首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
This study was performed to determine whether fatty acids incorporated into liver cell nuclei phosphatidylcholine (PtdCho) could be remodeled in the isolated nuclear. For this reason, rat liver cell nuclei were incubated in vitro with [1-14C]20:4n-6-CoA. PtdCho molecular species with the highest specific activity had an unsaturated fatty acid at sn-1 and sn-2 positions (20:4-20:4>18:2-20:4>18:1-20:4). 16:0-20:4 and 18:0-20:4 PtdChos showed a minor specific activity. When labeled nuclei were reincubated in the absence of labeled substrate with the addition of cytosol, ATP and CoA, the specific activity of 20:4-20:4, 18:2-20:4 and 18:1-20:4 species decreased, while that of 16:0-20:4 and 18:0-20:4 increased. In conclusion, the asymmetric fatty acid distribution of saturated fatty acids at sn-1 position, and unsaturated fatty acids at sn-2 position of nuclear PtdCho molecular species was re-established by an acyl-CoA-dependent remodeling process.  相似文献   

2.
Plasmenyl phospholipids (1-alk-1′-enyl-2-acyl-3-glycerophospholipids, plasmalogens) are a structurally unique class of lipids that contain an α-unsaturated ether substituent at the sn-1 position of the glycerol backbone. Several studies have supported the hypothesis that plasmalogens may be antioxidant molecules that protect cells from oxidative stress. Because the molecular mechanisms responsible for the antioxidant properties of plasmenyl phospholipids are not fully understood, the oxidation of plasmalogens in natural mixtures of phospholipids was studied using electrospray tandem mass spectrometry. Glycerophosphoethanolamine (GPE) lipids from bovine brain were found to contain six major molecular species (16:0p/18:1-, 18:1p/18:1-, 18:0p/20:4-, 16:0p/20:4, 18:0a/20:4-, and 18:0a/22:6-GPE). Oxidation of GPE yielded lyso phospholipid products derived from plasmalogen species containing only monounsaturated sn-2 substituents and diacyl-GPE with oxidized polyunsaturated fatty acyl substituents at sn-2. The only plasmalogen species remaining intact following oxidation contained monounsaturated fatty acyl groups esterified at sn-2. The mechanism responsible for the rapid and specific destruction of plasmalogen GPE may likely involve unique reactivity imparted by a polyunsaturated fatty acyl group esterified at sn-2. This structural feature may play a central role determining the antioxidant properties ascribed to this class of phospholipids.  相似文献   

3.
Phosphatidylglycerol (PG) in thylakoid membrane is essential for growth and photosynthesis of photosynthetic organisms. Although the sn-2 position of PG in thylakoid membrane is exclusively esterified with C16 fatty acids, the functional importance of the C16 fatty-acyl chains at the sn-2 position has not been clarified. In this study, we chemically synthesized non-metabolizable PG molecules: we introduced linoleic acid (18:2, fatty acid containing 18 carbons with 2 double bonds) and one of the saturated fatty acids with different chain length (12:0, 14:0, 16:0, 18:0 and 20:0) by ether linkage to the sn-1 and sn-2 positions, respectively. With the synthesized ether-linked PG molecules, we checked whether they could complement the growth and photosynthesis of pgsA mutant cells of Synechocystis sp. PCC 6803 to understand the importance of length of fatty chains at the sn-2 position of PG. The pgsA mutant is incapable of synthesizing PG, so it requires exogenous PG added to medium for growth. The growth rate and photosynthetic activity of mutant cells depended on the length of fatty chains: the PG molecular species binding 16:0 most effectively complemented the growth and photosynthesis of mutant cells, and other PG molecular species with fatty chains shorter or longer than 16:0 were less effective; especially, those binding 12:0 inhibited the growth and photosynthetic activity of the mutant cells. These data demonstrate that length of fatty chains bound to the sn-2 position of PG is critical for PG performance in growth and photosynthesis.  相似文献   

4.
Condensation activities for gamma-linolenic acid (18:3(n-6)), octadecatetraenoic acid (18:4(n-3)) and eicosapentaenoic acid (20:5(n-3)) with malonyl-CoA were measured and compared with the condensation activities for 16:0-CoA, 18:1-CoA, 18:2(n-6)-CoA and 18:3(n-3)-CoA in rat brain microsomes of various ages. The age-dependence of condensation activities for 18:3(n-6), 18:4(n-3) and 20:5(n-3) showed a maximum at 1- to 2-month-old and were still higher at 3-month-old 2- to 3-fold than the activities in microsomes of pups. Conversely, the age-dependence of condensation activity for 16:0-CoA showed a peak around 1 month-old, but decreased at 3-month-old to the level of the activities in pups. The condensation activity for 20:5(n-3) was inhibited by 18:3(n-6) or 18:4(n-3) and the inhibition was not competitive. The condensation of 18:3(n-6) was also inhibited by 18:4(n-3) in the same manner. A physiological implication of the inhibition system at the substrate level was discussed.  相似文献   

5.
Abstract: In vivo rates of arachidonic acid incorporation and turnover were determined for molecular species of rat brain phosphatidylcholine (PtdCho) and phosphatidylinositol (PtdIns). [3H]Arachidonic acid was infused intravenously in pentobarbital-anesthetized rats at a programmed rate to maintain constant plasma specific activity for 2–10 min. At the end of infusion, animals were killed by microwave irradiation, and brain phospholipids were isolated, converted to diacylglycerobenzoates, and resolved as molecular species by reversed-phase HPLC. Most [3H]arachidonate (>87%) was incorporated into PtdCho and PtdIns, with arachidonic acid at the sn -2 position and with oleic acid (18:1), palmitic acid (16:0), or stearic acid (18:0) at the sn -1 position. However, 10–15% of labeled brain PtdCho eluted in a small peak containing two molecular species with arachidonic acid at the sn -2 position and palmitoleic acid (16:1) or linoleic acid (18:2) at the sn -1 position. Analysis demonstrated that tracer was present in both the 16:1–20:4 and 18:2–20:4 PtdCho species at specific activities 10–40 times that of the other phospholipids. Based on the measured mass of arachidonate in each phospholipid molecular species, half-lives were calculated for arachidonate of <10 min in 16:1–20:4 and 18:2–20:4 PtdCho and 1–3 h in 16:0–20:4, 18:0–20:4, and 18:1–20:4 PtdCho and PtdIns. The very short half-lives for arachidonate in the 16:1–20:4 and 18:2–20:4 PtdCho molecular species suggest important roles for these molecules in brain phospholipid metabolism and signal transduction.  相似文献   

6.
The study examined the ability of dietary n-3 fatty acids to modify mouse peritoneal macrophage glycerophospholipid molecular species and peptidoleukotriene synthesis. After a 2-week feeding period, fish versus corn oil feeding significantly (P less than 0.01) lowered n-6 polyunsaturated fatty acid (PUFA) mol % levels, i.e., arachidonic acid (20:4n-6) in diacylphosphatidylserine (PtdSer), diacylphosphatidylinositol (PtdIns), diacylglycerophosphoethanolamine (PtdEtn), alkenylacylglycerophosphoethanolamine (PlsEtn), and diacylglycerophosphocholine (PtdCho). A notable exception was alkylacylglycerophosphocholine (PakCho), where only moderate decreases in 16:0-20:4n-6 and 18:0-20:4n-6 species were observed after fish oil supplementation. The predominant n-3 PUFA in macrophage phospholipid subclasses was docosapentaenoic acid (22:5n-3). The major n-3 species were 18:0-22:5n-3 in PtdIns, PtdSer, glycerophosphoethanolamines (EtnGpl) and 16:0-22:5n-3 in PtdCho and PlsEtn. The major n-3-containing species in PakCho were 16:0-20:5n-3 and 18:1-22:6n-3. These findings indicate that n-3 PUFA are differentially incorporated into macrophage phospholipid subclasses after dietary fish oil supplementation, and suggest that phospholipid remodeling enzymes selectively discriminate between substrates based on compatibility of sn-1 covalent linkage and the composition of the sn-1 and sn-2 aliphatic chains. Macrophage peptidoleukotriene synthesis was also strongly influenced after fish oil feeding; the LTC5/LTC4 ratio was significantly higher (P less than 0.01) in fish oil-fed animals than in corn oil-fed animals, 0.85 versus 0.01, respectively. These ratios were subsequently compared to phospholipid molecular species 20:5n-3/20:4n-6 ratios in order to determine potential sources of eicosanoid precursors.  相似文献   

7.
Lysophospholipids (LysoGPs) serve as lipid mediators and precursors for synthesis of diacyl phospholipids (GPs). LysoGPs detected in cells have various acyl chains attached at either the sn-1 or sn-2 position of the glycerol backbone. In general, acyl chains at the sn-2 position of 2-acyl-1-LysoGPs readily move to the sn-1 position, generating 1-acyl-2-lyso isomers by a nonenzymatic reaction called intra-molecular acyl migration, which has hampered the detection of 2-acyl-1-LysoGPs in biological samples. In this study, we developed a simple and versatile method to separate and quantify 2-acyl-1- and 1-acyl-2-LysoGPs. The main point of the method was to extract LysoGPs at pH 4 and 4°C, conditions that were found to completely eliminate the intra-molecular acyl migration. Under the present conditions, the relative amounts of 2-acyl-1-LysoGPs and 1-acyl-2-LysoGPs did not change at least for 1 week. Further, in LysoGPs extracted from cells and tissues under the present conditions, most of the saturated fatty acids (16:0 and 18:0) were found in the sn-1 position of LysoGPs, while most of the PUFAs (18:2, 20:4, 22:6) were found in the sn-2 position. Thus the method can be used to elucidate the in vivo role of 2-acyl-1-LysoGPs.  相似文献   

8.
The main fatty acids at the sn-1 position of phospholipids (PLs) are saturated or monounsaturated fatty acids such as palmitic acid (C16:0), stearic acid (C18:0), and oleic acid (C18:1) and are constantly replaced, like unsaturated fatty acids at the sn-2 position. However, little is known about the molecular mechanism underlying the replacement of fatty acids at the sn-1 position, i.e., the sn-1 remodeling. Previously, we established a method to evaluate the incorporation of fatty acids into the sn-1 position of lysophospholipids (lyso-PLs). Here, we used this method to identify the enzymes capable of incorporating fatty acids into the sn-1 position of lyso-PLs (sn-1 lysophospholipid acyltransferase [LPLAT]). Screenings using siRNA knockdown and recombinant proteins for 14 LPLATs identified LPLAT7/lysophosphatidylglycerol acyltransferase 1 (LPGAT1) as a candidate. In vitro, we found LPLAT7 mainly incorporated several fatty acids into the sn-1 position of lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE), with weak activities toward other lyso-PLs. Interestingly, however, only C18:0-containing phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were specifically reduced in the LPLAT7-mutant cells and tissues from knockout mice, with a concomitant increase in the level of C16:0- and C18:1-containing PC and PE. Consistent with this, the incorporation of deuterium-labeled C18:0 into PLs dramatically decreased in the mutant cells, while deuterium-labeled C16:0 and C18:1 showed the opposite dynamic. Identifying LPLAT7 as an sn-1 LPLAT facilitates understanding the biological significance of sn-1 fatty acid remodeling of PLs. We also propose to use the new nomenclature, LPLAT7, for LPGAT1 since the newly assigned enzymatic activities are quite different from the LPGAT1s previously reported.  相似文献   

9.
Phosphatidic acid (PA) consists of various molecular species that have different fatty acyl chains at the sn-1 and sn-2 positions; and consequently, mammalian cells contain at least 50 structurally distinct PA molecular species. However, the different roles of each PA species are poorly understood. In the present study, we attempted to identify dipalmitoyl (16:0/16:0)-PA-binding proteins from mouse skeletal muscle using liposome precipitation and tandem mass spectrometry analysis. We identified L-lactate dehydrogenase (LDH) A, which catalyzes conversion of pyruvate to lactate and is a key checkpoint of anaerobic glycolysis critical for tumor growth, as a 16:0/16:0-PA-binding protein. LDHA did not substantially associate with other phospholipids, such as phosphatidylcholine, phosphatidylserine, phosphatidylglycerol, phosphatidylinositol, phosphoinositides and cardiolipin at physiological pH (7.4), indicating that LDHA specifically bound to PA. Interestingly, 18:0/18:0-, 18:0/20:4- and 18:0/22:6-PA also interacted with LDHA, and their binding activities were stronger than 16:0/16:0-PA at pH 7.4. Moreover, circular dichroism spectrometry showed that 18:0/20:4- and 18:0/22:6-PA, but not 16:0/16:0- or 18:0/18:0-PA, significantly reduced the α-helical structure of LDHA. Furthermore, 18:0/20:4- and 18:0/22:6-PA attenuated LDH activity. Taken together, we demonstrated for the first time that LDHA is a PA-binding protein and is a unique PA-binding protein that is structurally and functionally controlled by associating with 18:0/20:4- and 18:0/22:6-PA.  相似文献   

10.
The study investigated the changes in individual molecular species in PE and the effects of a variety of dietary fats with varying proportions of saturated and unsaturated fatty acids on membrane composition, eicosanoid production and cytokine production in thioglycollate-elicited rat macrophages.The data obtained indicates that the greatest degree of modulation by dietary fats on cytokine production was observed after 8 weeks feeding and at this time, the total diacyl species containing linoleic acid (18:2 n-6) and arachidonic acid (20:4 n-6) at the sn-2 position related in a curvilinear fashion to total 18:2 n-6 intake and that IL1 and IL6 production related in a curvilinear fashion to the total diacyl species with 20:4 and 18:2 at the sn-2 position.After 4 weeks of feeding, fish and olive oils enhanced production of IL6 and LTB4, however, while IL1 production, after 8 weeks of dietary treatment, was greatest from macrophages of animals fed corn and olive oils, PGE2 production was greatest in the former group and LTB4 production in the latter. Thus an eicosanoid effect may explain the modulatory influence of olive oil and IL1 production but, cannot explain the effect of corn oil on production of the cytokine. The data from the present study provides some insight into how dietary fats could provide therapy for conditions in which inflammatory cytokines are implicated.  相似文献   

11.
Analysis of fatty acids from the cyanobacterium Cyanothece sp. PCC 8801 revealed that this species contained high levels of myristic acid (14:0) and linoleic acid in its glycerolipids, with minor contributions from palmitic acid (16:0), stearic acid, and oleic acid. The level of 14:0 relative to total fatty acids reached nearly 50%. This 14:0 fatty acid was esterified primarily to the sn-2 position of the glycerol moiety of glycerolipids. This characteristic is unique because, in most of the cyanobacterial strains, the sn-2 position is esterified exclusively with C16 fatty acids, generally 16:0. Transformation of Synechocystis sp. PCC 6803 with the PCC8801_1274 gene for lysophosphatidic acid acyltransferase (1-acyl-sn-glycerol-3-phosphate acyltransferase) from Cyanothece sp. PCC 8801 increased the level of 14:0 from 2% to 17% in total lipids and the increase in the 14:0 content was observed in all lipid classes. These findings suggest that the high content of 14:0 in Cyanothece sp. PCC 8801 might be a result of the high specificity of this acyltransferase toward the 14:0-acyl-carrier protein.  相似文献   

12.
We have examined the effects of the substituted pyridazinone herbicide, 4-chloro-5-(dimethylamino)-2-phenyl-3(2H)pyridazinone (BASF 13-338, Sandoz 9785), on the desaturation of linoleic acid (18:2) on different molecular species of monogalactosyldiacylglycerol (MGDG) and phosphatidylcholine (PC) in leaf tissue of Arabidopsis thaliana (L.) Heynh. Specific changes in lipid composition allowed identification of different substrates for desaturation of 18:2 to linolenic acid (18:3). 18:2/16:2 MGDG was desaturated in the chloroplast to form 18:3/16:3 MGDG. Levels of 18:3/16:3 MGDG were reduced by treatment with BASF 13-338, suggesting that both the formation of 18:3 at the sn-1 position, and the formation of 16:3 at the sn-2 position of 18:2/16:2 MGDG were inhibited by this compound. Kinetic studies using exogenously incorporated [14C] 18:1 indicated that 18:2/18:3 MGDG originated from an 18:2/18:3 diglyceride precursor derived from PC. The formation of 18:3 at the sn-1 position of 18:2/18:3 MGDG was also inhibited by BASF 13-338. In contrast the desaturation of 18:2 proposed to occur at the sn-2 position of PC outside the chloroplast, was not affected.  相似文献   

13.
Sapienic acid, 16:1n-10 is the most abundant unsaturated fatty acid on human skin where its synthesis is mediated by FADS2 in the sebaceous glands. The FADS2 product introduces a double bond at the Δ6, Δ4 and Δ8 positions by acting on at least ten substrates, including 16:0, 18:2n-6, and 18:3n-3. Our aim was to characterize the competition for accessing FADS2 mediated Δ6 desaturation between 16:0 and the most abundant polyunsaturated fatty acids (PUFA) in the human diet, 18:2n-6 and 18:3n-3, to evaluate whether competition may be relevant in other tissues and thus linked to metabolic abnormalities associated with FADS2 or fatty acid levels. MCF7 cells stably transformed with FADS2 biosynthesize 16:1n-10 from exogenous 16:0 in preference to 16:1n-7, the immediate product of SCD highly expressed in cancer cell lines, and 16:1n-9 via partial β-oxidation of 18:1n-9. Increasing availability of 18:2n-6 or 18:3n-3 resulted in decreased bioconversion of 16:0 to 16:1n-10, simultaneously increasing the levels of highly unsaturated products. FADS2 cells accumulate the desaturation-elongation products 20:3n-6 and 20:4n-3 in preference to the immediate desaturation products 18:3n-6 and 18:4n-3 implying prompt/coupled elongation of the nascent desaturation products. MCF7 cells incorporate newly synthesized 16:1n-10 into phospholipids. These data suggest that excess 16:0 due to, for instance, de novo lipogenesis from high carbohydrate or alcohol consumption, inhibits synthesis of highly unsaturated fatty acids, and may in part explain why supplemental preformed EPA and DHA in some studies improves insulin resistance and other factors related to diabetes and metabolic syndrome aggravated by excess calorie consumption.  相似文献   

14.
Mono- and digalactosyldiacylglycerol (MGDG and DGDG) were isolated from the leaves of sixteen 16:3 plants. In all of these plant species, the sn-2 position of MGDG was more enriched in C16 fatty acids than sn-2 of DGDG. The molar ratios of prokaryotic MGDG to prokaryotic DGDG ranged from 4 to 10. This suggests that 16:3 plants synthesize more prokaryotic MGDG than prokaryotic DGDG. In the 16:3 plant Spinacia oleracea L. (spinach), the formation of prokaryotic galactolipids was studied both in vivo and in vitro. In intact spinach leaves as well as in chloroplasts isolated from these leaves, radioactivity from [1-14C]acetate accumulated 10 times faster in MGDG than in DGDG. After 2 hours of incorporation, most labeled galactolipids from leaves and all labeled galactolipids from isolated chloroplasts were in the prokaryotic configuration. Both in vivo and in vitro, the desaturation of labeled palmitate and oleate to trienoic fatty acids was higher in MGDG than in DGDG. In leaves, palmitate at the sn-2 position was desaturated in MGDG but not in DGDG. In isolated chloroplasts, palmitate at sn-2 similarly was desaturated only in MGDG, but palmitate and oleate at the sn-1 position were desaturated in MGDG as well as in DGDG. Apparently, palmitate desaturase reacts with sn-1 palmitate in either galactolipid, but does not react with the sn-2 fatty acid of DGDG. These results demonstrate that isolated spinach chloroplasts can synthesize and desaturate prokaryotic MGDG and DGDG. The finally accumulating molecular species, MGDG(18:3/16:3) and DGDG(18:3/16:0), are made by the chloroplasts in proportions similar to those found in leaves.  相似文献   

15.
Attempts at a better understanding of the cell membrane organization and functioning need to assess the physical properties which partly depend (i) on the positional distribution of the fatty acids in the membrane phospholipids (PLs) and (ii) on the way by which the PL molecular species are affected by exogenous fatty acids. To do that, the effects of essential (polyunsaturated) fatty acid (EFA) deficiency and enrichment were studied in the liver microsomes of piglets feeding on either an EFA-deficient diet or an EFA-enriched diet containing hydrogenated coconut oil or a mixture of soya + corn oils, respectively. After derivatization, the diacylated forms of choline and ethanolamine PLs were analyzed using a combination of Chromatographic techniques and fast-atom bombardmentmass spectrometry. The dinitrobenzoyl-diacylglycerol derivatives corresponding to the molecular species of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were identified. It appears that three factors brought about a marked apparent relative retention: the nature of (i) the base of the polar head, (ii) fatty acids at the sn−1 position and (iii) fatty acids at the sn−2 position. The highest apparent relative retentions were displayed by the 18:0–20:5(n−3)-PE and 16:0–22:6(n−3)-PE. It is noteworthy that the behavior of 20:3 n−9 — which is synthesized during the EFA-deficient diet by the same bioconversion system as 20:4 n−6 — was very similar to that of 20:4 n−6 during the formation of PC and PE molecular species and that the molecular species of PE containing 20:4(n−6) and 20:3(n−9), gathered together as metabolical homologues, were also apparently retained, particularly in association with 16:0. Present observations are consistent with some others showing retention or preferential distribution of EFA in PE and suggest that specific acyltransferase(s), ethanolamine phosphotransferase and methyltransferase would be mainly involved for PE and PC formation in liver endoplasmic reticulum. Fast-atom bombardment-mass spectrometry of intact phospholipids enables us to show that there is no very long chain dipolyunsaturated phospholipid in liver endoplasmic reticulum.  相似文献   

16.
The fatty acid profiles of Antarctic (n = 7) and non-Antarctic yeasts (n = 7) grown at different temperatures were analysed by gas chromatography–mass spectrometry. The Antarctic yeasts were enriched in oleic 18:1 (20–60 %), linoleic 18:2 (20–50 %) and linolenic 18:3 (5–40 %) acids with lesser amounts of palmitic 16:0 (<15 %) and palmitoleic 16:1 (<10 %) acids. The non-Antarctic yeasts (n = 4) were enriched in 18:1 (20–55 %, with R. mucilaginosa at 75–80 %) and 18:2 (10–40 %) with lesser amounts of 16:0 (<20 %), 16:1 (<20 %) and stearic 18:0 (<10 %) acids. By contrast, Saccharomyces cerevisiae strains (n = 3) were enriched in 16:1 (30–50 %) and 18:1 (20–40 %) with lesser amounts of 16:0 (10–25 %) and 18:0 (5–10 %) acids. Principal component analysis grouped the yeasts into three clusters, one belonging to the S. cerevisiae strains (enriched in 16:0, 16:1 and 18:1), one to the other non-Antarctic yeasts (enriched in 18:1 and 18:2) and the third to the Antarctic yeasts (enriched in 18:2 and 18:3).  相似文献   

17.
This paper reports the positional distribution of fatty acids in triacylglycerols (TAG) of Artemia franciscana nauplii enriched with each of palmitic (16:0), oleic (18:1n-9), linoleic (18:2n-6), linolenic (18:3n-3), eicosapentaenoic (20:5n-3), and docosahexaenoic (22:6n-3) acid ethyl esters. TAG extracted from the enriched and unenriched nauplii were subjected to regiospecific analysis to determine the fatty acid compositions of the sn-1(3) and sn-2 positions of TAG. In the unenriched nauplii, 16:0, 18:1n-9, and 18:2n-6 were preferentially located in the sn-1(3) position followed by the sn-2 position [i.e. sn-1(3)>sn-2], whereas 18:3n-3 was concentrated in the sn-2 position [i.e. sn-2>sn-1(3)]. Contents of 20:5n-3 and 22:6n-3 were low. After the nauplii were enriched with each of the ethyl esters for 18 h, fatty acid fed to the nauplii showed higher content in the sn-1(3) position than in the sn-2 position [i.e. sn-1(3)>sn-2]. Distribution pattern of 18:3n-3 changed from sn-2>sn-1(3) to sn-1(3)>sn-2 during the enrichment with 18:3n-3 ethyl ester. Increases in all of the fatty acids in TAG were attributed to that in the sn-1(3) position much more than that in the sn-2 position. Artemia nauplii appear to be characterized by preferential incorporation of exogenous fatty acids into the sn-1(3) position of TAG, even though endogenous fatty acids are esterified in the opposite position.  相似文献   

18.
Chain elongation of polyunsaturated acids has been investigated using microsomes from developing rat brain. With 18:3(n ? 6) in 0.05% detergent as an acceptor and [2-14C]malonyl-coenzyme A (CoA) as a two-carbon donor, incorporation of radioactivity into 20:3 was optimal (and incorporation into other acyl chains was minimal) in the presence of 100 μm substrate, 200 μmp-bromophenacylbromide and 10 mm KCN. Up to 30% of the labeled products were incorporated into phospholipids and triacylglycerol. Maximal microsomal elongation activity was observed at 3–4 weeks of age. Several other fatty acid or acyl-CoA acceptors tested in this system were elongated at slower rates compared to 18:3(n ? 6) [e.g., 16:0-CoA, 75%; 20:4(n ? 6), 57%; 18:3(n ? 3), 13%; 18:2(n ?6), 10%; 20:3(n ? 6), 6%]. The rate of elongation of chemically synthesized 18:3-CoA was only 50% of the detergent-suspended acid and was optimal at 6 μm substrate; inhibition above 6 μm 18:3-CoA was reduced by bovine serum albumin, but incorporation of label into palmitate was greatly stimulated. CoA markedly inhibited elongation of 18:3(n ? 6) or 18:3-CoA; N-ethylmaleimide at equimolar amounts reversed this CoA inhibition but did not alter the inhibition caused by concentrations of 18:3-CoA above 6 μm. ATP was absolutely required for elongation of either the free acid or the acyl-CoA derivative, whereas exogenous MgCl2 had little effect.  相似文献   

19.
Branched chain fatty acids (BCFA) and linear chain/normal odd chain fatty acids (n-OCFA) are major fatty acids in human skin lipids, especially sebaceous gland (SG) wax esters. Skin lipids contain variable amounts of monounsaturated BCFA and n-OCFA, in some reports exceeding over 20% of total fatty acids. Fatty acid desaturase 2 (FADS2) codes for a multifunctional enzyme that catalyzes Δ4-, Δ6- and Δ8-desaturation towards ten unsaturated fatty acids but only one saturate, palmitic acid, converting it to 16:1n-10; FADS2 is not active towards 14:0 or 18:0. Here we test the hypothesis that FADS2 also operates on BCFA and n-OCFA. MCF-7 cancer cells stably expressing FADS1 or FADS2 along with empty vector control cells were incubated with anteiso-15:0, iso-16:0, iso-17:0, anteiso-17:0, iso-18:0, or n-17:0. BCFA were Δ6-desaturated by FADS2 as follows: iso-16:0 → iso-6Z-16:1, iso-17:0 → iso-6Z-17:1, anteiso-17:0 → anteiso-6Z-17:1 and iso-18:0 → iso-6Z-18:1. anteiso-15:0 was not desaturated in either FADS1 or FADS2 cells. n-17:0 was converted to both n-6Z-17:1 by FADS2 Δ6-desaturation and n-9Z-17:1 by SCD Δ9-desaturation. We thus establish novel FADS2-coded enzymatic activity towards BCFA and n-OCFA, expanding the number of known FADS2 saturated fatty acid substrates from one to six. Because of the importance of FADS2 in human skin, our results imply that dysfunction in activity of sebaceous FADS2 may play a role in skin abnormalities associated with skin lipids.  相似文献   

20.
BackgroundDietary linoleic acid (LA, 18:2n-6) lowering in rats reduces n-6 polyunsaturated fatty acid (PUFA) plasma concentrations and increases n-3 PUFA (eicosapentaenoic (EPA) and docosahexaenoic acid (DHA)) concentrations.ObjectiveTo evaluate the extent to which 12 weeks of dietary n-6 PUFA lowering, with or without increased dietary n-3 PUFAs, alters unesterified and esterified plasma n-6 and n-3 PUFA concentrations in subjects with chronic headache.DesignSecondary analysis of a randomized trial. Subjects with chronic headache were randomized for 12 weeks to (1) average n-3, low n-6 (L6) diet; or (2) high n-3, low n-6 LA (H3–L6) diet. Esterified and unesterified plasma fatty acids were quantified at baseline (0 weeks) and after 12 weeks on a diet.ResultsCompared to baseline, the L6 diet reduced esterified plasma LA and increased esterified n-3 PUFA concentrations (nmol/ml), but did not significantly change plasma arachidonic acid (AA, 20:4n-6) concentration. In addition, unesterified EPA concentration was increased significantly among unesterified fatty acids. The H3–L6 diet decreased esterified LA and AA concentrations, and produced more marked increases in esterified and unesterified n-3 PUFA concentrations.ConclusionDietary n-6 PUFA lowering for 12 weeks significantly reduces LA and increases n-3 PUFA concentrations in plasma, without altering plasma AA concentration. A concurrent increase in dietary n-3 PUFAs for 12 weeks further increases n-3 PUFA plasma concentrations and reduces AA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号