首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent years the demonstration that human pituitary adenomas are monoclonal in origin has provided further evidence that pituitary neoplasia arise from the replication of a single mutated cell in which growth advantage results from either activation of proto-oncogenes or inactivation of tumor suppressor genes. While common oncogenes, such as Ras, are only exceptionally involved, the only mutations identified in a significant proportion of pituitary tumors, and particular in GH-secreting adenomas, occur in the Gsalpha gene (GNAS1) and cause constitutive activation of the cAMP pathway (gsp oncogene). Moreover, pituitary tumors overexpress hypothalamic releasing hormones, growth factors, and their receptors as well as cyclins involved in cell cycle progression. As far as the role of tumor suppressor genes in pituitary tumorigenesis is concerned, reduced expression of these genes seems to frequently occur in pituitary tumors as a consequence of abnormal methylation processes. Although the only mutational change so far identified in pituitary tumors is the gsp oncogene, this oncogene is not associated with a clear phenotype in patients bearing positive tumors. Mechanisms able to counteract the cAMP pathway, such as high sensitivity to somatostatin, and induction of genes with opposite actions, such as phosphodiesterases, CREB end ICER, or instability of mutant Gsalpha, have been proposed to account for the lack of genotype/phenotype relationships.  相似文献   

2.
3.
4.
5.
ABSTRACT: Cervical cancer (CC) is one of the most malignant tumors and the second or third most common type of cancer in women worldwide. The association between human papillomavirus (HPV) and CC is widely known and accepted (99.7% of cases). At present, the pathogenesis mechanisms of CC are not entirely clear. It has been shown that inactivation of tumor suppressor genes and activation of oncogenes play a significant role in carcinogenesis, caused by the genetic and epigenetic alterations. In the past, it was generally thought that genetic mutation was a key event of tumor pathogenesis, especially somatic mutation of tumor suppressor genes. With deeper understanding of tumors in recent years, increasing evidence has shown that epigenetic silencing of those genes, as a result of aberrant hypermethylation of CpG islands in promoters and histone modification, is essential to carcinogenesis and metastasis. The term epigenetics refers to heritable changes in gene expression caused by regulation mechanisms, other than changes in DNA sequence. Specific epigenetic processes include DNA methylation, chromotin remodeling, histone modification, and microRNA regulations. These alterations, in combination or individually, make it possible to establish the methylation profiles, histone modification maps, and expression profiles characteristic of this pathology, which become useful tools for screening, early detection, or prognostic markers in cervical cancer. This paper reviews recent epigenetics research progress in the CC study, and tries to depict the relationships between CC and DNA methylation, histone modification, as well as microRNA regulations.  相似文献   

6.
Many microRNAs have been implicated as key regulators of cellular growth and differentiation and have been found to dysregulate proliferation in human tumors, including breast cancer. Cancer-linked microRNAs also alter the epigenetic landscape by way of DNA methylation and post-translational modifications of histones. Aberrations in Hox gene expression are important for oncogene or tumor suppressor during abnormal development and malignancy. Although recent studies suggest that HoxB3 is critical in breast cancer, the putative role(s) of microRNAs impinging on HoxB3 is not yet fully understood. In this study, we found that the expression levels of miR-7 and miR-218 were strongly and reversely associated with HoxB3 expression. Stable overexpression of miR-7 and miR-218 was accompanied by reactivation of tumor suppressor genes including RASSF1A and Claudin-6 by means of epigenetic switches in DNA methylation and histone modification, giving rise to inhibition of the cell cycle and clone formation of breast cancer cells. The current study provides a novel link between overexpression of collinear Hox genes and multiple microRNAs in human breast malignancy.  相似文献   

7.
Hepatocellular carcinoma is the main type of primary liver cancer, and also one of the most malignant tumors. At present, the pathogenesis mechanisms of liver cancer are not entirely clear. It has been shown that inactivation of tumor suppressor genes and activation of oncogenes play a significant role in carcinogenesis, caused by the genetic and epigenetic aberrance. In the past, people generally thought that genetic mutation is a key event of tumor pathogenesis, and somatic mutation of tumor suppressor genes is in particular closely associated with oncogenesis. With deeper understanding of tumors in recent years, increasing evidence has shown that epigenetic silencing of those genes, as a result of aberrant hypermethylation of CpG islands in promoters and histone modification, is essential to carcinogenesis and metastasis. The term epigenetics refers to heritable changes in gene expression caused by regulation mechanisms, other than changes in the underlying DNA sequence. Specific epigenetic processes include DNA methylation, genome imprinting, chromotin remodeling, histone modification and microRNA regulations. This paper reviews recent epigenetics research progress in the hepatocellular carcinoma study, and tries to depict the relationships between hepatocellular carcinomagenesis and DNA methylation as well as microRNA regulation. Supported by National Basic Research Program of China (Grant No. 2006CD910402) and Science and Technology Commission of Shanghai Municipality (Grant No. 05DZ22201 and 08JC1416400).  相似文献   

8.
表观遗传通过DNA甲基化、组蛋白修饰、染色质重塑、以及microRNA等调控方式来实现对基因表达、DNA复制和基因组稳定性的控制。DNA甲基化是目前研究的最为广泛的表观遗传修饰方式之一,可调控真核生物的基因表达。DNA甲基化在哺乳动物发育、肿瘤发生发展及人类其他疾病中均发挥着至关重要的作用。DNA甲基化状态的改变已被视为人类肿瘤细胞的生物标志之一。EMs虽是一种良性妇科疾病,但伴有细胞增殖、侵袭性及远处种植转移等肿瘤的特点。最新研究发现,DNA甲基化可能与子宫内膜异位症(EMs)的发生存在密切的关系并认为EMs从根本上是一种表观遗传学疾病。由于表观遗传修饰都是可逆的过程,这就为EMs的治疗提供了一种新的途径。本文就DNA甲基化在EMs中的发生发展中的作用及其调控的分子机制,以及在诊断治疗中作用的最新研究进展做一综述。  相似文献   

9.
徐安利  张素芹  陈琪  杨瑛  侯建青 《生物磁学》2014,(23):4574-4577
表观遗传通过DNA甲基化、组蛋白修饰、染色质重塑、以及microRNA等调控方式来实现对基因表达、DNA复制和基因组稳定性的控制。DNA甲基化是目前研究的最为广泛的表观遗传修饰方式之一,可调控真核生物的基因表达。DNA甲基化在哺乳动物发育、肿瘤发生发展及人类其他疾病中均发挥着至关重要的作用。DNA甲基化状态的改变已被视为人类肿瘤细胞的生物标志之一。EMs虽是一种良性妇科疾病,但伴有细胞增殖、侵袭性及远处种植转移等肿瘤的特点。最新研究发现,DNA甲基化可能与子宫内膜异位症(EMs)的发生存在密切的关系并认为EMs从根本上是一种表观遗传学疾病。由于表观遗传修饰都是可逆的过程,这就为EMs的治疗提供了一种新的途径。本文就DNA甲基化在EMs中的发生发展中的作用及其调控的分子机制,以及在诊断治疗中作用的最新研究进展做一综述。  相似文献   

10.
Pituitary adenomas are neoplasms of the anterior pituitary lobe and account for 15–20% of all intracranial tumors. Although most pituitary tumors are benign they can cause severe symptoms related to tumor size as well as hypopituitarism and/or hypersecretion of one or more pituitary hormones. Most pituitary adenomas are sporadic, but it has been estimated that 5% of patients have a familial background. Germline mutations of the tumor suppressor gene aryl hydrocarbon receptor-interacting protein (AIP) predispose to hereditary pituitary neoplasia. Recently, it has been demonstrated that AIP mutations predispose to pituitary tumorigenesis through defective inhibitory GTP binding protein (Gαi) signaling. This finding prompted us to examine whether germline loss-of-function mutations in inhibitory guanine nucleotide (GTP) binding protein alpha (GNAI) loci are involved in genetic predisposition of pituitary tumors. To our knowledge, this is the first time GNAI genes are sequenced in order to examine the occurrence of inactivating germline mutations. Thus far, only somatic gain-of-function hot-spot mutations have been studied in these loci. Here, we have analyzed the coding regions of GNAI1 , GNAI2, and GNAI3 in a set of young sporadic somatotropinoma patients (n = 32; mean age of diagnosis 32 years) and familial index cases (n = 14), thus in patients with a disease phenotype similar to that observed in AIP mutation carriers. In addition, expression of Gαi proteins was studied in human growth hormone (GH), prolactin (PRL), adrenocorticotropic hormone (ACTH)-secreting and non-functional pituitary tumors. No pathogenic germline mutations affecting the Gαi proteins were detected. The result suggests that loss-of-function mutations of GNAI loci are rare or nonexistent in familial pituitary adenomas.  相似文献   

11.
DNA methylation and cancer   总被引:33,自引:0,他引:33  
  相似文献   

12.
Carcinogenesis involves the inactivation or inhibition of genes that function as tumor suppressors. Deletions, mutations, or epigenetic silencing of tumor suppressor genes can lead to altered growth, differentiation, and apoptosis. DNA methylation and histone modifications are important epigenetic mechanisms of gene regulation and play essential roles both independently and cooperatively in tumor initiation and progression. Realization that many tumor suppressor genes are silenced by epigenetic mechanisms has stimulated discovery of novel tumor suppressor genes. One of the most useful of these approaches is an epigenetic reactivation screening strategy that combines treatment of cancer cells in vitro with DNA methyltransferase and/or histone deacetylase (HDAC) inhibitors, followed by global gene expression analysis using microarrays, to identify upregulated genes. This approach is most effective when complemented by microarray analyses to identify genes repressed in primary tumors. Recently, using cancer cell lines treated with a DNA methylation inhibitor and/or a HDAC inhibitor in conjunction with cDNA microarray analysis, candidate tumor suppressor genes, which are subject to epigenetic silencing, have been identified in endometrial, colorectal, esophageal, and pancreatic cancers. An increasing number of studies have utilized epigenetic reactivation screening to discover novel tumor suppressor genes in cancer. The results of some of the most recent studies are highlighted in this review.  相似文献   

13.
The identification of genetic and epigenetic alterations from primary tumor cells has become a common method to identify genes critical to the development and progression of cancer. We seek to identify those genetic and epigenetic aberrations that have the most impact on gene function within the tumor. First, we perform a bioinformatic analysis of copy number variation (CNV) and DNA methylation covering the genetic landscape of ovarian cancer tumor cells. We separately examined CNV and DNA methylation for 42 primary serous ovarian cancer samples using MOMA-ROMA assays and 379 tumor samples analyzed by The Cancer Genome Atlas. We have identified 346 genes with significant deletions or amplifications among the tumor samples. Utilizing associated gene expression data we predict 156 genes with altered copy number and correlated changes in expression. Among these genes CCNE1, POP4, UQCRB, PHF20L1 and C19orf2 were identified within both data sets. We were specifically interested in copy number variation as our base genomic property in the prediction of tumor suppressors and oncogenes in the altered ovarian tumor. We therefore identify changes in DNA methylation and expression for all amplified and deleted genes. We statistically define tumor suppressor and oncogenic features for these modalities and perform a correlation analysis with expression. We predicted 611 potential oncogenes and tumor suppressors candidates by integrating these data types. Genes with a strong correlation for methylation dependent expression changes exhibited at varying copy number aberrations include CDCA8, ATAD2, CDKN2A, RAB25, AURKA, BOP1 and EIF2C3. We provide copy number variation and DNA methylation analysis for over 11,500 individual genes covering the genetic landscape of ovarian cancer tumors. We show the extent of genomic and epigenetic alterations for known tumor suppressors and oncogenes and also use these defined features to identify potential ovarian cancer gene candidates.  相似文献   

14.
DNA methylation of nuclear receptor genes--possible role in malignancy   总被引:2,自引:0,他引:2  
The members of the nuclear receptor superfamily are known to mediate a wide array of basic biological processes, such as regulation of cell growth and differentiation, and induction of apoptosis. In several human malignancies, this central control function of nuclear receptors is disturbed, which seems to play an important role in tumor development and progression. Many nuclear receptor genes have been reported to be downregulated in malignancies; however, only a few mutations, gene arrangements, deletions or similar genetic changes have been shown to occur in these tumors.During the last decade, increasing attention has been directed towards epigenetic mechanisms of gene regulation such as DNA methylation. Many nuclear receptor genes can be silenced through aberrant methylation in tumors; epigenetic silencing, therefore, represents an additional mechanism that modifies expression of key genes during carcinogenesis.This review will give insights into the role of DNA methylation in the silencing of nuclear receptor genes and its involvement in human malignancies.  相似文献   

15.
In a gene chip analysis of common pituitary tumor types, one of the genes with the most impressive tissue-specific expression regulation was delta-like 1 (DLK1), which was strongly expressed in GH-secreting (GH-S) pituitary tumors. In addition to pituitary adenomas, various endocrine tumors were subjected to real-time-quantitative PCR revealing high expression of DLK1 in normal pituitary tissue, in GH-S-, in one prolactin-secreting pituitary adenoma and in pheochromocytomas. Additionally, three DLK1 gene-derived subvariants were identified. The first, lacking 204 bp--coding for epidermal growth factor-like domain 6 and parts of the juxtamembrane region--was named Secredeltin. In the other two splice variants (named Brevideltin and Brevideltinin), a stop codon is introduced due to a frame-shift, leading to truncated proteins of 204 and 213 aas, respectively.  相似文献   

16.
MicroRNAs (miRNAs) are small noncoding RNAs that contribute to tumorigenesis by acting as oncogenes or tumor suppressor genes and may be important in the diagnosis, prognosis and treatment of cancer. Many miRNA genes have associated CpG islands, suggesting epigenetic regulation of their expression. Compared with sporadic cancers, the role of miRNAs in hereditary or familial cancer is poorly understood. We investigated 96 colorectal carcinomas, 58 gastric carcinomas and 41 endometrial carcinomas, occurring as part of inherited DNA mismatch repair (MMR) deficiency (Lynch syndrome), familial colorectal carcinoma without MMR gene mutations or sporadically. Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) assays were developed for 11 miRNA loci that were chosen because all could be epigenetically regulated through the associated CpG islands and some could additionally modulate the epigenome by putatively targeting the DNA methyltransferases or their antagonist retinoblastoma-like 2 (RBL2). Compared with the respective normal tissues, the predominant alteration in tumor tissues was increased methylation for the miRNAs 1-1, 124a-1, 124a-2, 124a-3, 148a, 152 and 18b; decreased methylation for 200a and 208a; and no major change for 373 and let-7a-3. The frequencies with which the individual miRNA loci were affected in tumors showed statistically significant differences relative to the tissue of origin (colorectal versus gastric versus endometrial), MMR proficiency versus deficiency and sporadic versus hereditary disease. In particular, hypermethylation at miR-148a and miR-152 was associated with microsatellite-unstable (as opposed to stable) tumors and hypermethylation at miR-18b with sporadic disease (as opposed to Lynch syndrome). Hypermethylation at miRNA loci correlated with hypermethylation at classic tumor suppressor promoters in the same tumors. Our results highlight the importance of epigenetic events in hereditary and sporadic cancers and suggest that MS-MLPA is an excellent choice for quantitative analysis of methylation in archival formalin-fixed, paraffin-embedded samples, which pose challenges to many other techniques commonly used for methylation studies.  相似文献   

17.
DNA甲基化和组蛋白修饰等表观遗传机制是恶性肿瘤发生发展的重要原因之一.然而近年来研究发现,microRNA表达水平改变也参与恶性肿瘤的形成.最新研究资料揭示,表观遗传可调控microRNA表达,而一些种类的microRNA也可调节表观遗传,并且二者之间相互作用可调控组织细胞内基因表达以及诱导体内恶性肿瘤产生.研究资料还显示,表观遗传主要通过DNA甲基化、组蛋白修饰等方式调控microRNA表达,而microRNA则通过调节DNA甲基化转移酶、维持细胞中DNA甲基化水平或改变组蛋白修饰等途径调控表观遗传.对microRNA与表观遗传之间的调控关系以及在抗肿瘤领域内的应用进行全面而系统的论述.  相似文献   

18.
DNA Methylation and Epigenotypes   总被引:6,自引:0,他引:6  
The science of epigenetics is the study of all those mechanisms that control the unfolding of the genetic program for development and determine the phenotypes of differentiated cells. The pattern of gene expression in each of these cells is called the epigenotype. The best known and most thoroughly studied epigenetic mechanism is DNA methylation, which provides a basis both for the switching of gene activities, and the maintenance of stable phenotypes. The human epigenome project is the determination of the pattern of DNA methylation in multiple cell types. Some methylation sites, such as those in repeated genetic elements, are likely to be the same in all cell types, but genes with specialized functions will have distinct patterns of DNA methylation. Another project for the future is the study of the reprogramming of the genome in gametogenesis and early development. Much is already known about the de novo methylation of tumor suppressor genes in cancer cells, but the significance of epigenetic defects during ageing and in some familial diseases remains to be determined.  相似文献   

19.
Most investigations on the role of DNA methylation in cancer have focused on epigenetic changes associated with known tumor suppressor genes. This may have led to an underestimation of the number of CpG islands altered by DNA methylation, since it is possible that a subset of unknown genes relevant to cancer development may preferentially be affected by epigenetic rather than genetic means and would not be identified as familial deletions, mutations, or loss of heterozygosity. We used a recently developed screening procedure (methylation-sensitive arbitrarily primed-polymerase chain reaction to scan genomic DNA for CpG islands methylated in white blood cells (WBCs) and in tumor tissues. DNA methylation pattern analysis showed little interindividual differences in the WBCs and normal epithelium (adjacent to colon, bladder, and prostate cancer cells), but with some tissue-specific differences. Cancer cells showed marked methylation changes that varied considerably between different tumors, suggesting variable penetrance of the methylation phenotype in patients. Direct sequencing of 8 of 45 bands altered in these cancers showed that several of them were CpG islands, and 2 of these sequences were identified in GenBank. Surprisingly, three of the bands studied corresponded to transcribed regions of genes. Thus, hypermethylation of CpG islands in cancer cells is not confined to the promoters of growth regulatory genes but is also found in actively transcribed regions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号