首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have established several HLA-A2.1-transgenic rabbit lines to provide a host to study CD8(+) T cell responses during virus infections. HLA-A2.1 protein expression was detected on cell surfaces within various organ tissues. Continuous cultured cells from these transgenic rabbits were capable of presenting both endogenous and exogenous HLA-A2.1-restricted epitopes to an HLA-A2.1-restricted epitope-specific CTL clone. A DNA vaccine containing an HLA-A2.1-restricted human papillomavirus type 16 E7 epitope (amino acid residues 82-90) stimulated epitope-specific CTLs in both PBLs and spleen cells of transgenic rabbits. In addition, vaccinated transgenic rabbits were protected against infection with a mutant cottontail rabbit papillomavirus DNA containing an embedded human papillomavirus type 16 E7/82-90 epitope. Complete protection was achieved using a multivalent epitope DNA vaccine based on epitope selection from cottontail rabbit papillomavirus E1 using MHC class I epitope prediction software. HLA-A2.1-transgenic rabbits will be an important preclinical animal model system to study virus-host interactions and to assess specific targets for immunotherapy.  相似文献   

2.
3.
A human papillomavirus (HPV) vaccine consisting of virus-like particles (VLPs) was recently approved for human use. It is generally assumed that VLP vaccines protect by inducing type-specific neutralizing antibodies. Preclinical animal models cannot be used to test for protection against HPV infections due to species restriction. We developed a model using chimeric HPV capsid/cottontail rabbit papillomavirus (CRPV) genome particles to permit the direct testing of HPV VLP vaccines in rabbits. Animals vaccinated with CRPV, HPV type 16 (HPV-16), or HPV-11 VLPs were challenged with both homologous (CRPV capsid) and chimeric (HPV-16 capsid) particles. Strong type-specific protection was observed, demonstrating the potential application of this approach.  相似文献   

4.
Previous studies have indicated that the frequency of murine CTL precursors (CTLp) for human class I molecules is one to two orders of magnitude lower than that for murine class I alloantigens, and that this is due to species-specific structural differences between these molecules. Transgenic mice expressing the human class I MHC Ag HLA-A2.1 were used to examine changes in the frequency of class I HLA-specific precursors after T cell differentiation in an HLA-A2.1 positive environment. The HLA-A2.1 gene product was expressed at levels comparable to those of the endogenous H-2Db molecule in thymus, bone marrow, and spleen. By limiting dilution analysis, it was observed that the frequencies of CTLp in transgenic mice responding to the human alloantigens HLA-B7 or HLA-A2.2 were comparable to or lower than those in normal C57BL/6 mice, regardless of whether the Ag was presented on human or murine cells. Thus, expression of a human class I molecule in these animals did not result in an expansion of the number of CTLp specific for other human class I Ag. In addition, the frequency of HLA-A2.1-restricted, influenza specific CTLp was substantially lower than the frequency of H-2b restricted CTLp, indicating a poor utilization of HLA-A2.1 as a restricting element. Finally, the frequencies of CTLp for HLA-A2.1 expressed on syngeneic murine tumor cells were decreased significantly. Thus, expression of HLA-A2.1 in these animals appeared to induced tolerance to this Ag. Interestingly, however, these mice were not tolerant to the HLA-A2.1 molecule expressed on human cells. This indicates that the HLA-A2.1 associated epitopes expressed on murine and human cells differ and suggests that, under these circumstances, HLA-A2.1 acts as a restricting element for human nominal Ag. These results are discussed in the context of current models of T cell repertoire development.  相似文献   

5.
Human papillomavirus (HPV) vaccines have the potential to prevent cervical cancer by preventing HPV infection or treating premalignant disease. We previously showed that DNA vaccination with the cottontail rabbit papillomavirus (CRPV) E6 gene induced partial protection against CRPV challenge and that the vaccine's effects were greatly enhanced by priming with granulocyte-macrophage colony-stimulating factor (GM-CSF). In the present study, two additional strategies for augmenting the clinical efficacy of CRPV E6 vaccination were evaluated. The first was to fuse a ubiquitin monomer to the CRPV E6 protein to enhance antigen processing and presentation through the major histocompatibility complex class I pathway. Rabbits vaccinated with the wild-type E6 gene plus GM-CSF or with the ubiquitin-fused E6 gene formed significantly fewer papillomas than the controls. The papillomas also required a longer time to appear and grew more slowly. Finally, a significant proportion of the papillomas subsequently regressed. The ubiquitin-fused E6 vaccine was significantly more effective than the wild-type E6 vaccine plus GM-CSF priming. The second strategy was to vaccinate with multiple CRPV early genes to increase the breadth of the CRPV-specific response. DNA vaccines encoding the wild-type CRPV E1-E2, E6, or E7 protein were tested alone and in all possible combinations. All vaccines and combinations suppressed papilloma formation, slowed papilloma growth, and stimulated subsequent papilloma regression. Finally, the two strategies were merged and a combination DNA vaccine containing ubiquitin-fused versions of the CRPV E1, E2, and E7 genes was tested. This last vaccine prevented papilloma formation at all challenge sites in all rabbits, demonstrating complete protection.  相似文献   

6.
Cottontail rabbit papillomavirus (CRPV) provides an animal model for human papillomaviruses associated with a high risk of cancer development. So far, nothing is known about the transforming functions of CRPV genes because of the lack of an assay system. We have recently developed two systems to assay for CRPV transforming functions. One is based on the finding that transformation of NIH 3T3 cells by CRPV is considerably increased by deleting sequences in open reading frame L2. The second one is based on the use of a cottontail rabbit skin epithelial cell line, sf1Ep (C. Meyers and F. O. Wettstein, Virology 181:637-646, 1991). Mutations were introduced which abolished expression of the full-length E6 protein (LE6), the short E6 protein (SE6) initiated at the second ATG of E6, the E7 protein, or the E5 protein. Mutations affecting LE6 or E7, but not SE6, reduced transformation of NIH 3T3 and sf1Ep cells. Transformed NIH 3T3 cell lines with mutations in LE6 and E7 did not grow in soft agar, while those with mutations in SE6 and E5 grew with a reduced efficiency. The cell lines with mutations in LE6, SE6, or E7 still did induce tumors in nude mice. These mutations, however, abolished the ability to induce papillomas in rabbits. When expressed individually with a retroviral vector, LE6, SE6, or E7, but not E5, conferred anchorage-independent growth. The level of viral protein expression in these cell lines was generally low, and a comparison of the abundance of virus-specific mRNA showed that cell lines contained 20 to 50 times less mRNA than a cottontail rabbit papilloma. These data demonstrate that CRPV encodes at least three transforming proteins.  相似文献   

7.
Previous studies have indicated that in transgenic mice expressing human class I MHC molecules, it is difficult to demonstrate a significant CTL response to a viral Ag in the context of the transgenic molecule. In this paper, a procedure is reported for the isolation of influenza-specific murine CTL restricted by the human class I molecule HLA-A2.1. The principal specificity of such CTL is for a fragment of the influenza M1 protein that has been previously shown to be immunodominant for human HLA-A2.1-restricted CTL. CTL of this specificity were also established through the use of peptide-pulsed rather than virus-infected stimulators. The dependence of murine CTL recognition upon peptide length and HLA-A2 structure was established to be similar to that previously reported for human CTL. However, the fine specificity of CTL maintained on virus-infected stimulators was somewhat different from that of CTL maintained with M1 peptide. This suggests that differences in surface density or peptide structure between peptide-pulsed and virus-infected stimulators may result in the outgrowth of T cells with different receptor structures. The immunodominance of the M1 peptide determinant in both mice and humans suggests that species-specific differences in TCR structure, Ag-processing systems, and self-tolerance are of less importance than limitations on the ability of antigenic peptides to bind to appropriate class I molecules. These results thus establish the utility of the transgenic system for the identification of human class I MHC-restricted T cell epitopes.  相似文献   

8.
Papillomaviruses are small DNA viruses that infect epithelial tissues and cause warts. Human papillomavirus (HPV) infection is the primary risk factor for the development of cervical cancer. The E6 and E7 oncogenes are the only genes consistently expressed in HPV-positive cervical cancer cells. Cottontail rabbit papillomavirus (CRPV) induces papillomas and carcinomas on cottontail and domestic rabbits and provides an excellent animal model of HPV infection and vaccine development. CRPV encodes three transforming proteins; LE6, SE6, and E7. Each of these proteins is required for papilloma formation. Like HPV E7, the CRPV E7 protein binds to the tumor suppressor pRB. In contrast, unlike HPV E6, the CRPV E6 proteins do not bind the tumor suppressor p53. Although more than a dozen cellular proteins have been identified as HPV E6 interacting proteins, nothing is known about the cellular interacting proteins of CRPV E6s. Here we describe the association of CRPV E6s with hDlg/SAP97, the mammalian homolog of the Drosophila discs large tumor suppressor protein. HPV E6 has previously shown to bind and target hDlg/SAP97 for degradation. Our results demonstrate that both LE6 and SE6 interact with hDlg/SAP97, although their association does not lead to the degradation of hDlg/SAP97. The PDZ domains of hDlg were shown to be sufficient for interaction with CRPV E6 proteins while the C-terminus of CRPV E6 is essential for the interaction with hDlg. The association of hDlg with SE6 may be important but not sufficient for the transformation of NIH 3T3 cells by SE6. Importantly, a CRPV SE6 mutant defective for papilloma formation did not interact with hDlg. These results suggest that interaction with hDlg/SAP97 plays a role in the biological function of CRPV E6s.  相似文献   

9.
Effect of IgE peptide-specific CTL on IgE antibody production was studied in mouse models. CTL elicited in B6.A2Kb tg mice against a human IgE peptide nonamer, pWV, lysed human IgE-secreting U266 myeloma cells and inhibit IgE production by these cells. U266 transfected with mouse A2Kb transgene (U266-A2Kb) were optimally lysed by these CTL, because the α3 domain of A2Kb interacts well with the CD8 co-receptors. The CTL generated were more effective in inhibiting IgE production by U266-A2Kb cells than lysing these cells. IgE production by and progression of U266 myeloma were suppressed in B6.A2Kb tg mice rendered tolerant to these cells and vaccinated with pWV along with CpG. We also studied the CTL response elicited in wild-type mice by a mouse nonameric IgE peptide, PI-1, along with CpG. This treatment caused a transient suppression of the IgE response in mice previously sensitized to an antigen. In mice treated with this regimen repeatedly, the IgE response was fully recovered 20 days after each treatment. Notably, while IgE peptide/CpG-treated mice remained unresponsive to antigen challenge in vivo, antigen-specific IgE production can be elicited by antigen in cultured splenocytes from these mice. Moreover, IgE peptide/CpG also inhibited an on-going IgE response, including IgE production by bone marrow cells. Taken together, these observations indicate that a CTL-based IgE peptide vaccine targeting IgE-secreting B/plasma cells may be safely employed as a therapeutic approach for suppressing IgE production.  相似文献   

10.
Cottontail rabbit papillomavirus (CRPV)-induced papillomas progress at a high frequency to carcinomas and thus can serve as a model for high-cancer-risk human papillomavirus infection. Previously, we have shown that antibodies to nonstructural and structural proteins are detected in only a fraction of papilloma-bearing animals. However, the antibody response to structural proteins drastically increases as papillomas progress to carcinoma (Y.-L. Lin, L. A. Borenstein, R. Selvakumar, R. Ahmed, and F. O. Wettstein, J. Virol. 67:382-389, 1993). Here we have monitored the cellular immune response to viral proteins during the course of infection and particularly during progression from papilloma to carcinoma. This was done by measuring the in vitro proliferation response of peripheral blood mononuclear cells (PBMCs) to CRPV structural proteins L1 and L2. The proliferating cells were identified as T cells by selective removal of B or T cells. In general, the T-cell response was low for rabbits at the papilloma stage and none responded to L2. Lymphocytes from animals with carcinomas more frequently and more strongly responded to L1, and more than half also responded to L2. In addition to stimulation of PBMCs, L1- and L2-specific proliferation could also be demonstrated with lymph node and spleen cells. Overall, our data show that progression of papilloma to carcinoma is associated with an increased T-cell response to CRPV structural proteins in addition to an increased humoral response. This greater immune reactivity, however, was not associated with a selectively increased expression of structural proteins, since RNA isolated from papillomas and carcinomas contained similar relative levels of late and early RNA as shown by dot blot analysis. Thus, the heightened immune reactivity seen in carcinoma-bearing rabbits most likely reflects greater stimulation of the immune system owing to dissemination of the tumor. These findings suggest that increased immune responses to papillomavirus proteins may be prognostic of progression to carcinoma and particularly of the development of metastases.  相似文献   

11.
Ru Z  Xiao W  Pajot A  Kou Z  Sun S  Maillere B  Zhao G  Ojcius DM  Lone YC  Zhou Y 《PloS one》2012,7(3):e32247
A new homozygous humanized transgenic mouse strain, HLA-A2.1(+/+)HLA-DP4(+/+) hCD4(+/+)mCD4(-/-)IAβ(-/-)β2m(-/-) (HLA-A2/DP4), was obtained by crossing the previously characterized HLA-A2(+/+)β2m(-/-) (A2) mouse and our previously created HLA-DP4(+/+) hCD4(+/+)mCD4(-/-)IAβ(-/-) (DP4) mouse. We confirmed that the transgenes (HLA-A2, HLA-DP4, hCD4) inherited from the parental A2 and DP4 mice are functional in the HLA-A2/DP4 mice. After immunizing HLA-A2/DP4 mice with a hepatitis B DNA vaccine, hepatitis B virus-specific antibodies, HLA-A2-restricted and HLA-DP4-restricted responses were observed to be similar to those in naturally infected humans. Therefore, the present study demonstrated that HLA-A2/DP4 transgenic mice can faithfully mimic human cellular responses. Furthermore, we reported four new HLA-DP4-restricted epitopes derived from HBsAg that were identified in both vaccinated HLA-A2/DP4 mice and HLA-DP4-positive human individuals. The HLA-A2/DP4 mouse model is a promising preclinical animal model carrying alleles present to more than a quarter of the human population. This model should facilitate the identification of novel HLA-A2- and HLA-DP4-restricted epitopes and vaccine development as well as the characterization of HLA-DP4-restricted responses against infection in humans.  相似文献   

12.
Cell marking is a very important procedure for identifying donor cells after cell and/or organ transplantation in vivo. Transgenic animals expressing marker proteins such as enhanced green fluorescent protein (EGFP) in their tissues are a powerful tool for research in fields of tissue engineering and regenerative medicine. The purpose of this study was to establish transgenic rabbit lines that ubiquitously express EGFP under the control of the cytomegalovirus immediate early enhancer/beta-actin promoter (CAG) to provide a fluorescent transgenic animal as a bioresource. We microinjected the EGFP expression vector into 945 rabbit eggs and 4 independent transgenic candidate pups were obtained. Two of them died before sexual maturation and one was infertile. One transgenic male candidate founder rabbit was obtained and could be bred by artificial insemination. The rabbit transmitted the transgene in a Mendelian manner. Using fluorescence in situ hybridization analysis, we detected the transgene at 7q11 on chromosome 7 as a large centromeric region in two F1 offspring (one female and one male). Eventually, one transgenic line was established. Ubiquitous EGFP florescence was confirmed in all examined organs. There were no gender-related differences in fluorescence. The established CAG/EGFP transgenic rabbit will be an important bioresource and a useful tool for various studies in tissue engineering and regenerative medicine.  相似文献   

13.
The ability to obtain infectious papillomavirus virions from molecularly cloned DNA has not been previously reported. We demonstrate here that viral genomes isolated from a recombinant++ DNA clone of cottontail rabbit papillomavirus (CRPV) gave rise to infectious virus when inoculated into cottontail rabbit skin. Replication occurred in papillomas that formed at inoculation sites. Extract of a DNA-induced papilloma was serially passaged to naive rabbits with high efficiency. Complete virus was fractionated on cesium chloride density gradients, and papillomavirus particles were visualized by electron microscopy. CRPV DNA isolated from virions contained DNA sequence polymorphisms that are characteristic of the input CRPV-WA strain of virus, thereby proving that the newly generated virus originated from the molecularly cloned viral genome. These findings indicate that this will be a useful system in which to perform genetic analysis of viral gene functions involved in replication.  相似文献   

14.
15.
目的 建立表达PiggyBac转座酶转基因小鼠模型,为研究PiggyBac转座子介导基因修饰在小鼠中的应用提供工具.方法 利用Cytomegalovirus( CMV)启动子驱动PiggyBac转座酶基因的表达,经显微注射法建立C57BL/6J表达PiggyBac转座酶的转基因小鼠.PCR鉴定转基因小鼠的基因型,RT-PCR检测PiggyBac转座酶在小鼠生殖系睾丸中的表达情况.PiggyBac转座酶转基因小鼠活性的检测,是通过与转座子供体转基因小鼠杂交检测供体位置变化来确定的.结果 显微注射产生7只转基因小鼠并能传代,经RT-PCR筛选出一株在睾丸中相对高表达PiggyBac转座酶的转基因小鼠.随后与转座子供体转基因小鼠杂交,子代双阳小鼠与野生型小鼠杂交基因型分离,产生的子代转座子供体单阳性小鼠中具有转座子供体片段的转座反应.结论 成功建立了表达PiggyBac转座酶转基因小鼠动物模型,该模型为PiggyBac转座子技术在小鼠中的应用提供了有价值的工具动物.  相似文献   

16.
Rabbits were immunized with recombinant baculovirus-produced virus-like particles (VLPs) of cottontail rabbit papillomavirus (CRPV) to determine whether these antigens could induce long-term protection against experimental challenge with CRPV. Infectious CRPV and human papillomavirus type 11 L1 VLPs were used as positive and negative control immunogens, respectively. Three groups of immunized animals were challenged with 10-fold serial dilutions of infectious CRPV at 2 weeks, 6 months, and 12 months after immunizations. Antibody titers in serum reached 1:10,000 immediately after the final booster immunization and then decayed to 1:150 at 6 months and 1:100 at 12 months in unchallenged rabbits. Serum neutralization titers followed similar kinetics. Papillomas grew on control-immunized rabbits at sites challenged with 10(-1) (100% of sites), 10(-2) (96% of sites), 10(-3) (63% of sites), and 10(-4) (13% of sites) dilutions of virus. At 2 weeks after CRPV L1 VLP immunizations, the rabbits were completely protected against virus challenge. At both 6 and 12 months after CRPV L1 VLP immunizations, strong protection was also observed. In the last two groups, three of seven rabbits were completely protected and only 4 of 14 or 29% of sites challenged with 10(-1 dilution of virus grew papillomas. Papillomas growing at these four sites were also reduced in size (3.5 +/- 0.7 mm) at 50 days postchallenge compared with sites challenged with 10(-1) dilution on control-immunized rabbits (13.2 +/- 4.2 mm). The results demonstrate that strong and long-lasting protection against experimental challenge with papillomaviruses can be achieved with VLP immunogens.  相似文献   

17.
18.
目的建立新西兰兔的食管静脉曲张模型,为下一步的临床研究提供可靠的小型动物模型。方法采用门静脉左支完全夹闭法造模,并通过外观、超声、胃镜等检查检验手段对造模结果加以评估。结果术后8周存活动物100%可见食管静脉曲张。结论通过门静脉左支夹闭法,基本可以建立兔食管静脉曲张模型。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号