首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

The objective was to provide comprehensive life cycle inventories for the construction and renovation of sewers. A detailed inventory was provided with multiple options of pipe materials, diameters and site-specific characteristics, and was embedded into the Excel®-based tool SewerLCA. The tool allows for life cycle evaluation of different sewers. It was applied to determine the most important phases, processes, and related parameters involved in the construction and renovation of sewers from an environmental and economical perspective.

Methods

Comprehensive life cycle inventories (LCIs) for sewers construction and renovation were obtained by first identifying all processes involved after interviewing construction experts and reviewing sewer construction budgets from a Catalan company; and second transforming the processes into masses of materials and energy usage using construction databases. In order to run the life cycle impact assessment (LCIA) the materials and energy typologies from the inventories were matched to their corresponding equivalents into available LCI databases. Afterwards the potential impacts were calculated through the use of LCIA characterization factors from ReCiPe. Life cycle assessment (LCA) was run several times to assess the construction of a 1-km-long sewer with varying pipe materials, life spans for each material, diameters, transport distances, site-specific characteristics, and pipe deposition options.

Results and discussion

The environmental impacts generated by construction and renovation of a 1 km Polyvinylchloride (PVC) pipe with a diameter of 40 cm are mainly associated with pipe laying and backfilling of the trench. The evaluation of several pipe materials and diameters shows that the exclusion of renovation would underestimate the impacts by 38 to 82 % depending on the pipe materials and diameters. Including end-of-life phase for plastic pipe materials increases climate change (up to an extra 71 %) and human toxicity (up to an extra 147 %) impacts (among all diameters). The preferred pipe materials from an environmental point of view are precast concrete and High-Density Polyethylene (HDPE). Site-specific characteristics (specially the presence of rocky soil and asphalt placement) and material life span have a high influence on the overall environmental profile, whereas changes in transport distances have only a minor impact (<4 %).

Conclusions

Environmental impacts during the construction and renovation of sewers are subject to differences in material type, site-specific characteristics and material life span. Renovation of sewers has a large influence on all potential environmental impacts and costs and, hence, should not be omitted in LCA studies. The treatment and disposal processes of plastic pipes at the end of their life has to be accounted in LCA studies.
  相似文献   

2.

Purpose

China is the world’s largest producer and consumer of refined and reclaimed copper because of the rapid economic and industrial development of this country. However, only a few studies have analyzed the environmental impact of China’s copper industry. The current study analyzes the life cycle environmental impact of copper production in China.

Methods

A life cycle impact assessment using the ReCiPe method was conducted to estimate the environmental impact of refined and reclaimed copper production in China. Uncertainty analysis was also performed based on the Monte-Carlo simulation.

Results and discussion

The environmental impact of refined copper was higher than that of reclaimed copper in almost all categories except for human toxicity because of the direct atmospheric arsenic emission during the copper recycling stage. The overall environmental impact for the refined copper production was mainly attributed to metal depletion, freshwater ecotoxicity, marine ecotoxicity, and water depletion potential impact. By contrast, that for the reclaimed copper production was mainly caused by human toxicity impact.

Conclusions

Results show that the reclaimed copper scenario had approximately 59 to 99% more environmental benefits than those of the refined copper scenario in most key categories except for human toxicity, in which a similar environmental burden was observed between both scenarios. The key factors that reduce the overall environmental impact for China’s copper industry include decreasing direct heavy metal emissions in air and water, increasing the national recycling rate of copper, improving electricity consumption efficiency, replacing coal with clean energy sources for electricity production, and optimizing the efficiency of copper ore mining and consumption.
  相似文献   

3.

Purpose

Cheese is one of the world’s most widely consumed dairy products and its popularity is ever growing. However, as concerns for the environmental impact of industries increase, products like cheese, which have a significant environmental impact, may lose their popularity. A commonly used technique to assess the environmental impact of a product is life cycle assessment (LCA). In this paper, a state-of-the-art review of LCA studies on the environmental impact of cheese production is presented.

Methods

Sixteen LCA studies, which explored the impact from the production of a variety of cheese types (fresh, mature and semi-hard) were examined and discussed. The four stages of the LCA were examined and the range of results of selected environmental impact categories (global warming potential, acidification potential and eutrophication potential) were detailed and discussed.

Results and discussion

For each of these environmental impact categories, raw milk production was consistently found to be the most significant contributor to the total impact, which was followed by processing. It was found that allocation between cheese and its by-products was crucial in determining the impact of cheese production and standardisation or guidelines may be needed. Very little information relating to wastewater treatment system and processes were reported and this leads to inaccurate environmental impact modelling relating to these aspects of the manufacture of cheese. Very few studies included the design of packaging in terms of reducing food waste, which may significantly contribute to the overall environmental impact.

Conclusions

As raw milk production was found to have the greatest contribution to environmental impact, mitigation strategies at farm-level, particularly in relation to enteric fermentation and manure management, need to be implemented. Additionally, based on the literature, there is a suggestion that fresh cheese has less of an environmental impact than semi-hard cheeses, particularly when examining direct energy consumption. However, there needs to be more case studies investigated to justify this statement.
  相似文献   

4.

Purpose

Refrigeration and air conditioning systems have high, negative environmental impacts due to refrigerant charge leaks from the system and their corresponding high global warming potential. Thus, many efforts are in progress to obtain suitable low GWP alternative refrigerants and more environmentally friendly systems for the future. The system’s life cycle climate performance (LCCP) is a widespread metric proposed for the evaluation of the system’s environmental impact.

Methods

In this paper, the potential emission reductions in the commercial refrigeration and residential air conditioning systems, made possible by shifting towards more environmentally friendly refrigerants in the US, are presented. First, the current LCCP of the most common commercial refrigeration and residential air conditioning systems is calculated. Then, the LCCP of the baseline systems, when using the potential low GWP alternative refrigerants, is presented. This helps to determine the systems which have the highest potential for emission reductions.

Results and discussion

By shifting from the baseline refrigerants, R-404A and R-410A, to the suggested low GWP refrigerants, N-40 and L-41a, in the commercial refrigeration and residential HVAC systems, respectively, a combined drop of 30.43 % in the total emissions (i.e., total equivalent mass of emissions in kg CO2eq) is obtained. This results from a 50.5 and 28.01 % drop in total emissions from supermarket refrigeration systems and residential air conditioning, respectively.

Conclusions

Shifting to lower GWP refrigerants in the refrigeration and air conditioning systems helps to reduce the total emissions and negative environmental impacts of these systems. Shifting to a secondary circuit commercial refrigeration system using N-40/L-40 and residential air conditioning and heat pump systems using L-41a helps in reducing the total emissions.
  相似文献   

5.

Introduction

Starfish are recognized as interesting source of natural steroid products with pharmaceutical potential. Polar steroid metabolites of starfish have unique chemical structures and exhibit various biological activities but their biological functions are controversial.

Objectives

The objective of this study was to investigate the response of polar steroid metabolome of the starfish Patiria (=Asterina) pectinifera on various environmental factors and stresses.

Methods

Here we first have applied MS-based environmental metabolomics to elucidate the metabolic changes of polar steroid metabolome of starfish. Using HPLC–ESI–Q/TOF–MS approach followed by statistical analysis including principal component analysis and partial least squares discriminant analysis for data classification and potential biomarkers selection, we investigated the changes induced by feeding, injury, variations in water temperature and salinity, and oxygen deficiency.

Results

According to multivariate and univariate statistical analysis the responses to feeding, injury and water heating were better expressed than the others and have some similarity in their action on the steroid metabolome of the starfish P. pectinifera. Most constituents of asterosaponin pool were reduced and most constituents of polyhydroxysteroid and related glycoside pool were increased at that.

Conclusion

Our results indicate that various metabolic changes in polar steroid constituents of P. pectinifera are induced by feeding and stresses. We believe that these responses are connected with biological multifunctionality of these compounds.
  相似文献   

6.

Purpose

Urbanization and industrial development intensify water utilization and wastewater generation. The efficiency of wastewater treatment systems varies and depends on system design and wastewater condition. The research aims to examine seven existing centralized municipal wastewater treatment plants (WWTPs) in Bangkok to discover which system configuration yields the best environmental and economic performance. The degree of environmental impact and operational costs from different system designs were investigated to help select future wastewater treatment systems.

Methods

Life cycle assessment (LCA) has been conducted to evaluate environmental impacts from centralized municipal wastewater treatment systems. Life cycle impact assessment method based on endpoint modeling (LIME) was applied, with three major potential environmental impact categories including eutrophication, global warming, and acidification. All seven centralized municipal WWTPs in Bangkok were investigated as case studies. The system configurations are classified into five types of activated sludge (AS) systems. The contribution of impacts from individual processes in each type of AS system was analyzed. The methodology covered major on-site and off-site operational processes excluding construction and maintenance phases. Average annual data were calculated to develop an inventory dataset. JEMAI-Pro software was utilized in this study to analyze the life cycle impact of the systems.

Results and discussion

The level of environmental impact from a WWTP depends on the configuration of the AS system. The highest potential environmental impact from a municipal WWTP is eutrophication, which is obviously affected by ammonium and phosphorous discharges into water bodies. The vertical loop reactor activated sludge (VLRAS) system yielded the best treatment performance among the five AS sub-systems. The consumption of electricity used to operate the system contributed significantly to global warming potential and correlated considerably with operating costs. Comparing among three system sizes, the large-scale WWTP revealed inefficient electricity consumption, whereas the medium plant provided better performance in chemical use and operating costs.

Conclusions

Centralized municipal WWTPs with capacities ranging from 10 to 350?×?103 m3/day were evaluated with respect to environmental performance and costs during the operating phase. Among all case studies, a medium-scale WWTP with a VLRAS system offered the best operating performance in terms of low environmental impact, resource consumption, and cost. To enhance WWTP management, it is vital to improve the efficiency of electricity consumption in primary and secondary treatment processes and increase wastewater collection efficiency to maximize the plant operating capacity and minimize overall environmental impacts.
  相似文献   

7.

Purpose

We investigate how the boundary between product systems and their environment has been delineated in life cycle assessment and question the usefulness and ontological relevance of a strict division between the two.

Methods

We consider flows, activities and impacts as general terms applicable to both product systems and their environment and propose that the ontologically relevant boundary is between the flows that are modelled as inputs to other activities (economic or environmental)—and the flows that—in a specific study—are regarded as final impacts, in the sense that no further feedback into the product system is considered before these impacts are applied in decision-making. Using this conceptual model, we contrast the traditional mathematical calculation of the life cycle impacts with a new, simpler computational structure where the life cycle impacts are calculated directly as part of the Leontief inverse, treating product flows and environmental flows in parallel, without the need to consider any boundary between economic and environmental activities.

Results and discussion

Our theoretical outline and the numerical example demonstrate that the distinctions and boundaries between product systems and their environment are unnecessary and in some cases obstructive from the perspective of impact assessment, and can therefore be ignored or chosen freely to reflect meaningful distinctions of specific life cycle assessment (LCA) studies. We show that our proposed computational structure is backwards compatible with the current practice of LCA modelling, while allowing inclusion of feedback loops both from the environment to the economy and internally between different impact categories in the impact assessment.

Conclusions

Our proposed computational structure for LCA facilitates consistent, explicit and transparent modelling of the feedback loops between environment and the economy and between different environmental mechanisms. The explicit and transparent modelling, combining economic and environmental information in a common computational structure, facilitates data exchange and re-use between different academic fields.
  相似文献   

8.

Background

We have developed magnetic cationic liposomes (MCLs) that contained magnetic nanoparticles as heating mediator for applying them to local hyperthermia. The heating performance of the MCLs is significantly affected by the property of the incorporated magnetite nanoparticles. We estimated heating capacity of magnetite nanoparticles by measuring its specific absorption rate (SAR) against irradiation of the alternating magnetic field (AMF).

Method

Magnetite nanoparticles which have various specific-surface-area (SSA) are dispersed in the sample tubes, subjected to various AMF and studied SAR.

Result

Heat generation of magnetite particles under variable AMF conditions was summarized by the SSA. There were two maximum SAR values locally between 12 m2/g to 190 m2/g of the SSA in all ranges of applied AMF frequency and those values increased followed by the intensity of AMF power. One of the maximum values was observed at approximately 90 m2/g of the SSA particles and the other was observed at approximately 120 m2/g of the SSA particles. A boundary value of the SAR for heat generation was observed around 110 m2/g of SSA particles and the effects of the AMF power were different on both hand. Smaller SSA particles showed strong correlation of the SAR value to the intensity of the AMF power though larger SSA particles showed weaker correlation.

Conclusion

Those results suggest that two maximum SAR value stand for the heating mechanism of magnetite nanoparticles represented by hysteresis loss and relaxation loss.
  相似文献   

9.

Background

Infant feeding is governed by environmental as well as cultural factors. Breastfeeding knowledge and attitudes are known to be associated with breastfeeding duration. This study investigated breastfeeding information, attitudes and supplementary feeding in the central hills district of Nepal.

Methods

A community-based prospective cohort study of 701 pregnant women was conducted. Information on breastfeeding attitudes, feeding practices and supplementary feeding was sought from the cohort at 4 weeks, 12 weeks and 22 weeks postpartum through repeated interviews using validated questionnaires.

Results

Average duration of intended breastfeeding was 28 months (SD 7.9) and average target time to introduce solid foods was 6.1 months (SD 1.2). About 80% of women reported their husband, mother/mother-in-law preferred breastfeeding. Eleven percent of the cohort said that breastfeeding was not enjoyable. At 12 weeks and 22 weeks after birth, about a quarter (24.8%) and half (52.8%) of the infants were introduced cow/buffalo milk, respectively, while only 6.3% and 13.4% of them were given infant formula. Overall, any breastfeeding rate remained high at over 98% throughout the follow up period.

Conclusions

Breastfeeding attitudes were encouraging in this population. Breastfeeding was almost universal. Use of infant formula was quite low, whereas cow or buffalo milk appeared to be popular supplementary foods.
  相似文献   

10.

Purpose

System modelling and life cycle assessment (LCA) were used to assess the climate change, acidification and eutrophication impacts of milk production using spring calving pasture-based system. The objective of the study was to evaluate the effect of climate and soil resources on the environmental impact per unit milk produced at the farm gate from low-cost, grass-based rotational-grazing dairy production.

Methods

A dairy system model, Dairy_sim, designed to identify optimum grass-based spring calving production systems considering the interaction between climate and soil resources was tested using the Irish National Dairy Blueprint and then used to assess regional differences of system management with well, moderately, mixed moderately-poorly and poorly drained soil resources available. Life cycle assessment was used to quantify environmental impacts of climate and soil drainage status. The Dairy_sim output was used as activity data for the LCA model.

Results and discussion

Differences were found in the management tactics influenced by climate and drainage resource. The impact of poor drainage reduced stocking rate, increased housing time and had greater need for later cut silage and more reliance on silage. Climate change, acidification and eutrophication impacts were greater for optimum management on poorly drained soil. The climate change ranged from 1.06 kg CO2 eq./kg (well drained) to 1.18 kg CO2 eq./kg (poorly drained) of energy corrected milk (ECM). The acidification and eutrophication ranged from 3.87 to 6.85 g SO2 eq./kg ECM and 2.69 to 3.64 g PO4 eq./kg ECM, respectively. Around 50% of poorly drained soil resource can be easily accommodated in dairy systems with little increase in environmental impact, where poor drained portion is utilised for silage.

Conclusions

LCA combined with a system optimization model revealed how dairy farm management practises constrained by poor land resource increased the environmental impact per unit product.
  相似文献   

11.

Introduction

Collecting feces is easy. It offers direct outcome to endogenous and microbial metabolites.

Objectives

In a context of lack of consensus about fecal sample preparation, especially in animal species, we developed a robust protocol allowing untargeted LC-HRMS fingerprinting.

Methods

The conditions of extraction (quantity, preparation, solvents, dilutions) were investigated in bovine feces.

Results

A rapid and simple protocol involving feces extraction with methanol (1/3, M/V) followed by centrifugation and a step filtration (10 kDa) was developed.

Conclusion

The workflow generated repeatable and informative fingerprints for robust metabolome characterization.
  相似文献   

12.

Purpose

The static functional unit definition in the current LCA framework has limitations in addressing the changing product functionality and associated environmental impact of constantly evolving product technologies. As a result, it overlooks the changes in consumer behaviour of increased consumption of products in provided services as well as in growing volumes. This article aims to present a new framework in defining a dynamic functional unit of product technologies that caters for changes in consumer behaviour and growing market.

Methods

A new approach to defining the functional unit is proposed that caters for changes in consumer behaviour and the use of technology from a technical performance perspective. A dynamic approach to definition of the functional unit is proposed that is based on Kano’s model of product function and satisfaction.

Results and discussion

The new approach is demonstrated on a case study in which the analysis of historical data for two TV product technologies—CRT and LCD—is used to show how the total environmental impact is increasing due to the increased functionality which triggers an increase in the volume of the market. Despite the efforts of improving product life cycle design, the society is still faced with increasing environmental impact from the product type overall.

Conclusions

This article presents the challenges of using a static, single functional unit definition in an industrial culture with constant evolution of products that influences usage behaviour and demonstrates the vicious circle of improving product efficiency that leads to further consumption and environmental impact. To address this problem, a new framework of dynamic functional unit definition is put forward for performing comparative LCA to manage the development of product life cycle design that helps keep the total environmental impact of the company’s product portfolio within absolute boundaries.
  相似文献   

13.

Purpose

To assess the diverse environmental impacts of land use, a standardization of quantifying land use elementary flows is needed in life cycle assessment (LCA). The purpose of this paper is to propose how to standardize the land use classification and how to regionalize land use elementary flows.

Materials and methods

In life cycle inventories, land occupation and transformation are elementary flows providing relevant information on the type and location of land use for land use impact assessment. To find a suitable land use classification system for LCA, existing global land cover classification systems and global approaches to define biogeographical regions are reviewed.

Results and discussion

A new multi-level classification of land use is presented. It consists of four levels of detail ranging from very general global land cover classes to more refined categories and very specific categories indicating land use intensities. Regionalization is built on five levels, first distinguishing between terrestrial, freshwater, and marine biomes and further specifying climatic regions, specific biomes, ecoregions and finally indicating the exact geo-referenced information of land use. Current land use inventories and impact assessment methods do not always match and hinder a comprehensive assessment of land use impact. A standardized definition of land use types and geographic location helps to overcome this gap and provides the opportunity to test the optimal resolution of land cover types and regionalization for each impact pathway.

Conclusions and recommendation

The presented approach provides the necessary flexibility to providers of inventories and developers of impact assessment methods. To simplify inventories and impact assessment methods of land use, we need to find archetypical situations across impact pathways, land use types and regions, and aggregate inventory entries and methods accordingly.
  相似文献   

14.

Background

Extracellular polymeric matrix (EPM) is a complex component of the organo-mineral assemblages created by biological soil crusts (BSCs). Mainly of polysaccharidic origin, it embeds soil and sediments and provides key benefits to the crust community. Services provided include: sediment cohesion and resistance to erosion, moisture provision, protection from external harmful factors, as well as support to plant establishment and growth. EPM is the product of BSC microbial community, and it is constituted by exopolysaccharides (EPS) associated to other substances, organized in a three-dimensional structure having different levels of gelation, and degrees of condensation.

Scope

This review aims at focusing scientific attention, for the first time, on the characteristics and the roles of three operationally defined EPM fractions, one water soluble, one more adherent to cells and sediments, and one firmly attached to microbial cells. The latest results obtained by analyzing EPM of natural and induced (i.e, the result of cyanobacteria inoculation) BSCs are outlined, and the optimized extraction methodology is described in details.

Conclusions

The review underlines the complexity of investigating the characteristics and the role of microbial EPS, and its supra-structure (EPM), in natural conditions (as opposed to cultures in laboratory conditions), where the matrix is subjected to continuous microbial rearrangement due to biosynthetic, self- and cross-feeding processes, and where microbial activity affected by environmental parameters.
  相似文献   

15.

Background

Microcystins are waterborne environmental toxins that induce oxidative stress and cause injuries in the heart. On the other hand, many physiological processes, including antioxidant defense, are under precise control by the mammalian circadian clock.

Results

In the present study, we evaluated the effect of microcystin-LR (MC-LR) on the rhythmic expression patterns of circadian and antioxidant genes in rat cardiomyocytes using the serum shock technique. We found that a non-toxic dose (10 μm) of MC-LR decreased the amplitudes of rhythmic patterns of clock genes, while it increased the expression levels of antioxidant genes.

Conclusions

Our results indicate an influence of MC-LR on the circadian clock system and clock-controlled antioxidant genes, which will shed some light on the explanation of heart toxicity induced by MC-LR from the viewpoint of chronobiology.
  相似文献   

16.

Purpose

To comply with the effluent regulation of boron, replacement of boric acid with citric acid in a nickel electroplating bath is proposed. Although the bath avoids the discharge of boron, it increases the discharge of nickel owing to the chelating effect of citric acid, which disturbs the wastewater treatment. To balance this trade-off, the environmental impacts of a traditional nickel plating process (the Watts bath) and the citrate bath must be compared by life cycle assessment.

Methods

The life cycle impact assessment method was LIME2. To estimate the trade-off between boron and nickel discharge into wastewater, the characterization and damage factors on human toxicity and ecotoxicity were calculated. The processes were then compared using data from actual processes. The functional unit was “plating per 1-kg part.” However, the plating efficiency depends on the type, shape, and surface area of the part. The data of the citrate bath were modeled. In the modeling, the amounts of nickel chloride and nickel sulfate in the citrate bath were based on the Watts bath.

Results and discussion

In comparison with other chemicals, the calculated characterization and damage factors of boron and nickel were found to be reasonable. The integration results revealed that the citrate bath exerted greater environmental impact than the Watts bath. Although the Watts bath involved more environmentally damaging processes than the citrate bath, the sum of these impacts was much smaller than the impact of effluent from the citrate bath. Moreover, the environmental impact of effluent can be significantly reduced by flocculants, with almost no additional environmental impact incurred by the increased sludge.

Conclusions

The newly developed citrate plating bath exerts higher environmental impact than the traditional Watts bath because the environmental impacts of the release of nickel chelated with citric acid exceed the reduced boron emissions. Therefore, there is a trade-off between the two methods. When installing the citrate bath, the wastewater treatment must be altered to reduce the nickel emissions.
  相似文献   

17.

Purpose

Application of zero valent iron nanoparticles is an innovative technology for ground water treatment and soil remediation. There are several methods to synthesise nano scale zero valent iron (nZVI), namely through bottom-up methods which consists on chemical reactions using strong reducing agents. In this work, the environmental impacts and costs were determined for two methods, namely the traditional one that uses sodium borohydride and the green method that uses extracts obtained from natural products.

Methods

The consideration of environment and economic aspects in the earlier stages of the synthesis processes and in the development of new materials is of great importance since it can help to decide if alternative methods are promising and should be further developed aiming more sustainable processes. In this work, life cycle assessment (LCA) was used as an ecodesign strategy evaluating environmental performance of the two synthesis methods, identifying critical stages of the synthesis processes of nZVI. An economic evaluation and a sensitivity analysis considering a different scenario for electricity production were also performed.

Results and discussion

The results obtained in this study showed that the green synthesis method presents lower environmental impacts than the traditional one, roughly 50% lower in the first scenario. In the second scenario, environmental impact of green synthesis corresponds to 38% of the environmental impact of traditional synthesis. In the green method, the critical stage is the extraction process which is closely related to the electricity production. In the traditional method, the reactant use is the critical stage that is related to the production of sodium borohydride. The economic evaluation indicated that the traditional synthesis method is much more expensive than the green synthesis (roughly eight times higher).

Conclusions

From the results obtained, it is possible to conclude that the green synthesis method presents lower environmental impacts in both scenarios and lower costs than the traditional synthesis.
  相似文献   

18.

Purpose

The purpose of this work is to quantify the environmental impact of the sugarcane industry in Tucumán (Argentina) through the life cycle analysis (LCA). The distinctive feature is the consideration of different technology levels (TLs) in the agricultural stage: high (HTL), medium (MTL), and low (LTL).

Methods

The scope of the study covers the agricultural and industrial stages through a “from cradle to gate” approach (from sugarcane cultivation until production of finished products: sugar and alcohol). The system is divided into Agriculture, Sugar Factory, and Distillery. Data used for the inventory are mainly provided by local experts, sugarcane growers, and processing companies. The characteristics of each TL are taken from a regional classification. For the impact assessment, the CML 2001 model (nine impact categories) is used.

Results and discussion

Regardless of the TL, in most of the impact categories, an important contribution attributable to the use of synthetic agrochemicals is evident. As for the comparison among TLs, the ethanol produced with HTL has less impact values than the ones produced with MTL and LTL in seven categories. These results can be mainly explained by the better cultural yields obtained with HTL, and to the fact that sugarcane is not burnt before harvesting in HTL as it is in MTL and LTL.

Conclusions

This study explores the implications of using different TLs for the agricultural tasks on the sugarcane supply chain in Tucumán, which is characterized by a vertically nonintegrated productive scheme. If practices associated to HTL are implemented, a reduction of the environmental impact is observed in most categories. It is necessary to compare these results with economic and social implications to ensure sustainability of the sugarcane value chain.
  相似文献   

19.

Introduction

Data sharing is being increasingly required by journals and has been heralded as a solution to the ‘replication crisis’.

Objectives

(i) Review data sharing policies of journals publishing the most metabolomics papers associated with open data and (ii) compare these journals’ policies to those that publish the most metabolomics papers.

Methods

A PubMed search was used to identify metabolomics papers. Metabolomics data repositories were manually searched for linked publications.

Results

Journals that support data sharing are not necessarily those with the most papers associated to open metabolomics data.

Conclusion

Further efforts are required to improve data sharing in metabolomics.
  相似文献   

20.

Background

Cells are open complex thermodynamic systems. They can be also regarded as complex engines that execute a series of chemical reactions. Energy transformations, thermo-electro-chemical processes and transports phenomena can occur across the cells membranes. Moreover, cells can also actively modify their behaviours in relation to changes in their environment.

Methods

Different thermo-electro-biochemical behaviours occur between health and disease states. But, all the living systems waste heat, which is no more than the result of their internal irreversibility. This heat is dissipated into the environment. But, this wasted heat represent also a sort of information, which outflows from the cell toward its environment, completely accessible to any observer.

Results

The analysis of irreversibility related to this wasted heat can represent a new approach to study the behaviour of the cells themselves and to control their behaviours. So, this approach allows us to consider the living systems as black boxes and analyze only the inflows and outflows and their changes in relation to the modification of the environment. Therefore, information on the systems can be obtained by analyzing the changes in the cell heat wasted in relation to external perturbations.

Conclusions

The bioengineering thermodynamics bases are summarized and used to analyse possible controls of the calls behaviours based on the control of the ions fluxes across the cells membranes.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号