首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A highly variable mitochondrial DNA (mtDNA) restriction fragment length polymorphism (RFLP) locus is used to assess the population structure of mitochondrial genomes in the gynodioecious plant Silene vulgaris at two spatial scales. Thirteen mtDNA haplotypes were identified within 250 individuals from 18 populations in a 20-km diameter region of western Virginia. The population structure of these mtDNA haplotypes was estimated as thetaST = 0.574 (+/- 0.066 SE) and, surprisingly, genetic differentiation among populations was negatively correlated with geographic distance (Mantel r = -0.246, P < 0.002). Additionally, mtDNA haplotypes were spatially clumped at the scale of meters within one population. Gender in S. vulgaris is determined by an interaction between autosomal male fertility restorers and cytoplasmic male sterility (CMS) factors, and seed fitness is affected by an interaction between gender and population sex ratio; thus, selection acting on gender could influence the distribution of mtDNA RFLP haplotypes. The sex ratio (females:hermaphrodites) varied among mtDNA haplotypes across the entire metapopulation, possibly because the haplotypes were in linkage disequilibrium with different CMS factors. The gender associated with some of the most common haplotypes varied among populations, suggesting that there is also population structure in male fertility restorer genes. In comparison with reports of mtDNA variation from other published studies, we found that S. vulgaris exhibits a large number of mtDNA haplotypes relative to that observed in other species.  相似文献   

2.
Silene vulgaris was introduced into North America sometime prior to 1800. In order to document the population structure that has developed since that time, collections were made from 56 local populations distributed among 9 geographical regions in eastern North America. Individual plants were characterized for chloroplast DNA (cpDNA) haplotype by restriction fragment size analysis of four noncoding regions of cpDNA amplified by polymerase chain reaction. A total of 19 cpDNA haplotypes were detected using this method. The overall gene diversity of 0.85 is quite similar to the diversity detected in these same regions of cpDNA in a previously published sample of S. vulgaris taken from across much of Europe. The spatial distribution of the North American cpDNA diversity was quantified by hierarchical F-statistics that partitioned the genetic variance into variation among local populations within regions, and variation among regions. The average FST among populations within regions was 0.66 and the FST among regions was 0.09. The among-region variation was due to both differences among regions in the frequency of two most common haplotypes, and to the presence of a number of region-specific haplotypes. In order to test for isolation by distance at the regional level, FST values were calculated for all possible pairs of regions, and regressed against the geographical distance between those regions. There was no evidence for isolation by distance. It is suggested that the local population structure is generated by recent extinction/colonization dynamics, and that the among-region structure reflects demographic events associated with range expansion following introduction to North America.  相似文献   

3.
Genetic structure within a population of Silene alba was studied using a chloroplast DNA (cpDNA) and six allozyme polymorphisms. A 20 × 65 m area was sampled by constructing a 5 × 5 m grid and determining the genotype of the plant nearest to each grid node. Analysis of the spatial distribution of genotypes by Moran's I and join-counts showed a significant degree of association of like cpDNA haplotypes (I = 0.52, S.N.D. = 2.55) but a random or slightly repulsed distribution of allozyme genotypes. A second sample was taken by collecting all individuals from within a 1-m wide transect established along the perimeter of the grid. Genotype and allele frequencies were calculated by grouping individuals from arbitrary 3-m intervals along the transect, and analyzed by Wright's F statistics. The Fst value calculated for cpDNA (0.875) differed markedly from that based on all allozymes (0.027). Taken together, the results suggest that in this population gene flow in the maternally inherited cpDNA is limited by restricted seed dispersal, whereas gene flow in the nuclear DNA based allozymes is more pervasive owing to the added effects of pollen dispersal. The utility of cpDNA polymorphism for the study of fine-scale gene flow is discussed.  相似文献   

4.
Silene hifacensis is a narrowly endemicplant, restricted to a few small populations onlimestone cliffs in the Spanish province ofAlicante and on the Balearic island of Ibiza.The species was collected to extinction in itsoriginal mainland location by the early 20thcentury. Attempts have been made to reintroduceS. hifacensis to this area butconservation efforts are limited by a lack ofinformation on the geographic structure ofgenetic variation in the species. We usednuclear (allozyme) and chloroplast DNA (cpDNA)PCR/RFLP markers to investigate the structureof genetic variation in 2 mainland and 6 Ibizanpopulations. Levels of allozyme variation werelow, with a mean of 2 alleles per polymorphiclocus. Mean (over polymorphic loci) totalallozyme diversity (Htot) was 0.203 and meanwithin-population diversity (Hpop) was 0.085. Mostdiversity was explained by thebetween-population diversity component (Gpop.reg =57%). Both mainland populations showedallozyme fixation. Three composite cpDNAhaplotypes were identified. The first is uniqueto a mainland population that is alsoallozymically distinct from all the otherpopulations. The second haplotype is found inthe other mainland population and one Ibizanpopulation: these two populations areallozymically identical. The remaining Ibizanpopulations contain the third haplotype. Thegeographic distribution of allozymes and cpDNAhaplotypes is discussed in terms of populationhistory, dispersal and, speculatively, in termsof the possibility that there has beenundocumented translocation of material betweenpopulations.  相似文献   

5.
Both the chloroplast and mitochondrial genomes are used extensively in studies of plant population genetics and systematics. In the majority of angiosperms, the chloroplast DNA (cpDNA) and mitochondrial DNA (mtDNA) are each primarily transmitted maternally, but rare biparental transmission is possible. The extent to which the cpDNA and mtDNA are in linkage disequilibrium is argued to be dependent on the fidelity of co-transmission and the population structure. This study reports complete linkage disequilibrium between cpDNA and mtDNA haplotypes in 86 individuals from 17 populations of Silene vulgaris, a gynodioecious plant species. Phylogenetic analysis of cpDNA and mtDNA haplotypes within 14 individuals supports a hypothesis that the evolutionary histories of the chloroplasts and mitochondria are congruent within S. vulgaris, as might be expected if this association persists for long periods. This provides the first documentation of the evolutionary consequences of long-term associations between chloroplast and mitochondrial genomes within a species. Factors that contribute to the phylogenetic and linkage associations, as well as the potential for intergenomic hitchhiking resulting from selection on genes in one organellar genome are discussed.  相似文献   

6.
7.
Lipid biosynthesis in plant cells is associated with various organelles, and maintenance of cell lipid homeostasis requires nimble regulation and coordination. In plants, environmental cues such as phosphate limitation require readjustment of the lipid biosynthetic machinery to substitute phospholipids by non-phosphorous glycolipids. Biosynthesis of the galactoglycerolipids predominant in plants proceeds by a constitutive and an alternative pathway that is known to be induced in response to phosphate deprivation. Plant lipid galactosyltransferases involved in both pathways are associated with the plastid envelope membranes and are encoded by nuclear genes. To identify mechanisms governing the activity of the alternative galactoglycerolipid pathway, a genetic suppressor screen was conducted in the background of the digalactolipid-deficient dgd1 mutant of Arabidopsis. A suppressor line that partially restored digalactoglycerolipid content in the dgd1 background carries a point mutation in a mitochondrial protein, which was tentatively designated DGD1 SUPPRESSOR 1 (DGS1). Presumed orthologs of this protein are present in plants, algae and fungi, but its molecular function is not yet known. In the dgd1 dgs1 double mutant, expression of nuclear genes encoding enzymes of the alternative galactoglycerolipid pathway is increased and hydrogen peroxide levels are elevated. This increase in hydrogen peroxide is proposed to be the reason for activation of the alternative pathway in the dgd1 dgs1 double mutant. Accordingly, hydrogen peroxide and treatments producing reactive oxygen also activate the alternative pathway in the wild-type. These results likely implicate the production of reactive oxygen in the regulation of the alternative galactoglycerolipid pathway in plants.  相似文献   

8.
The genetic variation and structure of Sladenia celastrifolia Kurz, a species of conservation concern, were investigated. Analyses of two chloroplast DNA loci (trnS-trnGand atpB-rbcL intergenic regions) were carried out for 24 populations of S. celastrifolia and five haplotypes were identified. High levels of genetic differentiation (GST = 1, FST = 1) were detected, which may be a result of limited gene flow caused by geographic isolation. Analysis of molecular variance suggests that the existence of marked phylogeographical structure within the haplotype distribution is probably due to geographic barriers among populations. The haplotype network and mismatch distribution analyses did not detect any signals for recent population expansions in S. celastrifolia. Thus, it can be inferred that the species likely persistedin situ during climatic oscillations. Considering its genetic diversity and uniqueness, conservation strategies are further discussed for this species.  相似文献   

9.
10.
Eight populations of Silene paradoxa L. (Caryophyllaceae) growing in copper mine deposits, in serpentine outcrops or in uncontaminated soil in central Italy were studied. Genetic diversity was estimated using five polymorphic chloroplast microsatellite loci (cpSSR), identifying 27 different chloroplast haplotypes. The effective number of alleles, the haplotypic diversity and a stepwise mutational model-based parameter (DSH2) were computed. The effective number of alleles observed within populations from copper mine deposits was 20% that of the serpentine neighbouring populations, suggesting the occurrence of a founder effect. Moreover, 13 of the 27 different haplotypes scored were exclusive to only one population, indicating genetic isolation for all tolerant populations. Even the copper-tolerant populations appeared to have evolved independently. Finally, analysis of molecular variance (AMOVA) of the cpSSR markers gave statistical significance to the grouping of populations according to their geographical location. This study demonstrates that cpSSR markers could be a useful complementary tool to isoenzymes or random amplified polymorphic DNA markers for elucidating the pattern of genetic differentiation in heavy metal-tolerant populations.  相似文献   

11.
The aim of the present study was to examine the phylogeographic and evolutionary history of Picea likiangensis,a dominant species of the conifer forests in the eastern declivity of the Qinghai-Tibetan Plateau. We collected 422 individuals from 42 natural populations of three major varieties classified under this species.In conifers,mitochondrial(mt) DNA and chloroplast(cp) DNA dispersed by seeds or pollen experience very different levels of gene flow.To this end,we examined the sequence variation of two mtDNA fragments(nad5 intron 1 and nad1 intron b/c) and three cpDNA fragments(trnL-trnF,trnS-trnG and nadhK/C).We found that cpDNA probably introgressed from P.purpurea into remote populations of P.likiangensis through long-distance dispersal. Multiple refugia seem to have been maintained for P.likiangensis during the Last Glacial Maximum because the cpDNA and mtDNA haplotypes recovered were fixed in the different regions.Postglacial expansions were only detected at the distributional edges of this species where a single cpDNA or mtDNA haplotype was fixed in adjacent populations.However,genetic imprints of postglacial expansions from these two sets of markers were different in the western and southeastern regions,which may result from the long-distance dispersal of the cpDNA,as well as its fast lineage sorting during intraspecific divergences.Analysis of molecular variance further suggested that genetic differentiation between the three varieties is higher at cpDNA markers than at mtDNA markers,which supports the previous viewpoint that cpDNA markers with a high rate of gene flow may be more effective in delimitating closely related taxa.Together,the results of the present study highlight the evolutionary complexity of a widely distributed species owing to interactions among local and edge expansion,long-distance dispersal,and intraspecific divergences at two sets of DNA genomes with different rates of gene flow.  相似文献   

12.
This study describes complete control region sequences of mitochondrial DNA (mtDNA) from 117 Ethiopian cattle from 10 representative populations, in conjunction with the available cattle sequences in GenBank. In total, 79 polymorphic sites were detected, and these defined 81 different haplotypes. The haplotype and nucleotide diversity of Ethiopian cattle did not vary among the populations studied. All mtDNA sequences from Ethiopian cattle converged into one main maternal lineage (T1) that corresponds to African Bos taurus cattle. According to the results of this study, no zebu mtDNA haplotypes have been found in Ethiopia, where the most extensive hybridization took place on the African continent.  相似文献   

13.
Abstract In gynodioecious plants, hermaphrodite and female plants co‐occur in the same population. In these systems gender typically depends on whether a maternally inherited cytoplasmic male sterility factor (CMS) is counteracted by nuclear restorer alleles. These restorer alleles are often genetically dominant. Although plants of the female morph are obligatorily outcrossing, hermaphrodites may self. This selfing increases homozygosity and may thus have two effects: (1) it may decrease fitness (i.e. result in inbreeding depression) and (ii) it may increase homozygosity of the nuclear restorer alleles and therefore increase the production of females. This, in turn, enhances outcrossing in the following generation. In order to test the latter hypothesis, experimental crosses were conducted using individuals derived from four natural populations of Silene vulgaris, a gynodioecious plant. Treatments included self‐fertilization of hermaphrodites, outcrossing of hermaphrodites and females using pollen derived from the same source population as the pollen recipients, and outcrossing hermaphrodites and females using pollen derived from different source populations. Offspring were scored for seed germination, survivorship to flowering and gender. The products of self‐fertilization had reduced survivorship at both life stages when compared with the offspring of outcrossed hermaphrodites or females. In one population the fitness of offspring produced by within‐population outcrossing of females was significantly less than the fitness of offspring produced by crossing females with hermaphrodites from other populations. Self‐fertilization of hermaphrodites produced a smaller proportion of hermaphroditic offspring than did outcrossing hermaphrodites. Outcrossing females within populations produced a smaller proportion of hermaphrodite offspring than did crossing females with hermaphrodites from other populations. These results are consistent with a cytonuclear system of sex determination with dominant nuclear restorers, and are discussed with regard to how the mating system and the genetics of sex determination interact to influence the evolution of inbreeding depression.  相似文献   

14.
The impact of intergenic recombination on the population genetics of plant mitochondrial genomes is unknown. In an effort to study this in the gynodioecious plant Silene vulgaris three-locus PCR/RFLP genotypes (based on the mitochondrial genes atpA, cox1, and cob) were determined for 239 individuals collected from 20 North American populations. Seventeen three-locus PCR/RFLP genotypes were found. Recombination was indicated by observation of each of the four two-locus genotypes possible when the two most common alleles are considered for each of two loci. Based on these common alleles the absolute values of standardized linkage disequilibrium |D'| between pairs of loci range from 0.17 to 0.78. This indicates modest disequilibrium, rather than the maximum value expected in the absence of recombination |D'=1|, or the linkage equilibrium expected if recombination is pervasive (D'=0). Values of D' did not depend on which pair of loci contributed alleles to the analysis. The direction of D' obtained for the common atpA and cox1 alleles was comparable in sign and magnitude to that obtained by examining similar information obtained in a prior study of European samples. All three loci indicated a high degree of population structure (average FST=0.63), which would limit the within-population genetic diversity required for intergenic recombination to create novel genotypes, if most mating is local. Thus, population structure acts as a constraint on the approach to linkage equilibrium.  相似文献   

15.
The prevailing wisdom of the plant mitochondrial genome is that it has very low substitution rates, thus it is generally assumed that nucleotide diversity within species will also be low. However, recent evidence suggests plant mitochondrial genes may harbor variable and sometimes high levels of within-species polymorphism, a result attributed to variance in the influence of selection. However, insufficient attention has been paid to the effect of among-gene variation in mutation rate on varying levels of polymorphism across loci. We measured levels of polymorphism in seven mitochondrial gene regions across a geographically wide sample of the plant Silene vulgaris to investigate whether individual mitochondrial genes accumulate polymorphisms equally. We found that genes vary significantly in polymorphism. Tests based on coalescence theory show that the genes vary significantly in their scaled mutation rate, which, in the absence of differences among genes in effective population size, suggests these genes vary in their underlying mutation rate. Further evidence that among-gene variance in polymorphism is due to variation in the underlying mutation rate comes from a significant positive relationship between the number of segregating sites and silent site divergence from an outgroup. Contrary to recent studies, we found unconvincing evidence of recombination in the mitochondrial genome, and generally confirm the standard model of plant mitochondria characterized by low substitution rates and no recombination. We also show no evidence of significant variation in the strength or direction of selection among genes; this result may be expected if there is no recombination. The present study provides some of the most thorough data on plant mitochondrial polymorphism, and provides compelling evidence for mutation rate variation among genes. The study also demonstrates the difficulty in establishing a null model of mitochondrial genome polymorphism, and thus the difficulty, in the absence of a comparative approach, in testing the assumption that low substitution rates in plant mitochondria lead to low polymorphism.  相似文献   

16.
The genetic structure and the phylogenetic relationships among five Balkan populations of trout Salmo trutta that have been classified earlier into five different taxa were studied, using microsatellite and mitochondrial DNA (mtDNA) analyses. The pattern of population differentiation observed at microsatellites differed to that depicted by mtDNA variation, yet both methods indicated a very strong partitioning of the genetic variation among sampling locations. Results thus suggest that conservation strategies should be directed towards preserving the genetic integrity and uniqueness of each population.  相似文献   

17.
In gynodioecious species, sex expression is generally determined through cytoplasmic male sterility genes interacting with nuclear restorers of the male function. With dominant restorers, there may be an excess of females in the progeny of self-fertilized compared with cross-fertilized hermaphrodites. Moreover, the effect of inbreeding on late stages of the life cycle remains poorly explored. Here, we used hermaphrodites of the gynodioecious Silene vulgaris originating from three populations located in different valleys in the Alps to investigate the effects of two generations of self- and cross-fertilization on sex ratio and gender variation. We detected an increase in females in the progeny of selfed compared with outcrossed hermaphrodites and inbreeding depression for female and male fertility. Male fertility correlated positively with sex ratio differences between outbred and inbred progeny, suggesting that dominant restorers are likely to influence male fertility qualitatively and quantitatively in S. vulgaris. We argue that the excess of females in the progeny of selfed compared with outcrossed hermaphrodites and inbreeding depression for gamete production may contribute to the maintenance of females in gynodioecious populations of S. vulgaris because purging of the genetic load is less likely to occur.  相似文献   

18.
Silene latifolia is a model dioecious plant with heteromorphic sex chromosomes. The Y chromosome is the largest in this species. Theoretical models propose an accumulation of repetitive DNA sequences in non-recombining parts of the Y chromosome. In this study, we isolated a BAC7H5 clone preferentially hybridizing to the Y chromosome of S. latifolia. Sequence analysis revealed that this BAC7H5 contains part of the chloroplast genome, indicating that these chloroplast sequences have accumulated on the Y chromosome and also may contribute to its large size. We constructed Y chromosome- and X chromosome-specific libraries and screened them to find Y- and/or X-linked copies of chloroplast sequences. Sequence analysis revealed higher divergence of a non-genic region of the chloroplast sequences located on the Y chromosome while genic regions tested showed only very low (max 0.9%) divergence from their chloroplast homologues.  相似文献   

19.
Although plasmid-like mitochondrial DNA molecules have been investigated in a number of cultivated plant species, knowledge about their occurrence and behavior in natural plant populations is scarce. In the bladder campion, Silene vulgaris, a common weed of northern Europe, mt-plasmids of three different sizes were detected in a survey of S. vulgaris populations in southern Sweden. Two of the three plasmids usually occurred together within individual plants and showed large variation in frequency between populations. From F(ST)-estimates of plasmids, mitochondrial markers, and nuclear markers it was concluded that the plasmids are predominantly maternally inherited in their natural habitat, as observed in greenhouse experiments. The association between mt-plasmids and mitochondrial haplotype was strong, but not complete, in the natural material. These results indicate that the mt-plasmids of S. vulgaris have evolved toward almost strict maternal inheritance.  相似文献   

20.
With the recent technical advances in molecular biology, chloroplast DNA (cpDNA) has become a marker used for the study of cytoplasmic differentiation of natural populations of plants. As chloroplasts are maternally inherited in most plant species, the seed component of gene flow is thus made accessible. We present here a study of cpDNA polymorphism within the maritima subspecies of the gynodioecious Beta vulgaris in which we try to assess the impact of such a reproductive system on seed flow. One hundred and eighty-eight wild beets were sampled from 20 hermaphroditic and 20 gynodioecious (i.e. containing both hermaphroditic and female plants) populations from the Atlantic coast of Europe. cpDNA variability in these populations was characterized with a rapid restriction fragment length polymorphism (RFLP) method. Eight cpDNA haplotypes were found. Strong differentiation among populations was observed ( F ST = 0.43) and was consistent with isolation by distance, although most of the cpDNA haplotypes were ubiquitous. Gynodioecy seems to affect the distribution of cpDNA diversity: gynodioecious populations of Beta vulgaris ssp. maritima contained a greater number of cpDNA types but were less differentiated among themselves than hermaphroditic ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号