TPM combination. However, there is no difference on Ca2+ release in TPM group. Glutathione peroxidase activity, reduced glutathione and vitamin C levels in the cells were lower in H2O2 group than in control, Se and TPM groups although their values were higher in the cells incubated with Se and TPM groups than in H2O2 groups. In conclusion, these results indicate that Se induced protective effects on oxidative stress in PC12 cells by modulating cytosolic Ca2+ influx and antioxidant levels. TPM modulated also lipid peroxidation and glutathione and vitamin C concentrations in the cell system.  相似文献   

8.
In this study, the neuroprotective effect of Scrophularia striata Boiss (Scrophulariaceae) extract, a plant growing in northeastern of Iran, against oxidative stress-induced neurocytotoxicity in PC12 was evaluated. The PC12 cell line pretreated with different concentrations (10, 50, 100, and 200 μg/ml) of the extract and then treated with H2O2 to induce oxidative stress and neurotoxicity. Survival of the cells, reactive oxygen species (ROS) generation, and apoptosis were measured using MTT assay, fluorescent probe 2′,7′-dichlorofluorescein diacetate, and annexin V/propidium iodide, respectively. Moreover, the 2,2-diphenyl-1-picryl-hydrazyl (DPPH) was used to evaluate the antioxidant capacity of the plant extract. Phytochemical assay by thin layer chromatography showed that the main components, including phenolic compounds, phenyl propanoids and flavonoids, were presented in the S. striata extract. The extract in concentrations of 50–200 μg/ml protected PC12 cells from H2O2-induced toxicity. The survival of the cells at concentration of 200 μg/ml was 64 % compared to that of H2O2 alone-treated cells (48 %) (p < 0.001). The extract also dose-dependently reduced intracellular ROS production (p < 0.001). Moreover, the extract showed antioxidative effects and decreased apoptotic cells. Collectively, these findings indicated the ability of S. striata to decrease ROS generation and cell apoptosis and also suggest the presence of the neuroprotective agents in this plant.  相似文献   

9.
Sphaerophysa kotschyana is a Turkish endemic and endangered plant that grows near Salt Lake, in Konya, Turkey. However, little is known about the ability of this plant to generate/remove reactive oxygen species (ROS) or its adaptive biochemical responses to saline environments. After exposure of S. kotschyana to 0, 150, and 300 mM NaCl for 7 and 14 days, we investigated (1) the activities and isozyme compositions of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), ascorbate peroxidase (APX), and glutathione reductase (GR); (2) the oxidative stress parameters NADPH oxidase (NOX) activity, lipid peroxidation (MDA), total ascorbate (tAsA) content, and total glutathione content (tGlut); and (3) ROS levels for superoxide anion radical (O 2 ·? ), hydrogen peroxide (H2O2), hydroxyl radicals (OH·), and histochemical staining of O 2 ·? and H2O2. H2O2 content increased after 14 days of salt stress, which was consistent with the results from histochemical staining and NOX activity measurements. In contrast, oxidative stress induced by 150 mM NaCl was more efficiently prevented, as indicated by low malondialdehyde (MDA) levels and especially at 7 days, by increased levels of SOD, POX, APX, and GR. However, at 300 mM NaCl, decreased levels of protective enzymes such as SOD, CAT, POX, and GR, particularly with long-term stress (14 days), resulted in limited ROS scavenging activity and increased MDA levels. Moreover, at 300 mM NaCl, the high H2O2 content caused oxidative damage rather than inducing protective responses against H2O2. These results suggest that S. kotschyana is potentially tolerant to salt-induced damage only at low salt concentrations.  相似文献   

10.
Storage of recalcitrant seeds leads to the initiation of subcellular damage or to the initiation of germination process, and both may result in viability loss. This study aimed to elucidate the biochemical basis of embryos survival of Araucaria angustifolia recalcitrant seeds during storage. After harvesting, seeds were stored at ambient conditions (without temperature and humidity control) and in a cold chamber (temperature of 10 ± 3 °C, and relative humidity of 45 ± 5 %). Moisture content, viability, H2O2 content, lipid peroxidation, protein content, and activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX), at 0, 15, 45 and 90 days of storage, were evaluated. Seed viability reduced about 40 % during the storage period accompanied by a reduction in soluble protein (about 64 % of reduction) in both storage conditions, and increased lipid peroxidation (about 115 % and 66 % for ambient and cold chamber conditions, respectively). H2O2 content used as a marker of oxidative stress was reduced during the period, possibly controlled by the action of CAT and APX, for which increased activities were observed. The results allowed the identification of seven SOD isoenzymes (one Mn-SOD, five Fe-SOD and one Cu/Zn-SOD), whose activities also increased in response to storage. Some biochemical damage resulting from storage was observed, but viability reduction was not due to failure of enzymatic protection mechanisms.  相似文献   

11.
Hydroxyl radical (·OH) generation in the kidney of mice treated with ferric nitrilotriacetate (Fe-NTA) or potassium bromate (KBrO3) in vivo was estimated by the salicylate hydroxylation method, using the optimal experimental conditions we recently reported. Induction of DNA lesions and lipid peroxidation in the kidney by these nephrotoxic compounds was also examined. The salicylate hydroxylation method revealed significant increases in the ·OH generation after injection of Fe-NTA or KBrO3 in the kidneys. A significant increase in 8-hydroxy-2′-deoxyguanosine in nuclei of the kidney was detected only in the KBrO3 treated mice, while the comet assay showed that the Fe-NTA and KBrO3 treatments both resulted in significant increases in DNA breakage in the kidney. With respect to lipid peroxidation, the Fe-NTA treatment enhanced lipid peroxidation and ESR signals of the alkylperoxy radical adduct. These DNA breaks and lipid peroxidation mediated by ·OH were diminished by pre-treatment with salicylate in vivo. These results clearly demonstrated the usefulness of the salicylate hydroxylation method as well as the comet assay in estimating the involvement of ·OH generation in cellular injury induced by chemicals in vivo.  相似文献   

12.
A Total Oligomers Flavonoids (TOFs) and ethyl acetate extracts of Cyperus rotundus were analyzed, in vitro, for their antioxidant activity using several biochemical assays: the xanthine (X)/xanthine oxidase (XO), the lipid peroxidation induced by H2O2 in K562 human chronic myelogenous leukemia cells and the DNA damage in pKS plasmid DNA assay induced by H2O2/UV-photolysis and for their apoptotic effect. TOF and ethyl acetate extracts were found to be efficient in inhibiting xanthine oxidase with IC50 values of 240 and 185 μg/ml and superoxide anion with IC50 values of 150 and 215 μg/ml, respectively. Also, all the extracts tested were effective in reducing the production of thiobarbituric acid reactive substances (TBARS) and were able to protect against H2O2/UV-photolysis induced DNA damage. The highest activity, measured as equivalents of MDA concentration, was observed in the ethyl acetate extract (MDA = 2.04 nM). In addition, the data suggest that only TOF enriched extract exerts growth inhibition on K562 cells through apoptosis induction. Therefore, these extracts were subjected to further separation by chromatographic methods. Thus, three major compounds (catechin, afzelechin and galloyl quinic acid) were isolated from the TOF enriched extract and five major compounds (luteolin, ferulic acid, quercetin, 3-hydroxy, 4-methoxy-benzoic acid and 6,7-dimethoxycoumarin) from ethyl acetate extract. Their structures were determined by spectroscopic data analysis and comparison with the literature. In addition, we evaluate the biological activities of the catechin, ferulic acid and luteolin. This investigation has revealed that the luteolin was the most active in reducing the production of TBARS (MDA = 1.5 nM), inhibiting significantly the proliferation of K562 cells (IC50 = 25 μg/ml) and protecting against H2O2/UV-photolysis induced DNA damage. In conclusion, the study reveals that the ability of C. rotundus to inhibit the enzyme xanthine oxidase (XO), the lipid peroxidation and to exert apoptotic effect, may explain possible mechanisms by which C. rotundus exhibits its health benefits.  相似文献   

13.
14.
Terminalia arjuna (Ta) bark contains various natural antioxidants and has been used to protect animal cells against oxidative stress. In the present study, we have examined alleviating effects of Ta bark aqueous extract against Ni toxicity in rice (Oryza sativa L.). When rice seedlings were raised for 8 days in hydroponics in Yoshida nutrient medium containing 200 μM NiSO4, a decline in height, reduced biomass, increased Ni uptake, loss of root plasma membrane integrity, increase in the level of O2˙?, H2O2 and ˙OH, increased lipid peroxidation, decline in photosynthetic pigments, increase in the level of antioxidative enzymes superoxide dismutase, catalase and glutathione peroxidase and alterations in their isoenzyme profile patterns were observed. Transmission electron microscopy (TEM) showed damage to chloroplasts marked by disorganised enlarged starch granules and disrupted thylakoids under Ni toxicity. Exogenously adding Ta bark extract (3.2 mg ml?1) to the growth medium considerably alleviated Ni toxicity in the seedlings by reducing Ni uptake, suppressing generation of reactive oxygen species, reducing lipid peroxidation, restoring level of photosynthesis pigments and ultrastructure of chloroplasts, and restoring levels of antioxidative enzymes. Results suggest that Ta bark extract considerably alleviates Ni toxicity in rice seedlings by preventing Ni uptake and reducing oxidative stress in the seedlings.  相似文献   

15.
The ability for rhizobacteria and fungus to act as bioprotectants via induced systemic resistance has been demonstrated, and considerable progress has been made in elucidating the mechanisms of plant–biocontrol agent–pathogen interactions. Pseudomonas aeruginosa PJHU15, Trichoderma harzianum TNHU27, and Bacillus subtilis BHHU100 from rhizospheric soils were used singly and in consortium and assessed on the basis of their ability to provide disease protection by relating changes in ascorbic acid and hydrogen peroxide (H2O2) production, lipid peroxidation, and antioxidant enzymes in pea under the challenge of Sclerotinia sclerotiorum. Increased production of H2O2 24 h after pathogen challenge was observed and was 254.4 and 231.7–287.7 % higher in the triple consortium and singly treated plants, respectively, when compared to untreated challenged control plants. A similar increase in ascorbic acid content and ascorbate peroxidase activity was observed 24 and 48 h after pathogen challenge, respectively, whereas increased activities of catalase, guaiacol peroxidase, and glutathione peroxidase were observed 72 h after pathogen challenge. Similarly, lipid peroxidation reached a maximum at 72 h of pathogen challenge and was 61.2 and 11.2–32.1 % less in the triple consortium and singly treated plants, respectively, when compared to untreated challenged control plants. These findings suggest that the interaction of microorganisms in the rhizosphere enhanced protection from oxidative stress generated by pathogen attack through induction of antioxidant enzymes and improved reactive oxygen species management.  相似文献   

16.
Lactic acid bacteria are generally sensitive to hydrogen peroxide (H2O2). Lactobacillus plantarum ATCC14431 is one of the few lactic acid bacteria able to degrade H2O2 through the action of a manganese-dependent catalase (containing the katA gene). However, it is not a natural inhabitant of the intestinal tract and its bio-efficacy and survival in the gastrointestinal tract have never been tested. In this study, we successfully expressed the katA gene from L. plantarum ATCC14431 in L. fermentum I5007 and the recombinant L. fermentum exhibited almost 20-fold higher catalase activity than the empty vector control. The anti-oxidative properties of this catalase-producing L. fermentum were evaluated using a dextran sodium sulphate (DSS) induced colitis mice model. Compared with the control, mice receiving DSS alone had increased diarrhea and mucosa histological scores (P < 0.05), as well as lipid peroxidation (P < 0.05), myeloperoxidase (P < 0.05), and active NF-κB in colonic tissue (P < 0.05). Similar to vitamin E, treatment with recombinant L. fermentum mitigate these effects accompanied by a improvement in mucosa histological scores in the proximal colon (P < 0.05) and decreased lipid peroxidation (P < 0.05), myeloperoxidase (P < 0.05) and active NF-κB in colonic tissue (P < 0.05). In conclusion, the expression of catalase in L. fermentum increased its ability to survive when exposed to aerated environment in vitro and conferred the anti-oxidative and anti-inflammatory effects in the DSS induced colitis model.  相似文献   

17.
The hepatoprotective effect of onion and garlic extracts on cadmium (Cd)-induced oxidative damage in rats is reported. Control group received double-distilled water alone. Cd group was challenged with 3CdSO4·8H2O (as Cd; 1.5 mg/kg bw per day per oral) alone, while extract-treated groups were pretreated with varied doses of onion and/or garlic extract (0.5 and 1.0 ml/100 g bw per day per oral) for a week and thereafter co-treated with Cd (1.5 mg/kg bw per day per oral) for 3 weeks. Cd caused a marked (p?<?0.001) increase in the levels of lipid peroxidation and glutathione S-transferase, whereas glutathione, superoxide dismutase, and catalase levels were decreased in the liver. We also observed a decrease in hepatic activities of alanine transaminase (ALT), aspartate transaminase (AST), and alkaline phosphatase and a concomitant increase in the plasma activities of ALT and AST. Onion and garlic extracts significantly attenuated these adverse effects of Cd. Onion extract proffered a dose-dependent hepatoprotection. Our study showed that Cd-induced oxidative damage in rat liver is amenable to attenuation by high dose of onion and moderate dose of garlic extracts possibly via reduced lipid peroxidation and enhanced antioxidant defense system that is insufficient to prevent and protect Cd-induced hepatotoxicity.  相似文献   

18.
Oxidative stress caused by mercury (Hg) was investigated in Pfaffia glomerata plantlets grown in nutrient solution using sand as substrate. Thirty-day-old acclimated plants were treated for 9 days with four Hg levels (0, 1, 25 and 50 μM) in the substrate. Parameters such as growth, tissue Hg concentration, toxicity indicators (δ-aminolevulinic acid dehidratase, δ-ALA-D, activity), oxidative damage markers (TBARS, lipid peroxidation, and H2O2 concentration) and enzymatic (superoxide dismutase, SOD, catalase, CAT, and ascorbate peroxidase, APX) and non-enzymatic (non-protein thiols, NPSH, ascorbic acid, AsA, and proline concentration) antioxidants were investigated. Tissue Hg concentration increased with Hg levels. Root and shoot fresh weight and δ-ALA-D activity were significantly decreased at 50 μM Hg, and chlorophyll and carotenoid concentration were not affected. Shoot H2O2 concentration increased curvilinearly with Hg levels, whereas lipid peroxidation increased at 25 and 50 μM Hg, respectively, in roots and shoots. SOD activity showed a straight correlation with H2O2 concentration, whereas CAT activity increased only in shoots at 1 and 50 μM Hg. Shoot APX activity was either decreased at 1 μM Hg or increased at 50 μM Hg. Conversely, root APX activity was only increased at 1 μM Hg. In general, AsA, NPSH and proline concentrations increased upon addition of Hg, with the exception of proline in roots, which decreased. These changes in enzymatic and non-enzymatic antioxidants had a significant protective effect on P. glomerata plantlets under mild Hg-stressed conditions.  相似文献   

19.
The present study was carried out to investigate the antioxidant and neuroprotective effects of Hyptis suaveolens methanol extract (HSME) using various in vitro systems. The total phenol and flavonoids contents of the HSME were quantified by colorimetric methods. The HSME extract exhibited potent antioxidant activity as determined by 2,20-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, 2,2-diphenyl-1-picrylhydrazyl, and ferric reducing antioxidant power assays. The neuroprotective activity of HSME was determined on mouse N2A neuroblastoma cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, lactate dehydrogenase, intracellular ROS assays, and upregulation of brain neuronal markers at genetic level. The N2A cells were pretreated with different concentrations (0.5, 1, 1.5, and 2 mg/ml) of the extract and then exposed to H2O2 to induce oxidative stress and neurotoxicity. The survival of the cells treated with different concentrations of HSME and H2O2 increased as compared to cells exposed only to H2O2 (47.3 %) (p < 0.05). The HSME also dose-dependently reduced LDH leakage and intracellular ROS production (p < 0.05). Pretreatment with HSME promotes the upregulation of tyrosine hydroxylase (2.41-fold, p < 0.05), and brain-derived neurotrophic factor genes (2.15-fold, p < 0.05) against H2O2-induced cytotoxicity in N2A cells. Moreover, the HSME showed antioxidant activity and decreased neurotoxicity. These observations suggest that HSME have marked antioxidant and neuroprotective activities.  相似文献   

20.
The effects of increasing arsenic (0, 10, 50, 100 mg L?1) and zinc (0, 50, 80, 120, 200 mg L?1) doses on germination and oxidative stress markers (H2O2, MDA, SOD, CAT, APX, and GR) were examined in two Brazilian savanna tree species (Anadenanthera peregrina and Myracrodruon urundeuva) commonly used to remediate contaminated soils. The deleterious effects of As and Zn on seed germination were due to As- and Zn-induced H2O2 accumulation and inhibition of APX and GR activities, which lead to oxidative damage by lipid peroxidation. SOD and CAT did not show any As- and Zn-induced inhibition of their activities as was seen with APX and GR. We investigated the close relationships between seed germination success under As and Zn stress in terms of GR and, especially, APX activities. Increased germination of A. peregrina seeds exposed to 50 mg L?1 of Zn was related to increased APX activity, and germination in the presence of As (10 mg L?1) was observed only in M. urundeuva seeds that demonstrated increased APX activity. All the treatments for both species in which germination decreased or was inhibited showed decreases in APX activity. A. peregrina seeds showed higher Zn-tolerance than M. urundeuva, while the reverse was observed with arsenic up to exposures of 10 mg L?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号