首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Transport of aluminum and gallium from blood into rat tissues following continuous iv infusion of metals in different chemical forms has been investigated. Tissue uptake of aluminum and gallium was similar and highly dependent on the chemical species of the metals. Aluminum and gallium accumulated in liver and spleen when infused in the chloride form. Raised citrate markedly enhanced aluminum and gallium uptake into renal cortex and bone; in contrast with gallium-transferrin, citrate increased uptake of67Ga into renal cortex and bone by 8- and 14-fold respectively. Uptake of67Ga with citrate into renal cortex was around 3 times smaller than that of aluminum. The antitransferrin receptor antibody OX-26 enhanced67Ga uptake from gallium citrate into all rat tissues.67Ga from purified gallium-transferrin was also taken into all tissues in the presence of OX-26, the effect being greatest in renal cortex and bone. No influence of antibody on aluminum transport into rat tissues was, however, observed when aluminum was infused in the citrate form. Therefore, transport of aluminum and gallium into tissues is not similar under all conditions. Transport of each metal occurs into all tissues in the presence of antitransferrin receptor antibody. The potential for such transport is much greater in the case of gallium. Transport of aluminum and gallium citrate complexes appears important especially in the renal cortex and bone.  相似文献   

2.
Transferrin and transferrin receptors play an important role in the transport of iron into the brain. To determine whether gallium enters the brain by the same mechanism, uptakes of Ga and 59Fe have been compared under controlled conditions. Rates of gallium penetration into brain (K) were four times slower than those for 59Fe. Kin for Ga when infused with citrate were 0.88 ± 0.24 and 0.94 ± 0.39 x 10 ml gh for cerebral hemisphere and cerebellum, respectively. When infused as the transferrin complex, Ga uptake into the brain was not different from that when infused with citrate. The presence of the anti-transferrin receptor antibody OX-26 significantly reduced uptake of Fe by 60% and 64% into cerebral hemisphere and cerebellum, respectively. By contrast, pretreatment of rats with OX-26 enhanced the uptake of Ga into brain, particularly when infused with citrate; mean increases in uptake of Ga were 120% and 144% for cerebral hemisphere and cerebellum, respectively. Purified Ga-transferrin was also taken up into both brain regions examined in the presence of OX-26. These results indicate that the transport of non-transferrin bound gallium is an important mechanism for gallium uptake into brain.  相似文献   

3.
Abstract: Uptake of 59Fe from blood into brains of anaesthetized rats and mice has been studied by intravenous infusion of [59Fe]ferrous ascorbate or of 59Fe-transferrin, the results not being significantly different. Uptakes in the rat were linear with time, but increased at longer times in the mouse. Transfer constants, K in (in ml/g/h × 103), for cerebral hemispheres were 5.2 in the adult rat and 5.6 in the mouse. These K in values corresponded to 59Fe influxes of 145 and 322 pmol/g/h, respectively. 59Fe uptake into the mouse brain occurred in the following order: cerebellum > brainstem > frontal cerebral cortex > parietal cortex > occipital cortex > hippocampus > caudate nucleus. In genetically hypotransferrinaemic mice, 59Fe uptake into brain was 80–95 times greater than in To strain mice. Pretreatment of young rats and mice with monoclonal antibodies to transferrin receptors, i.e., the anti-rat immunoglobulin G OX 26 and the anti-mouse immunoglobulin M RI7 208, inhibited 59Fe uptake into spleen by 94% and 98%, respectively, indicating saturation of receptors. The antibodies reduced 59Fe uptake into rat brain by 35–60% and that into mouse brain by 65–85%. Although a major portion of iron transport across the blood-brain barrier is normally transferrin-mediated, non-transferrin-bound iron readily crosses it at low serum transferrin levels.  相似文献   

4.
Evidence of a link between aluminium and Alzheimer's disease, parkinsonism-dementia of Guam, and dialysis encephalopathy raises questions regarding the role of this element in the pathogenesis of these conditions. Therefore, we have investigated the use of gallium-67 (67Ga) as a marker for brain uptake of aluminium. The binding of 67Ga to plasma proteins has been studied, and the blood-brain barrier permeability and autoradiographic distribution of this isotope in rat brain determined in vivo. The autoradiographic distribution of 125I-Fe-transferrin receptors in rat brain has also been determined in vitro. Results show that 67Ga was bound to plasma transferrin, entered the brain with a blood-brain barrier permeability of 2.48 x 10(-6) ml/min/g, and showed a marked regional distribution that was very similar to that of 125I-Fe-transferrin receptors. Our data suggest that the vulnerability of the hippocampus, amygdala, and cerebral cortex in conditions such as those mentioned above may be partly due to an increased uptake and deposition of aluminium in these regions by the iron transport system.  相似文献   

5.
Aluminum (Al) and gallium (Ga) permeations of the blood-brain barrier (BBB) were assessed in rats. Unbound extracellular Al and Ga concentrations were ascertained at the two potential sites of BBB permeation, cerebral capillaries and choroid plexuses, by implantation of microdialysis probes in the frontal cortex and lateral ventricle, respectively. A microdialysis probe implanted in the jugular vein revealed unbound blood Al or Ga concentrations. Al or 67Ga citrate was administered via the femoral vein. Peak Al and Ga concentrations were seen within the first 10 min at all three sites. Area under the curve (concentration vs. time to final sample) values were calculated using RSTRIP. Within-rat overall frontal cortical/blood and lateral ventricular/blood ratios [brain/blood ratios (oBBRs)] were calculated from area under the curve values. Aluminum frontal cortical oBBRs were significantly higher than those for the lateral ventricle. Ga oBBRs were not significantly different between the two sites. Al and Ga oBBRs were significantly different in the lateral ventricle. These results suggest that the primary site of A1 permeation across the BBB is at cerebral capillaries, whereas Ga permeation across the BBB does not significantly differ between cerebral capillaries and choroid plexuses. The use of Ga as a model to study Al pharmacokinetics may not be appropriate in the elucidation of the site or mechanism of Al entry into the brain.  相似文献   

6.
Aluminum (Al) is normally present in soils as the insoluble, harmless Al2O3. The highly toxic Al3+ and AlOH2+ monomeric cations are formed in acid soils but there is little consensus on the physiological basis of Al toxicity in plants. A major factor that has retarded progress in understanding aluminum toxicity in vascular plants is the lack of a convenient radioisotope for Al. Yeast and vascular plants share similar membrane transport mechanisms and so yeast (Saccharomyces cerevisiae) provides a convenient model system for studies of Al-toxicity. Al and gallium (Ga) have closely similar toxic effects on the yeast cells (Ki approximately 100 mmol m-3) and Ga3+ and Al3+, respond similarly to pH and are both reversible by a chelation agent (citric acid). We tested the feasibility of using 67Ga radioisotope as a tracer for Al transport with the view of using it to investigate the mechanism of Al uptake and toxicity in plants. The clinically available 67Ga citrate is unsuitable to use as an aluminum analogue because the chelated form is not toxic. Arrangements need to be made for it to be supplied as 67GaCl3. Large amounts of 67Ga rapidly bind to the cell wall of yeasts with a t 1/2 of approximately 1 s. There is a very slow net uptake of 67Ga into a second phase, presumably the cytoplasm. Uptake into the slow phase has a Vmax of only approximately 16 +/- 4 pmol m(-2) s(-1) (n = 16). The Km of 67Ga uptake could not be precisely determined but is below 100 mmol m(-3) (45 +/- 42 mmol m(-3), n = 16).  相似文献   

7.
Gallium(III) is a new therapeutic agent for hypercalcemia. Ga3+ reduces osteoclast action, but how it inhibits the cell's physiology is unknown. In vivo, 7-12 microM Ga(III) reduces calcium release from bone, but surprisingly, 10-100 microM Ga3+ added to isolated avian osteoclasts did not reduce their degradation of L-(5-3H)-proline bone. 3H-proline labels bone collagen specifically, and collagenolysis is an excellent indicator of bone dissolution because collagen is the least soluble component of bone. Ga(III) greater than 100 microM inhibited osteoclasts in vitro, but also killed the cells. To resolve this apparent conflict, we measured 67Ga distribution between bone, cells, and media. Gallium binds avidly but slowly to bone fragments. One hundred micrograms of bone clears 60% of 1 microM gallium from 500 microliters of tissue culture medium, with steady state at greater than 24 h. Osteoclasts on bone inhibited gallium binding capacity approximately 40%, indicating a difference in available binding area and suggesting that osteoclasts protect their substrate from Ga binding. Less gallium binds to bone in serum-containing medium than in phosphate-buffered saline; 30% reduction of the affinity constant suggests that the serum containing medium competes with bone binding. Consequently, the effect of [Ga] on bone degradation was studied using accurately controlled amounts of Ga(III) pre-bound to the bone. Under these conditions, gallium sensitivity of osteoclasts is striking. At 2 days, 100 micrograms of bone pre-incubated with 1 ml of 1 microM Ga3+, with 10 pmoles Ga3+/micrograms bone, was degraded at 50% the rate of control bone; over 50 pM Ga3+/micrograms bone, resorption was essentially zero. In contrast, pre-treatment of bone with [Ga3+] as high as 15 microM had no significant effect on bone resorption rate beyond 3 days, indicating that gallium below approximately 150 pg/micrograms bone acts for a limited time and does not permanently damage the cells. We conclude that bone-bound Ga(III) from medium concentrations less than 15 microM inhibits osteoclasts reversibly, while irreversible toxicity occurs at solution [Ga3+] greater than 50 microM.  相似文献   

8.
Hypotransferrinemia is a genetic defect in mice resultingin 1% of normal plasma transferrin (Tf) concen-trations;heterozygotes for thismutation (+/hpx) have low circulating Tf concentrations. These mice providea unique opportunity toexamine the developmental pattern and response of Tf to iron-deficient diets, andfurthermore,to address the controversial role of Tf in Mn transport. Twenty-three weanling +/hpx miceandforty-five wild-type BALB/cJ mice were either killed at weaning or fed diets containing either13 or 72 mgkg Fe, and killed after four or eight weeks. Plasma Tfconcentrations were lower in +/hpx mice, plasmaTf nearly doubled and liver Tf was only 50% of normalin response to iron deficiency. Brain iron concen-trationdid not correlate significantlywith either plasma Tf or TIBC. However, iron accumulation into braincontinued with irondeficiency whereas most other organs had less iron. These results imply that eitherthereis a selected targeting of iron to the brain by plasma Tf or there is an alternative irondelivery system tothe brain. Furthermore, we observed no differences in tissuedistribution of Mn despite the differences incirculating Tf concentrationsand body iron stores; this suggests that there are non-Tf dependent mecha-nismsfor Mntransport.  相似文献   

9.
《Bone and mineral》1990,8(3):211-216
Gallium nitrate has been used clinically to treat cancer-related hypercalcemia. It has been suggested that gallium may reduce calcium release from bone by inhibiting bone resorption, but the mechanism(s) involved remain to be elucidated. Therefore, we have examined the effect of gallium on bone resorption in vitro using osteoclasts isolated from neonatal rat long bones cultured on slices of cortical bone. Gallium nitrate (0.01–100 μg/ml) produced a concentration-dependent inhibition of bone resorption. Morphological studies showed that even (100μg/ml) gallium nitrate induced no light microscopical change in osteoclast morphology and did not affect their survival on bone slices. Pretreatment of bone slices with gallium nitrate (100μg/ml for 18 h), followed by extensive washing also inhibited subsequent osteoclastic bone resorption. These results suggest that gallium can be adsorbed onto the calcified surface of bone and inhibit osteoclastic bone resorption.  相似文献   

10.
Abstract: Estimates have been made of the amounts and rates of uptake of radioactive branched-chain i-amino acids, L-phenylalanine, and L-glutamine into incubated rat brain cortex slices. Estimates have also been made of the binding of these amino acids to brain cell fragments. It is shown that such binding, as well as the process of passive diffusion, is not affected by the presence of ouabain (0.2 mM), which suppresses the energy-dependent concentrative uptakes of the amino acids investigated. The maximum specific binding of L-glutamine is about three times that of the other amino acids and amounts to about 11% of the total uptake of the amino acid by rat brain cortex slices in 12 min from a medium containing 0.25 mM-glutamine. The sodium-ion concentration of the medium appears not to play a significant role in determining the rate of L-glutamine uptake in brain slices except at relatively low concentrations (<20 mequiv./l). The presence of Na+, however, is essential for the attainment of a tissue-to-medium concentration ratio greater than 2.0 for L-glutamine. At relatively low concentrations (0.25 mM) the rapidity of uptake of L-glutamine into a suspension of nerve terminals exceeds that into brain cortex slices. The uptakes of L-glutamine (Km's = 0.66 mM and 2.25 mM) and of the branched chain L-amino acids (Km's approx. 0.3 mM and 2 mM) by rat brain cortex slices are characterized by a double affinity system, but that of L-phenylalanine has only one affinity system (Km= 0.23 mM). The Km's have been calculated after subtracting the ouabain-insensitive passive uptakes of the amino acids from the total observed uptakes.  相似文献   

11.
In connection with the uptake of 67Ga into the inflammatory tissues, such as granuloma tissues produced with turpentine oil, the influence of Fe3+ on the uptake of 67Ga into mouse granuloma and normal tissues and on the uptake of 125I-labeled transferrin and 59Fe were investigated. Fe3+ decreased the uptake of 67Ga into the liver and spleen, but had no influence on the uptake of 67Ga into the granuloma tissues. The uptake patterns of 125I-labeled transferrin and 59Fe in the granuloma tissues were not consistent with that of 67Ga at all. These results show that the uptake of 67Ga into the granuloma tissues occurs in a free, transferrin-unbound form, but into the liver and spleen in a transferrin-bound form.  相似文献   

12.
Zinc is essential for normal growth, development and brain function although little is known about brain zinc homeostasis. Therefore, in this investigation we have studied65Zn uptake from blood into brain and other tissues and have measured the blood-brain barrier permeability to65Zn in the anaesthetized rat in vivo. Adult male Wistar within the weight range 500–600 g were used.65ZnCl2 and [125I]albumin, the latter serving as a vascular marker, were injected in a bolus of normal saline I.V. Sequential arterial blood samples were taken during experiments that lasted between 5 min and 5 hr. At termination, samples from the liver, spleen, pancreas, lung, heart, muscle, kidney, bone, testis, ileum, blood cells, csf, and whole brain were taken and analysed for radio-isotope activity. Data have been analysed by Graphical Analysis which suggests65Zn uptake from blood by all tissues sampled was unidirectional during this experimental period except brain, where at circulation times<30 min,65Zn fluxes were bidirectional. In addition to the blood space, the brain appears to contain a rapidly exchanging compartment(s) for65Zn of about 4 ml/100g which is not csf.  相似文献   

13.
目的:研究阿里红黄酮对衰老模型小鼠的抗衰老作用。方法:将小鼠随机分为6组(n=12):正常对照组,衰老模型组,阳性对照组,低、中、高剂量阿里红黄酮组。除正常对照组外,其余各组均采用D-半乳糖颈背部皮下注射建立亚急性衰老小鼠模型,用不同剂量的阿里红黄酮(100、200和400 mg/(kg·d))灌服小鼠6周后,计算衰老模型小鼠脑指数及脾脏指数、胸腺指数,测定其脑组织丙二醛(MDA)含量及谷胱甘肽过氧化物酶(GSH-Px)活性、肝组织过氧化氢酶(CAT)及超氧化物歧化酶(SOD)活性。结果:阿里红黄酮3个剂量组可不同程度的升高衰老模型小鼠的脑指数、脾脏指数、胸腺指数、脑组织中的GSH-Px活性及肝组织中的CAT、SOD活性,降低其脑组织中的MDA含量。结论:阿里红黄酮可能通过提高机体的抗氧化能力而达到抗衰老作用。  相似文献   

14.
Serum aluminium concentrations and biopsy specimens of bone were examined in 56 patients with end stage chronic renal failure receiving maintenance haemodialysis. Deposits of aluminium in bone specimens were often associated with low bone formation with or without osteomalacia. Serum aluminium concentrations of greater than 3.7 mumol/l (10 micrograms/100 ml) indicated a high probability of deposits of aluminium in bone specimens, although high serum concentrations did not predict the type of renal bone disease. Biopsy of the bone is the best method of detecting aluminium intoxication of bone. A serum aluminium concentration of 3.7 mumol/l should be the threshold beyond which bone biopsy should be performed to confirm an overload of aluminium and identify histological bone changes induced by aluminium.  相似文献   

15.
The results from gel chromatography and electrophoresis showed that 67Ga is exclusively bound with transferrin both in vitro and in vivo, but high concentrations of sodium citrate strongly inhibited the binding of 67Ga to transferrin. The influence of sodium citrate on the uptake of 67Ga into inflammatory and normal soft tissues was also investigated. Sodium citrate decreased the uptake of 67Ga into the liver and spleen, but had no influence on the uptake of 67Ga into inflammatory tissue. These results suggest that the uptake of 67Ga into normal soft tissues occurs in a transferrin-bound form but into inflammatory tissue in an unbound form.  相似文献   

16.
In this review, we have mainly included studies in which whole-body autoradiography was used. In lipid research, most studies have been done with fatty acids. These studies showed some common characteristics in the pattern of tissue distribution. A major uptake was seen in the brown fat, liver and adrenal cortex but also to some extent in other tissues with a high metabolic activity or high cell turn-over, e.g. the gastric and intestinal mucosa, diaphragm, kidney cortex and bone marrow. Low levels of radioactivity were generally found in the brain, testes, thymus, white fat, skeletal muscles, lungs and spleen. Most fatty acids showed some specific features, e.g the strong uptake of erucic, arachidonic and docosahexaenoic acid in myocardium and of eicosapentaenoic acid in the adrenal cortex. Studies with PGE1 and LTC3 showed that the liver and kidney and to a lesser degree the lungs were the major sites of metabolism. The distribution of free cholesterol and triolein emulsion labelled in the fatty acid moieties did show some similarities with respect to the general pattern found with most fatty acids. Specific for cholesterol was a very strong uptake in the adrenal cortex. There was also a significant uptake in the spleen whereas the uptake in the brown fat was not as marked as for most fatty acids. Specific for triolein was a marked uptake in the spleen and myocardium, in fed animals also in the white adipose tissue. These studies show that whole-body autoradiography can give much valuable information of the uptake and distribution of lipids that would be rather difficult to obtain with conventional methods. Combined with electron-microscopy, autoradiography can be used to study cellular and even subcellular distribution, and thus given further data on the metabolism of lipids in the body.  相似文献   

17.
Aluminium toxicity and iron homeostasis.   总被引:7,自引:0,他引:7  
In an animal model of aluminum overload, (aluminium gluconate), the increases in tissue aluminium content were paralleled by elevations of tissue iron in the kidney, liver heart and spleen as well as in various brain regions, frontal, temporal and parietal cortex and hippocampus. Despite such increases in iron content there were no significant changes in the activities of a wide range of cytoprotective enzymes apart from an increase in superoxide dismutase in the frontal cortex of the aluminium loaded rats. Such increases in tissue iron content may be attributed to the stabilisation of IRP-2 by aluminium thereby promoting transferrin receptor synthesis while blocking ferritin synthesis. Using the radioactive tracer (26)Al less than 1% of the injected dose was recovered in isolated ferritin, supporting previous studies which also found little evidence for aluminium storage within ferritin. The increases in brain iron may well be contributory to neurodegeneration, although the pathogenesis by which iron exerts such an effect is unclear.  相似文献   

18.
The uptake of intravascular [123I]isopropyliodoamphetamine (IMP) and99mTc-pertechnetate into choroid plexus (CP) and brain (frontal cortex) was studied by an indicator fractionation method applied to immature, ketamine-anesthetized Sprague-Dawley rats (1.5, 2, and 3 wk). Assessment of the rate and extent of uptake of these indicators provides functional information (eg blood flow; transport) about various regions of the developing CNS. IMP uptake by lateral ventricle CP was 1.15 ml/g/min in 1.5-wk-old infant rats and gradually increased to 3.9 ml/g/min by adulthod (7–8 wk) (P<0.05); over the same postnatal period,99mTc uptake went from 2.82 to 3.18 ml/g/min. IMP uptake by cortex was 0.39 and 0.99 ml/g/min in infants and adults, respectively (P<0.05); however,99mTc uptake by cortex was only 0.07±0.01 ml/g/min at all ages, reflecting early development of blood-brain barrier (BBB) to pertechnetate. Overall, our findings indicated a progressive increase with age in the rate of uptake of IMP by CP and brain; and that99mTc penetration into CP was relatively constant and substantially greater than into cortex at all developmental stages. Thus the nature of uptake of IMP, relative to99mTc, was markedy different at the blood-cerebrospinal fluid barrier (i.e., CP) vs. the blood-brain barrier.  相似文献   

19.
The present study was designed to understand the influence of zinc (Zn) if any, on the biokinetics of 65Zn in brain as well as whole body and its bio-distribution following aluminium (Al) treatment to rats. Male Sprague–Dawley rats weighing 140–160 g were divided into four different groups viz: normal control, aluminium treated (100 mg/kg b.wt./day via oral gavage), zinc treated (227 mg/L in drinking water) and combined aluminium and zinc treated. All the treatments were carried out for a total duration of 8 weeks. Al treatment showed a significant increase in fast component (Tb1) but revealed a significant decrease in slow component (Tb2) of biological half-life in brain as well as in whole body. However, Zn supplementation to Al-treated rats reversed the trend in both brain and whole body, which indicates a significant decrease in Tb1 component while the Tb2 component was significantly increased. Further, Al treatment showed an increased percent uptake value of 65Zn in cerebrum, cerebellum, heart, liver and lungs whereas a decrease in uptake was found only in blood. On the other hand, there was a significant decline in 65Zn activity in nuclear and mitochondrial fractions of brain of Al-treated rats. However, Zn treatment reversed the altered 65Zn uptake values in different organs as well as in various subcellular fractions. The study demonstrates that Zn shall prove to be effective in regulating the biokinetics of 65Zn in brain and whole body and its distribution at the tissue and subcellular levels in Al-treated rats.  相似文献   

20.
The transfer coefficients (Kin) for the uptake of gallium-67 (67Ga) into brain and CSF were determined in unanesthetized male Fischer-344 rats fed either a normal or a low-Ca diet. Kin for 67Ga was also compared with transfer coefficients for the uptake of iron-55 (55Fe) and 125I-albumin in control animals. The value of CSF 67Ga Kin was 3 x 10(-7) ml.g-1.s-1 and was 50% larger in low-Ca animals. Brain regional Kin values for 67Ga were 3-9 x 10(-7) ml.g-1.s-1 with no differences in Kin between normal and low-Ca rats. CSF Kin values for 55Fe were 40% and those for albumin were 15% of Kin for 67Ga. For brain, Kin values for 55Fe were 15-40% smaller than for 67Ga, but for albumin the Kin values were 85% less than for 67Ga. 67Ga was found to be 99% bound to plasma proteins, whereas 55Fe was 99.9% bound. The results indicate that metals that are primarily bound to transferrin enter the CSF and brain very slowly. Uptake of both metals was faster than albumin, which may indicate that metal bound to small chelates contributes significantly to brain uptake. In addition, Ca deficiency does not enhance entry of Ga into the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号