首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Although Epstein-Barr virus (EBV) is an orally transmitted virus, viral transmission through the oropharyngeal mucosal epithelium is not well understood. In this study, we investigated how EBV traverses polarized human oral epithelial cells without causing productive infection. We found that EBV may be transcytosed through oral epithelial cells bidirectionally, from both the apical to the basolateral membranes and the basolateral to the apical membranes. Apical to basolateral EBV transcytosis was substantially reduced by amiloride, an inhibitor of macropinocytosis. Electron microscopy showed that virions were surrounded by apical surface protrusions and that virus was present in subapical vesicles. Inactivation of signaling molecules critical for macropinocytosis, including phosphatidylinositol 3-kinases, myosin light-chain kinase, Ras-related C3 botulinum toxin substrate 1, p21-activated kinase 1, ADP-ribosylation factor 6, and cell division control protein 42 homolog, led to significant reduction in EBV apical to basolateral transcytosis. In contrast, basolateral to apical EBV transcytosis was substantially reduced by nystatin, an inhibitor of caveolin-mediated virus entry. Caveolae were detected in the basolateral membranes of polarized human oral epithelial cells, and virions were detected in caveosome-like endosomes. Methyl β-cyclodextrin, an inhibitor of caveola formation, reduced EBV basolateral entry. EBV virions transcytosed in either direction were able to infect B lymphocytes. Together, these data show that EBV transmigrates across oral epithelial cells by (i) apical to basolateral transcytosis, potentially contributing to initial EBV penetration that leads to systemic infection, and (ii) basolateral to apical transcytosis, which may enable EBV secretion into saliva in EBV-infected individuals.  相似文献   

2.
The Epstein-Barr virus (EBV) gH-gL complex includes a third glycoprotein, gp42. gp42 binds to HLA class II on the surfaces of B lymphocytes, and this interaction is essential for infection of the B cell. We report here that, in contrast, gp42 is dispensable for infection of epithelial cell line SVKCR2. A soluble form of gp42, gp42.Fc, can, however, inhibit infection of both cell types. Soluble gp42 can interact with EBV gH and gL and can rescue the ability of virus lacking gp42 to transform B cells, suggesting that a gH-gL-gp42.Fc complex can be formed by extrinsic addition of the soluble protein. Truncated forms of gp42.Fc that retain the ability to bind HLA class II but that cannot interact with gH and gL still inhibit B-cell infection by wild-type virus but cannot inhibit infection of SVKCR2 cells or rescue the ability of recombinant gp42-negative virus to transform B cells. An analysis of wild-type virions indicates the presence of more gH and gL than gp42. To explain these results, we describe a model in which wild-type EBV virions are proposed to contain two types of gH-gL complexes, one that includes gp42 and one that does not. We further propose that these two forms of the complex have mutually exclusive abilities to mediate the infection of B cells and epithelial cells. Conversion of one to the other concurrently alters the ability of virus to infect each cell type. The model also suggests that epithelial cells may express a molecule that serves the same cofactor function for this cell type as HLA class II does for B cells and that the gH-gL complex interacts directly with this putative epithelial cofactor.All herpesviruses examined to date encode a complex of two glycoproteins, gH and gL, that appear to be necessary, if not sufficient, for virus penetration. Glycoprotein gH is generally thought to be the major player in virus cell fusion (5, 6, 8, 14, 20, 25, 26), while the role of gL is to serve as a chaperone, essential for folding and transport of functional gH (3, 11, 13, 20, 21, 28, 29). The Epstein-Barr virus (EBV) gH-gL complex follows this pattern. Glycoprotein gp85, the gH homolog, is retained in the endoplasmic reticulum in the absence of gp25, the EBV gL (38), and virosomes made from EBV proteins depleted of the gH-gL complex bind to cells but fail to fuse (9). The EBV gH-gL complex, however, includes a third glycoprotein, gp42, which is the product of the BZLF2 open reading frame (ORF) (18). This third component has also proven to be essential for penetration of the major target cell of EBV, the B lymphocyte. Several lines of evidence indicate that gp42 is a ligand for HLA class II and, further, that HLA class II functions as a cell surface cofactor for EBV entry into this cell type. Glycoprotein gp42 interacts with the β1 domain of HLA class II protein HLA-DR (30), and a monoclonal antibody (MAb) to gp42 called F-2-1 interferes with this interaction (17). MAb F-2-1 has no effect on EBV attachment via glycoprotein gp350/220 to its primary receptor, complement receptor type 2 (CR2; CD21) but inhibits the fusion of the virus with the B-cell membrane (22). Similarly, a MAb to HLA-DR or a soluble form of gp42 blocks B-cell transformation. Finally, B-cell lines which lack expression of HLA class II are not susceptible to superinfection with EBV unless expression of class II is restored (17). Most recently, we derived a recombinant virus with gp42 expression deleted and confirmed that loss of the glycoprotein resulted in a virus that attached to the B-cell surface but that failed to penetrate unless it was treated with the fusogenic agent polyethylene glycol (36).Although most is known about the early interactions of EBV with B lymphocytes in vitro since these cells are readily available and easy to culture, infection is not restricted to this cell type in vivo. During our initial analysis of the biology of gp42 we had therefore examined its potential role in infection of a then newly derived model epithelial cell line, SVKCR2. SVKCR2 cells are transformed with simian virus 40 and stably transfected with B-cell receptor CR2 (19). They are poorly infectable with many strains of EBV, but in excess of 30% of the cells can be infected with the Akata strain of virus as judged by the expression of EBV latent protein EBNA 1 (18, 19). We found that MAb F-2-1 had no effect on the infection of SVKCR2 cells. At the same time, a second MAb, E1D1, which reacts with an epitope that can be formed by the coexpression of gH and gL in the absence of gp42, neutralized infection of SVKCR2 cells, but had no effect on the infection of lymphocytes. These data strongly suggested that the involvement of the gH-gL complex in the internalization of virus into the two cell types was different. We hypothesized that just as EBV has evolved a glycoprotein, gp350/220, which is uniquely adapted for attachment to B lymphocytes, so it has evolved a second glycoprotein, gp42, uniquely adapted for penetration into the same cell type (18). The implication was that gp42 might be dispensable for infection of epithelial cells.Since we made our initial observations with SVKCR2 cells, several novel reagents, including the Akata strain virus with the expression of gp42 deleted, have become available. The recent insights into the role of HLA class II in B-cell infection also provided new impetus to reexamine the involvement of the gH-gL complex in epithelial cell infection. We report here that gp42 is not required for infection of SVKCR2 cells despite the fact that the soluble form of the protein that inhibits B-cell infection can also neutralize infection of SVKCR2 cells. To explain these apparently anomalous results, we describe a model which proposes that wild-type EBV virions contain two types of gH-gL complexes, one that includes gp42 and one that does not. We further propose that the tripartite “B-cell complexes” are not functional for infection of epithelial cells, just as the bipartite “epithelial cell complexes” are unable to mediate infection of the B lymphocyte.  相似文献   

3.
4.
5.
6.
7.
选用Epstin-Barr病毒(EBV)基因组内部重复序列1(IR1)片断作为多聚酶链反应(Polymerase Chain Reaction,PCR)扩增引物,用于检测了31例不同病例活检组织和4例新鲜鼻咽组织经体外培养6周以上的新生上皮细胞内EBV基因,其中检出EBVDNA:高分化鼻咽癌5/5,低分化鼻咽癌4/4,何杰金氏病5/5,非何杰金氏病0/2,头颈其他肿瘤1/6,鼻咽慢性炎症0/5,正常鼻咽组织0/4;新生上皮细胞DNA抽提物;低分化鼻咽癌2/2,炎症0/1,正常人胚鼻咽上皮0/1;携带EBV基因组细胞系(Raji,B_(95-8)各1)2/2,致淋巴细胞转化之B_(95-8)病毒为10~(-4),PCR检测10~(-4)~10~(-6)均阳性,10~(-7)未检出。结果表明EBV与鼻咽癌与何杰金氏病有关,常规石蜡包埋切片仅8μm×0.1mm~2,贮存时间至三年仍可用于PCR检测EBV DNA,证实PCR是一种快速、灵敏和特异测捡EBV基因组的方法,可作为肿瘤和疚病病毒病因回顾性调直研究的有力手段。  相似文献   

8.
9.
10.
选用产EB病毒的绒猴淋巴细胞B95-8系和补体受体2型(complement receptor 2,CR2)与多聚免疫球蛋白受体(polymeric immunoglobulin receptor,plgR)表达阴性的人水生化上皮细胞Hacat系共培养,进行细胞接触感染实验。一周后去除B95-8细胞,仅留Hacat细胞,并以自行改进的方法鉴定前者是否得以彻底去除。在证实没有.B95-8残留后,PCR和原位杂交分别检验剩余Hacat细胞中EB病毒的感染结果。实验结果表明:改进的方法能够灵敏和简便地判断B95-8细胞的污染与否,并且与.B95-8细胞接触共培养的Hacat细胞能被EB病毒有效地感染,后者暗示了EB病毒对上皮细胞可能存在细胞融合和CR2或plgR介导之外新的感染途径。本研究在一定程度上简化了前人的细胞接触感染方法,也为建立天然的EB病毒自发有效地感染上皮细胞的模型奠定了基础。  相似文献   

11.
细胞间接触是EB病毒自发感染人类上皮细胞的有效途径   总被引:2,自引:0,他引:2  
选用产EB病毒的绒猴淋巴细胞B95-8系和补体受体2型(complement receptor 2, CR2)与多聚免疫球蛋白受体(polymeric immunoglobulin receptor, pIgR)表达阴性的人永生化上皮细胞Hacat系共培养,进行细胞接触感染实验.一周后去除B95-8细胞,仅留Hacat细胞,并以自行改进的方法鉴定前者是否得以彻底去除.在证实没有B95-8残留后,PCR和原位杂交分别检验剩余Hacat细胞中EB病毒的感染结果.实验结果表明改进的方法能够灵敏和简便地判断B95-8细胞的污染与否,并且与B95-8细胞接触共培养的Hacat细胞能被EB病毒有效地感染,后者暗示了EB病毒对上皮细胞可能存在细胞融合和CR2或pIgR介导之外新的感染途径.本研究在一定程度上简化了前人的细胞接触感染方法,也为建立天然的EB病毒自发有效地感染上皮细胞的模型奠定了基础.  相似文献   

12.
13.
14.
15.
Lymphocryptoviruses (LCVs) naturally infecting Old World nonhuman primates are closely related to the human LCV, Epstein-Barr virus (EBV), and share similar genome organization and sequences, biologic properties, epidemiology, and pathogenesis. LCVs can efficiently immortalize B lymphocytes from the autologous species, but the ability of a given LCV to immortalize B cells from other Old World primate species is variable. We found that LCV from rhesus monkeys did not immortalize human B cells, and EBV did not immortalize rhesus monkey B cells. In this study, baboon LCV could not immortalize human peripheral blood B cells but could readily immortalize rhesus monkey B cells. Thus, efficient LCV-induced B-cell immortalization across distant Old World primate species appears to be restricted by a species-specific block. To further characterize this species restriction, we first cloned the rhesus monkey LCV major membrane glycoprotein and discovered that the binding epitope for the EBV receptor, CD21, was highly conserved. Stable infections of human B cells with recombinant amplicons packaged in rhesus monkey or baboon LCV envelopes were also consistent with a species-restricted block occurring after virus binding and penetration. Transient infections of human B cells with simian LCV resulted in latent LCV EBNA-2 gene expression and activation of cell CD23 gene expression. EBV-immortalized human B cells could be coinfected with baboon LCV, and the simian virus persisted and replicated in human B cells. Thus, several lines of evidence indicate that the species restriction for efficient LCV-induced B-cell immortalization occurs beyond virus binding and penetration. This has important implications for the study of LCV infection in Old World primate models and for human xenotransplantation where simian LCVs may be inadvertently introduced into humans.  相似文献   

16.
《Autophagy》2013,9(5):484-486
The bovine mammary gland undergoes intensive remodeling during the lactation cycle, and the escalation of this process is observed during dry periods. The main type of cell death responsible for bovine mammary gland involution is apoptosis; however, there are also a lot of cells exhibiting morphological features of autophagy during drying off. Our in vitro and in vivo studies of bovine mammary gland physiology suggest that the enhanced process of autophagy, observed at the end of lactation and during dry periods, is the result of: (1) decreased level of lactogenic hormones (GH, IGF-I), (2) decreased GH-R and IGF-IRα expression, (3) increased expression of auto/paracrine apoptogenic peptides (IGFBPs, TGF-β1), (4) increased influence of sex steroids (17β-estradiol and progesterone) and (5) enhanced competition between the intensively developing fetus and the mother organism for nutritional and bioactive compounds. The above conditions may create a state of temporary malnutrition of mammary epithelial cells, which forces the cells to the induction of autophagy, as a mechanism for stabilizing intracellular supplies of energy and amino acids, especially during the enhanced activity of apoptogenic factors.

Addendum to:

Apoptosis and Autophagy in Mammary Gland Remodeling and Breast Cancer Chemotherapy

T. Motyl, B. Gajkowska, J. Zarzyńska, M. Gajewska and M. Lamparska-Przybysz

J Physiol Pharmacol 2006; 57:17-32  相似文献   

17.
Host Cell Regulation of Induction of Epstein-Barr Virus   总被引:18,自引:6,他引:12  
When Epstein-Barr virus (EBV) negative cells (Raji) were treated with iododeoxyuridine, only the early antigen (EA) component was induced. There was no significant increase in EBV DNA and no virus particles were observed. Somatic-cell hybrids were prepared from the fusion of Raji and D98 cells (D98/Raji). When these cells were treated with iododeoxyuridine, early antigen EBV DNA, and virus particles were synthesized. These data suggest cellular control over the expression of the EBV genome.  相似文献   

18.
Glycoprotein gp150 is a highly glycosylated protein encoded by the BDLF3 open reading frame of Epstein-Barr virus (EBV). It does not have a homolog in the alpha- and betaherpesviruses, and its function is not known. To determine whether the protein is essential for replication of EBV in vitro, a recombinant virus which lacked its expression was made. The recombinant virus had no defects in assembly, egress, binding, or infectivity for B cells or epithelial cells. Infection of epithelial cells was, however, enhanced. The glycoprotein was sensitive to digestion with a glycoprotease that digests sialomucins, but no adhesion to cells that express selectins that bind to sialomucin ligands could be detected.  相似文献   

19.
20.
Epstein-Barr virus infection has been epidemiologically associated with the development of multiple autoimmune diseases, particularly systemic lupus erythematosus and multiple sclerosis. Currently, there is no known mechanism that can account for these associations. The germinal-center (GC) model of EBV infection and persistence proposes that EBV gains access to the memory B cell compartment via GC reactions by driving infected cells to differentiate using the virus-encoded LMP1 and LMP2a proteins, which act as functional homologues of CD40 and the B cell receptor, respectively. The ability of LMP2a, when expressed in mice, to allow escape of autoreactive B cells suggests that it could perform a similar role in infected GC B cells, permitting the survival of potentially pathogenic autoreactive B cells. To test this hypothesis, we cloned and expressed antibodies from EBV+ and EBV memory B cells present during acute infection and profiled their self- and polyreactivity. We find that EBV does persist within self- and polyreactive B cells but find no evidence that it favors the survival of pathogenic autoreactive B cells. On the contrary, EBV+ memory B cells express lower levels of self-reactive and especially polyreactive antibodies than their uninfected counterparts do. Our work suggests that EBV has only a modest effect on the GC process, which allows it to access and persist within a subtly unique niche of the memory compartment characterized by relatively low levels of self- and polyreactivity. We suggest that this might reflect an active process where EBV and its human host have coevolved so as to minimize the virus''s potential to contribute to autoimmune disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号