首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
杂种优势的遗传力理论及其对全球农业的意义   总被引:1,自引:0,他引:1  
吴仲贤 《遗传学报》2003,30(3):193-200
文中一开始就以遗传力概念来推翻杂交育种中的配合力概念。理由是一般配合力随基础群中品种类别和数目的改变而改变,因而特殊配合力也随之而变。因而用不同纯系品种作试验的基础群的结果也不能相比较。因而,配合力不能用来作为参数用以预测下一代的杂种效果。另一方面,对于每一杂交组合有一个分别的遗传力可以在杂交育种中应用,就象在纯系育种中应用一样。由于这同一概念可以同样在二者中加以应用,任何其他概念都是不必要的了。因而配合力概念必须予以摈弃。另一在原文中未加说明的原因是,用配合力概念需要无穷多个品系才能和遗传力的结果相比较,仅此一点就把配合力的作用排斥掉了。文中的主题是杂种优势老大难题可以用笛卡尔的推理方法来解决。从杂种优势的定义出发H:F1-MP,在此,H=杂种优势,F1为子一代,MP为亲本平均数或中亲。由一个二项分布随机变数及其推广至多项分布推导出杂种优势的公式:VF1=Na^2/2 Md^2/4 VI(F1)加性 显性 F1上位 VMP=Na^2/ V1/2 加性 亲代上位VH=Nd^2/4 VI(F1) V1/2 显性 Fl上位 亲代上位 在此N=控制性状的基因数,a=(Pi-Pj)/2,d=离中亲的偏差,而各方差则如方程底部所列。于是这些项目都可由资料算出,以致问题变得简单到任何大学生都能解决。换言之,当提问正确时,正确的答案便可以求得。谁曾经证明过遗传力的理论不能应用于杂交育种中,例如在两个纯种的杂交子一代中呢?从这一启示出发,我们发现,两纯系杂交的子一代是一个孟德尔群体,其中p,q均为1/2,这样就简化了问题。我们的杂种优势的遗传力理论(HTH)的形成是基于以下两点:1)既然严p q=0.5 0.5=1,那么两个纯系杂交只是纯系育种的一个特例,因而F1的遗传力必定存在。2)分析中,我们只需找出计算这个参数的方法,这很容易。因为它就等于加性效应组分除以VF1,即(1/2)Na^2/VF1,这可以从杂种优势方程导出。20世纪末,我们成功地解决了杂种优势这个难题。同时我们还发现,杂种遗传力,这个新的遗传参数,它的大小随杂交次数的增加而增加,从而将育种与进化联系起来,它把我们带进了一个新的时代——进化工程时代;向我们展现了一个新的天地,即人工选择的作用最终必将超越自然选择,同时将漫长的时间大大缩短。另外,对于农业它可以将众多理想基因集中于杂种,使食物产量不断的增加,这是过去“将基因固定的理论”所不能解决的。这样作人工选择,对于相同的进展,可以将我们的时间、劳力和成本节省约80%。如果应用于各种农作物包括杂交水稻,产量将会有更大规模的提高。实际上,如果我们的科研教育单位能及早的利用它,必将会掀起一场前所未有的新的绿色革命。至于进化工程会把我们领入一个什么样的未来,这个问题就留给科幻小说家们去描绘吧。  相似文献   

2.
Genetic parameters for test-day milk flow (TDMF) of 2175 first lactations of Holstein cows were estimated using multiple-trait and repeatability models. The models included the direct additive genetic effect as a random effect and contemporary group (defined as the year and month of test) and age of cow at calving (linear and quadratic effect) as fixed effects. For the repeatability model, in addition to the effects cited, the permanent environmental effect of the animal was also included as a random effect. Variance components were estimated using the restricted maximum likelihood method in single- and multiple-trait and repeatability analyses. The heritability estimates for TDMF ranged from 0.23 (TDMF 6) to 0.32 (TDMF 2 and TDMF 4) in single-trait analysis and from 0.28 (TDMF 7 and TDMF 10) to 0.37 (TDMF 4) in multiple-trait analysis. In general, higher heritabilities were observed at the beginning of lactation until the fourth month. Heritability estimated with the repeatability model was 0.27 and the coefficient of repeatability for first lactation TDMF was 0.66. The genetic correlations were positive and ranged from 0.72 (TDMF 1 and 10) to 0.97 (TDMF 4 and 5). The results indicate that milk flow should respond satisfactorily to selection, promoting rapid genetic gains because the estimated heritabilities were moderate to high. Higher genetic gains might be obtained if selection was performed in the TDMF 4. Both the repeatability model and the multiple-trait model are adequate for the genetic evaluation of animals in terms of milk flow, but the latter provides more accurate estimates of breeding values.  相似文献   

3.
冬小麦不同基因型幼苗形态性状遗传力和抗旱性的研究   总被引:22,自引:1,他引:21  
用植物根系喷雾试验箱培养冬小麦茶淀红×MY9094、轮抗7号×山农215953的四个亲本及其两个杂种F2,研究两叶到六叶期幼苗形态性状的遗传力及幼苗形态性状与抗生的关系。  相似文献   

4.
性状遗传力与QTL方差对标记辅助选择效果的影响   总被引:3,自引:0,他引:3  
鲁绍雄  吴常信  连林生 《遗传学报》2003,30(11):989-995
在采用动物模型标记辅助最佳线性无偏预测方法对个体育种值进行估计的基础上,模拟了在一个闭锁群体内连续对单个性状选择10个世代的情形,并系统地比较了性状遗传力和QTL方差对标记辅助选择所获得的遗传进展、QTL增效基因频率和群体近交系数变化的影响。结果表明:在对高遗传力和QTL方差较小的性状实施标记辅助选择时,可望获得更大的遗传进展;遗传力越高,QTL方差越大,则QTL增效基因频率的上升速度越快;遗传力较高时,群体近交系数上升的速度较为缓慢,而QTL方差对群体近交系数上升速度的影响则不甚明显。结合前人关于标记辅助选择相对效率的研究结果,可以认为:当选择性状的遗传力和QTL方差为中等水平时,标记辅助选择可望获得理想的效果。  相似文献   

5.
Documenting the causes and consequences of intraspecific variation forms the foundation of much of evolutionary ecology. In this Perspectives piece, we review the importance of individual variation in ecology and evolution, argue that contemporary phycology often overlooks this foundational biological unit, and highlight how this lack of attention has potentially constrained our understanding of seaweeds. We then provide some suggestions of promising but underrepresented approaches, for instance: conducting more studies and analyses at the level of the individual; designing studies to evaluate heritability and genetic regulation of traits; and measuring associations between individual variation in functional traits and ecological outcomes. We close by highlighting areas of phycological research (e.g., population biology, ecology, aquaculture, climate change management) that could benefit immediately from including a focus on individual variation. Algae, for their part, provide us with a powerful and diverse set of ecological and evolutionary traits to explore these topics. There is much to be discovered.  相似文献   

6.
Despite the economic importance of beef cattle production in Brazil, female reproductive performance, which is strongly associated with production efficiency, is not included in the selection index of most breeding programmes due to low heritability and difficulty in measure. The body condition score (BCS) could be used as an indicator of these traits. However, so far little is known about the feasibility of using BCS as a selection tool for reproductive performance in beef cattle. In this study, we investigated the sources of variation in the BCS of Nellore beef cows, quantified its association with reproductive and maternal traits and estimated its heritability. BCS was analysed using a logistic model that included the following effects: contemporary group at weaning, cow weight and hip height, calving order, reconception together with the weight and scores of conformation and early finishing assigned to calves at weaning. In the genetic analysis, variance components of BCS were estimated through Bayesian inference by fitting an animal model that also included the aforementioned effects. The results showed that BCS was significantly associated with all of the reproductive and maternal variables analysed. The estimated posterior mean of heritability of BCS was 0.24 (highest posterior density interval at 95%: 0.093 to 0.385), indicating an involvement of additive gene action in its determination. The present findings show that BCS can be used as a selection criterion for Nellore females.  相似文献   

7.
Abstract. Durations of tethered flights by the North American migratory grasshopper Melanoplus sanguinipes Fabricius are bimodally distributed: most individuals either will not fly, or else will fly for many hours. This observation suggests a simple measure (the ‘one‐hour rule’) for distinguishing migrants from non‐migrants. This measure is repeatable (repeatability = 0.6–0.7). Using laboratory‐reared offspring of grasshoppers from an Arizona population of mixed migratory tendency, a breeding experiment was conducted to determine the heritability of migratory tendency and possible correlated responses to selection on migratory behaviour. When migratory tendency is considered as a threshold trait, the heritability of liability is in the range 0.5–0.6. Most families in the breeding experiment had at least some migrants among their offspring; selection on migratory incidence had a correlated effect on the durations of flights by these individuals. The magnitude of thoracic lipid reserves showed a modest correlated response to selection on migratory behaviour. Thoracic and abdominal lipid reserves in identified migrants are reduced by flight, indicating that lipid is mobilized and consumed during flight in this species.  相似文献   

8.
We use computer simulations to investigate the amount of genetic variation for complex traits that can be revealed by single-SNP genome-wide association studies (GWAS) or regional heritability mapping (RHM) analyses based on full genome sequence data or SNP chips. We model a large population subject to mutation, recombination, selection, and drift, assuming a pleiotropic model of mutations sampled from a bivariate distribution of effects of mutations on a quantitative trait and fitness. The pleiotropic model investigated, in contrast to previous models, implies that common mutations of large effect are responsible for most of the genetic variation for quantitative traits, except when the trait is fitness itself. We show that GWAS applied to the full sequence increases the number of QTL detected by as much as 50% compared to the number found with SNP chips but only modestly increases the amount of additive genetic variance explained. Even with full sequence data, the total amount of additive variance explained is generally below 50%. Using RHM on the full sequence data, a slightly larger number of QTL are detected than by GWAS if the same probability threshold is assumed, but these QTL explain a slightly smaller amount of genetic variance. Our results also suggest that most of the missing heritability is due to the inability to detect variants of moderate effect (∼0.03–0.3 phenotypic SDs) segregating at substantial frequencies. Very rare variants, which are more difficult to detect by GWAS, are expected to contribute little genetic variation, so their eventual detection is less relevant for resolving the missing heritability problem.  相似文献   

9.
Sperm morphology (size and shape) and sperm velocity are both positively associated with fertilization success, and are expected to be under strong selection. Until recently, evidence for a link between sperm morphology and velocity was lacking, but recent comparative studies have shown that species with high levels of sperm competition have evolved long and fast sperm. It is therefore surprising that evidence for a phenotypic or genetic relationship between length and velocity within species is equivocal, even though sperm competition is played out in the intraspecific arena. Here, we first show that sperm velocity is positively phenotypically correlated with measures of sperm length in the zebra finch Taeniopygia guttata . Second, by using the quantitative genetic "animal model" on a dataset from a multigenerational-pedigreed population, we show that sperm velocity is heritable, and positively genetically correlated to a number of heritable components of sperm length. Therefore, selection for faster sperm will simultaneously lead to the evolution of longer sperm (and vice versa). Our results provide, for the first time, a clear phenotypic and genetic link between sperm length and velocity, which has broad implications for understanding how recently described macroevolutionary patterns in sperm traits have evolved.  相似文献   

10.
Abstract: Many plant species contain chemical defenses that protect them against herbivores. Despite the benefit of these chemical defenses, not all individuals contain high levels of these compounds. In the native tobacco Nicotiana attenuata we found that plants from three natural populations differed considerably in their ability to produce trypsin protease inhibitors (PIs), which are defensive proteins that reduce herbivore damage to plants. Plants from a Utah (U) population produced high levels, whereas plants from Arizona (A) contained no detectable PI levels. Californian (C) plants had intermediate levels. The PI-producing U and C plants thus differ quantitatively from each other, whereas they both differ qualitatively from PI-deficient A plants. Here we analyze how PI production is inherited in N. attenuata with the ultimate goal of better understanding how the quantitative and qualitative differences between the three populations have evolved. Using a series of classical crossing designs, we determined that the ability to produce PIs is inherited as a dominant Mendelian trait. PI-deficient plants contain two non-functional recessive alleles, whereas heterozygous plants or homozygous dominant plants both are able to produce PIs. Similarly, the level of constitutive PIs may be determined by its genotype, either by an interaction between a functional and a non-functional allele in heterozygotes, or by a factor on the PI allele itself in homozygous C plants. Based on these data and on previous studies with A and U plants we postulate that the PI-deficient A plants may have originated from a mutant that lost its ability to produce PIs. The fitness loss due to reduced herbivore resistance may be offset by the fitness gain associated with increased competitive ability, a trade-off which may maintain this mutation in the Arizona population.  相似文献   

11.
Resource-allocation rules and the heritability of traits   总被引:2,自引:0,他引:2  
I hypothesize that the heritability of a trait, and thus its evolutionary responsiveness to natural selection, should be positively related to the priority with which resources are allocated to that trait. Low-priority traits are more sensitive to environmental effects, thus reducing the relative effect of genetic differences on phenotypic variation of these traits. This allocation-priority hypothesis explains why life-history traits, such as those involving growth and reproduction, generally have lower heritabilities than higher-priority morphological and physiological traits related to body maintenance. This hypothesis also shows how an organism-centered approach, as used in physiological ecology, can contribute to the development of evolutionary theory.  相似文献   

12.
Plant height is an important trait for plant reproductive success. Plant height is often under pollinator‐mediated selection, and has been shown to be correlated with various other traits. However, few studies have examined the evolutionary trajectory of plant height under selection and the pleiotropic effects of plant height evolution. We conducted a bi‐directional artificial selection experiment on plant height with fast cycling Brassica rapa plants to estimate its heritability and genetic correlations, and to reveal evolutionary responses to artificial selection on height and various correlated traits. With the divergent lines obtained through artificial selection, we subsequently conducted pollinator‐choice assays and investigated resource limitation of fruit production. We found that plant height variation is strongly genetically controlled (with a realized heritability of 41–59%). Thus, plant height can evolve rapidly under phenotypic selection. In addition, we found remarkable pleiotropic effects in phenology, morphology, floral scent, color, nectar and leaf glucosinolates. Most traits were increased in tall‐line plants, but flower size, UV reflection and glucosinolates were decreased, indicating potential trade‐offs. Pollinators preferred plants of the tall selection lines over the short selection lines in both greenhouse experiments with bumblebees and field experiment with natural pollinators. We did not detect any differences in resource limitation between plants of the different selection lines. Overall, our study predicts that increased height should evolve under positive pollinator‐mediated directional selection with potential trade‐offs in floral signals and herbivore defense.  相似文献   

13.
Seed quality in tomato is associated with many complex physiological and genetic traits. While plant processes are frequently controlled by the action of small‐ to large‐effect genes that follow classic Mendelian inheritance, our study suggests that seed quality is primarily quantitative and genetically complex. Using a recombinant inbred line population of Solanum lycopersicum × Solanum pimpinellifolium, we identified quantitative trait loci (QTLs) influencing seed quality phenotypes under non‐stress, as well as salt, osmotic, cold, high‐temperature and oxidative stress conditions. In total, 42 seed quality traits were analysed and 120 QTLs were identified for germination traits under different conditions. Significant phenotypic correlations were observed between germination traits under optimal conditions, as well as under different stress conditions. In conclusion, one or more QTLs were identified for each trait with some of these QTLs co‐locating. Co‐location of QTLs for different traits can be an indication that a locus has pleiotropic effects on multiple traits due to a common mechanistic basis. However, several QTLs also dissected seed quality in its separate components, suggesting different physiological mechanisms and signalling pathways for different seed quality attributes.  相似文献   

14.
15.
In this paper, we consider selection based on the best predictor of animal additive genetic values in Gaussian linear mixed models, threshold models, Poisson mixed models, and log normal frailty models for survival data (including models with time-dependent covariates with associated fixed or random effects). In the different models, expressions are given (when these can be found – otherwise unbiased estimates are given) for prediction error variance, accuracy of selection and expected response to selection on the additive genetic scale and on the observed scale. The expressions given for non Gaussian traits are generalisations of the well-known formulas for Gaussian traits – and reflect, for Poisson mixed models and frailty models for survival data, the hierarchal structure of the models. In general the ratio of the additive genetic variance to the total variance in the Gaussian part of the model (heritability on the normally distributed level of the model) or a generalised version of heritability plays a central role in these formulas.  相似文献   

16.
17.
Speciation and sexual isolation often occur when divergent female mating preferences target male secondary sexual traits. Despite the importance of such male signals, little is known about their evolvability and genetic linkage to other traits during speciation. To answer these questions, we imposed divergent artificial selection for 10 non-overlapping generations on the Inter-Pulse-Interval (IPI) of male courtship songs; which has been previously shown to be a major species recognition trait for females in the Drosophila athabasca species complex. Focusing on one of the species, Drosophila mahican (previously known as EA race), we examined IPI's: (1) rate of divergence, (2) response to selection in different directions, (3) genetic architecture of divergence and (4) by-product effects on other traits that have diverged in the species complex. We found rapid and consistent response for higher IPI but less response to lower IPI; implying asymmetrical constraints. Genetic divergence in IPI differed from natural species in X versus autosome contribution and in dominance, suggesting that evolution may take different paths. Finally, selection on IPI did not alter other components of male songs, or other ecological traits, and did not cause divergence in female preferences, as evidenced by lack of sexual isolation. This suggests that divergence of male courtship song IPI is unconstrained by genetic linkage with other traits in this system. This lack of linkage between male signals and other traits implies that female preferences or ecological selection can co-opt and mould specific male signals for species recognition free of genetic constraints from other traits.  相似文献   

18.
The genetic contribution to canine personality   总被引:3,自引:0,他引:3  
The domestic dog may be exceptionally well suited for behavioral genetic studies owing to its population history and the striking behavior differences among breeds. To explore to what extent and how behavioral traits are transmitted between generations, heritabilities and genetic correlations for behavioral traits were estimated in a cohort containing over 10,000 behaviorally tested German shepherd and Rottweiler dogs. In both breeds, the pattern of co-inheritance was found to be similar for the 16 examined behavioral traits. Furthermore, over 50% of the additive genetic variation of the behavioral traits could be explained by one underlying principal component, indicating a shared genetic component behind most of the examined behavioral traits. Only aggression appears to be inherited independently of the other traits. The results support a genetic basis for a broad personality trait previously named shyness-boldness dimension, and heritability was estimated to be 0.25 in the two breeds. Therefore, breeds of dogs appear to constitute a valuable resource for behavioral genetic research on the normal behavioral differences in broad personality traits.  相似文献   

19.
20.
Chromosomal regions harboring genes for the work to femur failure in mice   总被引:1,自引:0,他引:1  
The work to failure is defined as the maximum energy bone can absorb before breaking, and therefore is a direct test of the risk of fracture. To determine the genetic loci influencing work to failure, we have performed a high density genome-wide scan in 633 (MRL × SJL) F2 female mice. Five loci (P <0.005) with significant effects on work to failure were found on chromosomes 2, 7, 8, 9, and X, which collectively explained around 20% variance of work to femur failure in F2 mice. Of those, only the QTL on chromosome 9 was concordant with bone mineral density (BMD) QTLs. Eight significant interactions (P <0.01) between marker loci were identified, which accounted for an equivalent amount of F2 variance (23%) to combined single QTL effects. Our results demonstrate that most of the genetic loci regulating work to failure are different from those for BMD in the 7-week-old female mice. If this is also true in humans, this finding will challenge the predictive value of BMD for the risk of fracture. Electronic Publication  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号