首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment wetlands can remove nutrients from inflow sources through biogeochemical processes. Plant composition and temperature play important roles in the nutrient removal efficiency of these wetlands, but the interactions between these variables are not well understood. We investigated the seasonal efficiency of wetland macrophytes to reduce soil leachate concentrations of total nitrogen and total phosphorus in experimental microcosms. Each microcosm contained one of six vegetation treatments: unplanted, planted with one of four species (Carex lacustris, Scirpus validus, Phalaris arundinacea and Typha latifolid) in monoculture or planted with an equal abundance of all four species. Microcosms were also subjected to two temperature treatments: insulated microcosms and microcosms exposed to environmental conditions. A constant nutrient solution containing 56 mg/l N and 31 mg/l P was added to all microcosms three times a week. Water samples were analyzed monthly for total dissolved nitrogen and total dissolved phosphorous. Microcosms exhibited a typical pattern of seasonal nutrient removal with higher removal rates in the growing season and lower rates in the winter months. In general, planted microcosms outperformed unplanted microcosms. Among the plant treatments, Carex lacustris was the least efficient. The four remaining plant treatments removed an equivalent amount of nutrients. Insulated microcosms were more efficient in the winter and early spring months. Although a seasonal pattern of nutrient removal was observed, this variation can be minimized through planting and insulation of wetlands.  相似文献   

2.
A comparative study of the efficiency of contaminant removal between five emergent plant species and between vegetated and unvegetated wetlands was conducted in small-scale (2.0 m×1.0 m×0.7 m, lengthxwidthxdepth) constructed wetlands for domestic wastewater treatment in order to evaluate the decontaminated effects of different wetland plants. There was generally a significant difference in the removal of total nitrogen (TN) and total phosphorus (TP), but no significant difference in the removal of organic matter between vegetated and unvegetated wetlands. Wetlands planted with Canna indica Linn., Pennisetum purpureum Schum., and Phragmites communis Trin. had generally higher removal rates for TN and TP than wetlands planted with other species. Plant growth and fine root (root diameter ≤ 3 mm) biomass were related to removal efficiency. Fine root biomass rather than the mass of the entire root system played an important role in wastewater treatment. Removal efficiency varied with season and plant growth. Wetlands vegetated by P. purpureum significantly outperformed wetlands with other plants in May and June, whereas wetlands vegetated by P. communis and C. indica demonstrated higher removal efficiency from August to December. These findings suggest that abundance of fine roots is an important factor to consider in selecting for highly effective wetland plants. It also suggested that a plant community consisting of multiple plant species with different seasonal growth patterns and root characteristics may be able to enhance wetland performance.  相似文献   

3.
The aim of this study is to test the hypothesis that it depends on plant species used in the wetlands and their stubble growth attributes, as to whether monoculture or mixed wetland is superior in plant growth and nutrient removal. Monoculture and mixed wetland microcosms of five wetland plant species were studied. Significant differences in growth and aboveground biomass were found in the monoculture wetlands. Species that showed faster growth and larger biomass in monoculture wetland were also dominant in the mixed wetland. The mixed wetland exhibited similar biomass and root growth to the averages of five monocultures. ANOVA showed that there were very significant differences among the wetlands in removal rates of all the nutrients studied except nitrate nitrogen (NO3-N) and chemical oxygen demand (COD). The removal rates from the mixed wetland were generally comparable to the highest removal rates from the monocultures. The species exhibited different stubble growth attributes, with some species showing increasing stubble growth and removal rates, while other species showing decreasing stubble growth and removal rates. The results indicated that in both monocultures and mixed constructed wetlands, growth and nutrient removal rates depended on plant species, and attributes of plant stubble growth affected overall growth and nutrient removal capabilities.  相似文献   

4.
《Bioresource technology》2000,71(3):283-289
An existing free-water-surface constructed wetland system at the Auburn University Poultry Science Unit was used to evaluate the effect of plant fill ratio on water temperature. Each wetland consisted of two cells in series. One series was operated with an approximate 10% fill of Sagittaria lancifolia (duck-potato). A second series contained Phragmites australis (common reed) and Scirpus spp. (bulrush) with an approximate 5% fill of plants. A third series was unvegetated and acted as a control. Water temperature was measured using thermographs placed at the midpoint of each cell with temperature readings taken hourly from July 1995 until June 1996. Water temperature was compared between each cell by using paired t-tests for the hourly temperature data. The unvegetated cells had significantly higher temperatures than the vegetated cells year round. The approximate 10% fill ratio series had significantly higher temperatures than the 5% fill ratio during the winter months. The unvegetated cells were significantly warmer than the vegetated cells for 75 of 80 instances. The unvegetated cells also exhibited greater daily variation in temperature than did the vegetated cells.  相似文献   

5.
Plant species diversity affects plant nutrient pools, however, previous studies have not considered plant nutrient concentrations and biomass simultaneously. In this study, we conducted an experimental system with 90 microcosms simulating constructed wetlands (CWs). Four species were selected to set up a plant species richness gradient (1, 2, 3, 4 species) and fifteen species compositions. The plant biomass, plant N, phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) concentrations and pools were analyzed. Results showed that, (1) plant species richness increased plant biomass, and the presence of Oenanthe javanicae increased while the presence of Reineckia carnea decreased plant biomass; (2) plant species richness only increased plant K and Mg concentrations of the communities and plant Mg concentration of the species, and the presence of O. Javanica increased while the presence of R. Japonicus decreased plant N and P concentrations of the communities; (3) plant species richness increased plant N, P, K, Ca, and Mg pools, and the presence of O. Javanica increased while the presence of R. Carnea decreased plant N, P, K, Ca and Mg pools; (4) the four-species mixture produced more biomass and nutrient pools than the corresponding highest specific species monocultures. In case the plant uptake can remove nutrients from CWs through harvesting, the results suggest that both nutrient concentrations and biomass must be considered when evaluating the accumulation of nutrients. Assembling plant communities with high species richness (four species) or certain species (such as O. Javanica) is recommended to remove more nutrients from CWs through harvesting.  相似文献   

6.
7.
We investigated the importance of nutrients, soil moisture, arbuscular mycorrhizal fungi (AMF), and interspecific competition levels on the biomass allocation patterns of three wetland perennial plant species, Carex stricta Lam., Phalaris arundinacea L., and Typha latifolia L. A factorial experiment was conducted with high-low nutrient levels, high-low soil moisture levels, and with and without AMF inoculation. Under the experimental conditions, plant inoculation by AMF was too low to create a treatment and the AMF treatment was dropped from the total analysis. P. arundinacea and T. latifolia biomass were 73% and 77% higher, respectively, in the high nutrient treatment compared to the low nutrient treatment. Biomass allocation between shoots and roots remained relatively constant between environmental treatments, although shoot:root ratios of P. arundinacea declined in the low nutrient treatment. For C. stricta, the high nutrient and soil moisture treatments resulted in an increase in biomass of 50% and 15%, respectively. Shoot:root ratios were nearly constant among all environmental conditions. Biomass of T. latifolia and C. stricta was greatly decreased when grown with P. arundinacea. The rapid, initial height growth of P. arundinacea produced a spreading, horizontal canopy that overshadowed the vertical leaves of T. latifolia and C. stricta throughout the study. This pattern was repeated in both high and low nutrient and soil moisture treatments. When grown with P. arundinacea, C. stricta and T. latifolia significantly increased their mean shoot height, regardless of the nutrient or soil moisture level. The results of this experiment suggest that C. stricta and T. latifolia were light limited when growing with P. arundinacea and that canopy architecture is more important for biomass allocation than the other environmental conditions tested. The results also suggest that Phalaris arundinacea is an inherently better competitor (sensu Grime 1979) than C. stricta or T. latifolia.  相似文献   

8.
云南高原湖滨带3种挺水植物对水体N的净化能力及响应   总被引:1,自引:0,他引:1  
岳海涛  田昆  张昆  黄余春  罗丽 《生态科学》2012,31(2):133-137
以云南常见湖滨带挺水植物水葱、芦苇、茭草为待试植物,通过静水培养试验,分析了3种湖滨带挺水植物在TN浓度为10~10.5mg·L-1污水中的生长特征及其与净化能力的相互关系.研究表明,植物的生长、生理反应和净化能力间有较好的相关性,水葱、茭草和芦苇的相对生长速率分别为0.0023/d、0.0012/d和0.0017/d,水葱株高增长率为茭草的1.4倍,芦苇的1.84倍,水葱的生长量为(干重)3.53g,为芦苇的1.76倍,茭草的2.22倍;对N的累积能力分别比芦苇和茭草高1.1倍和1.3倍,对氮的同化利用率显著高于芦苇和茭草.水葱、芦苇、茭草对污水氮的净化率分别为86.59%、76.32%和74.83%,对氮的吸收率分别为23.81%、8.55%、11.30%;电导率和MDA比值分别为1.136,2.214和1.413;0.962,1.629和2.06,水葱均表现出较好的净化效果和较强的抗逆性.结果表明,植物对环境的适应及功能的发挥,一方面取决于自身的生物学特性,另一方面受生长环境的影响,环境胁迫导致其生长不良,不能有效发挥其湖滨水体净化功能.  相似文献   

9.
Hypereutrophication of U.S. surface waters is one of the leading causes of impairment for water quality. With nutrient criteria development and total maximum daily load (TMDL) issues looming for regulators, agricultural research is focusing on practices aimed at decreasing nutrient contributions to receiving aquatic ecosystems. This study examined the use of rice (Oryza sativa) for luxury uptake of nitrogen and phosphorus components associated with agricultural storm runoff. Mesocosms (379 L) planted with rice were exposed to two concentrations (5 and 10 mg/L) of nitrate, ammonia, and orthophosphorus. Results from these mesocosms were compared to unvegetated controls (also amended with 5 or 10 mg/L nitrate, ammonia, and orthophosphorus) to determine efficiency of rice in remediating nutrient runoff. Statistically significant differences in ammonia and nitrate retention of vegetated mesocosms amended with 5 mg/L versus vegetated mesocosms amended with 10 mg/L were noted after the first exposure. Although rice is a nutrient-dependent aquatic plant, this study suggests that more efficient mitigation is possible at lower inflow concentrations as opposed to higher inflow concentrations.  相似文献   

10.
Release of oxygen from the roots ofaquatic macrophytes into anaerobic sediments canaffect the quantity of interstitial dissolved organicmatter and nutrients that are available to bacteria. Nutrient and dissolved organic carbon (DOC)concentrations were compared between subsurface(interstitial) waters of unvegetated sediments andsediments among stands of the emergent herbaceousmacrophyte Juncus effusus L. in a lotic wetlandecosystem. Concentrations of inorganic nitrogen(NH4 +, NO3 -, and NO2 -)were greater from sediments of the unvegetatedcompared to the vegetated zone. DOC concentrations ofinterstitial waters were greater in sediments of theunvegetated zone both in the winter and springcompared to those from the vegetated zone. AlthoughDOC concentrations in hydrosoils collected from bothzones increased from winter to spring, bacterialproductivity per mg DOC in spring decreased comparedto winter. Greater initial bacterial productivityoccurred on DOM collected from the vegetated comparedto the unvegetated zone in winter samples (days 1 and4), with increased bacterial productivity on samplescollected from the unvegetated zone at the end of thestudy (day 20). Bacterial productivity wassignificantly greater on all sampling days on DOM fromvegetated samples compared to unvegetated samples. In nutrient enrichment experiments, bacterialproductivity was significantly increased (p < 0.05)with phosphorus but not nitrogen only amendments.  相似文献   

11.
Leachate from litter and vegetation penetrates permafrost surface soils during thaw before being exported to aquatic systems. We know this leachate is critical to ecosystem function downstream and hypothesized that thaw leachate inputs would also drive terrestrial microbial activity and nutrient uptake. However, we recognized two potential endpoint scenarios: vegetation leachate is an important source of C for microbes in thawing soil; or vegetation leachate is irrelevant next to the large background C, N, and P pools in thaw soil solution. We assessed these potential outcomes by making vegetation leachate from frozen vegetation and litter in four Arctic ecosystems that have a variety of litter quality and soil C, N, and P contents; one of these ecosystems included a disturbance recovery chronosequence that allowed us to test our second hypothesis that thaw leachate response would be enhanced in disturbed ecosystems. We added water or vegetation leachate to intact, frozen, winter soil cores and incubated the cores through thaw. We measured soil respiration throughout, and soil solution and microbial biomass C, N, and P pools and gross N mineralization immediately after a thaw incubation (?10 to 2°C) lasting 6 days. Vegetation leachate varied strongly by ecosystem in C, N, and P quantity and stoichiometry. Regardless, all vegetated ecosystems responded to leachate additions at thaw with an increase in the microbial biomass phosphate flush and an increase in soil solution carbon and nitrogen, implying a selective microbial uptake of phosphate from plant and litter leachate at thaw. This response to leachate additions was absent in recently disturbed, exposed mineral soil but otherwise did not differ between disturbed and undisturbed ecosystems. The selective uptake of P by microbes implies either thaw microbial P limitation or thaw microbial P uptake opportunism, and that spring thaw is an important time for P retention in several Arctic ecosystems.  相似文献   

12.
The biomass production of wetland vegetation can be limited by nitrogen or phosphorus. Some species are most abundant in N-limited vegetation, and others in P-limited vegetation, possibly because growth-related traits of these species respond differently to N versus P supply. Two growth experiments were carried out to examine how various morphological and physiological traits respond to the relative supply of N and P, and whether species from sites with contrasting nutrient availability respond differently. In experiment 1, four Carex species were grown in nutrient solutions at five N:P supply ratios (1.7, 5, 15, 45, 135) combined with two levels of supply (geometric means of N and P supply). In experiment 2, two Carex and two grass species were grown in sand at the same .ve N:P supply ratios combined with three levels of supply and two light intensities (45% or 5% daylight). After 12-13 weeks of growth, plant biomass, allocation, leaf area, tissue nutrient concentrations and rates and nutrient uptake depended signi.cantly on the N:P supply ratio, but the type and strength of the responses differed among these traits. The P concentration and the N:P ratio of shoots and roots as well as the rates of N and P uptake were mainly determined by the N:P supply ratio; they showed little or no dependence on the supply level and relatively small interspeci.c variation. By contrast, the N concentration, root mass ratio, leaf dry matter content and speci.c leaf area were only weakly related to the N:P supply ratio; they mainly depended on plant species and light, and partly on overall nutrient supply. Plant biomass was determined by all factors together. Within a level of light and nutrient supply, biomass was generally maximal (i.e. co-limited by N and P) at a N:P supply ratio of 15 or 45. All species responded in a similar way to the N:P supply ratio. In particular, the grass species Phalaris arundinacea and Molinia caerulea showed no differences in response that could clearly explain why P. arundinacea tends to invade P-rich (N-limited) sites, and M. caerulea P-limited sites. This may be due to the short duration of the experiments, which investigated growth and nutrient acquisition but not nutrient con­servation.  相似文献   

13.
Community metabolism and dissolved organic and inorganic nutrient fluxes were assessed in impacted from fish farm discharges and reference vegetated (Posidonia oceanica) and adjacent unvegetated communities in the Aegean Sea, Greece. Both metabolism and nutrient fluxes significantly differed between impacted and reference communities, but the effect depended on community type and time of year. Net community production (NCP) in the impacted vegetated community decreased by 60%, respiration (R) by 34%, and gross primary production (GPP) by 44%. The GPP:R ratio declined more (35%) in the impacted unvegetated than in the corresponding vegetated community (15%), implying that proximity to the fish farm has a severe impact on the unvegetated community, leading to imbalanced metabolism (GPP < R) and heterotrophic (GPP:R = 0.9) conditions. Higher release of dissolved organic and inorganic carbon, nitrogen, and phosphorous was observed in the impacted vegetated community compared to the corresponding unvegetated one, implying intensification of mineralization in the seagrass community. On an annual scale, the impacted vegetated community supported increased DOC efflux by 204%, DON by 1639%, NH4 by 122%, and NO3 by 26%, whereas it supported release of DOP and PO4 compared to the reference community, which removed these dissolved nutrients from the water column. The impacted unvegetated community supported an annual increase of DOC efflux by 208% and PO4 by 42% and it released DON, NH4, NO3, and DOP, whereas the reference community took up these nutrients. Proximity to the fish farm altered the ecosystem state by lowering the productivity and by enhancing the nutrient release.  相似文献   

14.
Little is known about the ability of wetlands to remove disease-causing viruses from municipal wastewater. In this study we examined the survival of several indicators of viral pollution (indigenous F-specific bacteriophages, seeded MS2 bacteriophage, and seeded human poliovirus type 1) applied in primary municipal wastewater to artificial wetland ecosystems. Only about 1% of the indigenous F-specific RNA bacteriophages survived flow through the vegetated wetland beds at a 5-cm-day-1 hydraulic application rate during the period from June through December 1985. The total number of indigenous F-specific bacteriophages (F-specific RNA and F-specific DNA phages) was also reduced by about 99% by wetland treatment, with the mean inflow concentration over the period of an entire year reduced from 3,129 to 33 PFU ml-1 in the outflow of a vegetated bed and to 174 PFU ml-1 in the outflow of an unvegetated bed. Such superior treatment by the vegetated bed demonstrates the significant role of higher aquatic plants in the removal process. Seeded MS2 bacteriophage and seeded poliovirus were removed more efficiently than were the indigenous bacteriophages, with less than 0.2% of MS2 and 0.1% of the poliovirus surviving flow at the same hydraulic application rate. The decay rate (k) of MS2 in a stagnant wetlands (k = 0.012 to 0.028 h-1) was lower than that for flowing systems (k = 0.44 to 0.052 h-1), reflecting the enhanced capacity for filtration or adsorption of viruses by the root-substrate complex (and associated biofilm).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Fate of viruses in artificial wetlands.   总被引:5,自引:0,他引:5       下载免费PDF全文
Little is known about the ability of wetlands to remove disease-causing viruses from municipal wastewater. In this study we examined the survival of several indicators of viral pollution (indigenous F-specific bacteriophages, seeded MS2 bacteriophage, and seeded human poliovirus type 1) applied in primary municipal wastewater to artificial wetland ecosystems. Only about 1% of the indigenous F-specific RNA bacteriophages survived flow through the vegetated wetland beds at a 5-cm-day-1 hydraulic application rate during the period from June through December 1985. The total number of indigenous F-specific bacteriophages (F-specific RNA and F-specific DNA phages) was also reduced by about 99% by wetland treatment, with the mean inflow concentration over the period of an entire year reduced from 3,129 to 33 PFU ml-1 in the outflow of a vegetated bed and to 174 PFU ml-1 in the outflow of an unvegetated bed. Such superior treatment by the vegetated bed demonstrates the significant role of higher aquatic plants in the removal process. Seeded MS2 bacteriophage and seeded poliovirus were removed more efficiently than were the indigenous bacteriophages, with less than 0.2% of MS2 and 0.1% of the poliovirus surviving flow at the same hydraulic application rate. The decay rate (k) of MS2 in a stagnant wetlands (k = 0.012 to 0.028 h-1) was lower than that for flowing systems (k = 0.44 to 0.052 h-1), reflecting the enhanced capacity for filtration or adsorption of viruses by the root-substrate complex (and associated biofilm).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
1. Stream flow is a major vector for zebra mussel spread among inland lakes. Veligers have been found tens to hundreds of km from upstream source lakes in unvegetated stream and river systems. It has been suggested, however, that the downstream transport of zebra mussels is restricted by wetland ecosystems. We hypothesized that vegetated waterways, (i.e. wetland streams) would hinder the downstream dispersal of zebra mussels in connected inland lake systems. 2. Veliger abundance, recruitment and adult mussels were surveyed in four lake‐wetland systems in southeastern Michigan, U.S.A. from May to August 2006. Sampling was conducted downstream of the lakes invaded by zebra mussels, beginning at the upstream edge of aquatic vegetation and continuing downstream through the wetland streams. 3. Veliger abundance decreased rapidly in vegetated waterways compared to previously reported rates of decrease in non‐vegetated streams. Veligers were rarely found more than 1 km downstream from where vegetation began. Newly recruited individuals and adults were extremely rare beyond open water in the wetland systems. 4. Densely vegetated aquatic ecosystems limit the dispersal of zebra mussels downstream from invaded sources. Natural, remediated and constructed wetlands may therefore serve as a protective barrier to help prevent the spread of zebra mussels and other aquatic invasive species to other lakes and ecosystems.  相似文献   

17.
Phytoremediation is a cost-effective biotechnology for decontamination of polycyclic aromatic hydrocarbons (PAHs)-polluted soils. A greenhouse experiment was conducted to determine the growth of Mimosa monancistra, a N2-fixing leguminous plants, and its capacity to remove phenanthrene, anthracene, and benzo(a)pyrene (BaP)from soil. The PAHs decreased shoot and root dry biomass of M. monancistra 2.7- and 3.9-fold, respectively, compared to uncontaminated soil and inhibited nodule formation. The removal of phenanthrene and anthracene was similar in vegetated and unvegetated soil, but the dissipation of BaP was significantly faster in vegetated soil as compared to unvegetated soil after 14, 56, 70, and 90 d. After 90 d, dissipation of BaP was 96% in vegetated soil and 87% in unvegetated soil. Nitrification and ammonification were not affected by the addition of PAHs as concentrations of NH4+, NO2-, and NO3- were similar in contaminated and uncontaminated vegetated soil. Growth of M. monancistra was inhibited by contamination with hydrocarbons, but removal of BaP was accelerated in the rhizosphere.  相似文献   

18.
We conducted experiments to evaluate the effects of soluble components in senescent leaf material on the growth and development of the eastern tree hole mosquito, Aedes triseriatus (Say). Oak leaves that were either leached for three days to remove the labile nutrient fraction, or were not leached, served as basal nutrient inputs in each experiment.Mosquito performance in microcosms containing leachate only was significantly worse compared with microcosms containing leaf material in combination with either leachate or water, indicating the importance of leaf substrates to mosquito production.Adult mosquito biomass, emergence, and development time were significantly higher in microcosms containing unleached leaves compared with leached leaf material. Additions of leachate to leached leaf treatments enhanced adult production, but not to the level observed in unleached leaf treatments.Filtered and unfiltered leachate added substantial nitrogen and phosphorus to microcosms and significantly affected mosquito growth responses. Bacterial productivity and abundance were also significantly affected by leachate additions and filtering.Taken together, these results suggest that while leaves decline with respect to nutritional value during decomposition, they remain important components of the habitat as substrates for microbial growth and mosquito feeding, particularly when nutrients (here, leachate) enter the system. Our results also illustrate the importance of soluble leaf material, which enhances mosquito production through effects on microbial community dynamics.  相似文献   

19.
Natural plankton communities from Masnou, a locality 20 km northof Barcelona (NW Mediterranean coast), were enclosed in 30 lmicrocosms to test the effect of different availability of nitrogen(N) and phosphorus (P) on the biomass of the main microplanktongroups, and the biochemical composition (DNA, protein and chlorophyllconcentration) of microbial communities. Immediately after enclosurein microcosms, three different nutrient enrichments were performed:N-deficient, P-deficient and nutrient-balanced. N and P deficienciesaffected the structure and the biochemical composition of themicrobial communities. Phytoplankton assemblages showed similartemporal patterns under the three nutrient treatments, althoughthe relative contribution of the different groups was notablyaffected. The lowest DNA concentration was measured in the P-deficienttreatment, suggesting that P availability imposes the limitson the DNA levels in the ecosystem. The availability of N inthe P-deficient microcosms allowed relatively high synthesisof chlorophyll and protein until the end of the experiment.Significantly high chlorophyll: DNA and protein: DNA ratioscharacterized the P-deficient treatment (where N was available)compared to the N-deficient microcosms. From the results obtained,we suggest that the protein: DNA ratios may constitute a biochemicalindicator of the P versus N availability in natural ecosystems.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号