首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K. Zandomeni  P. Schopfer 《Protoplasma》1993,173(3-4):103-112
Summary The effects of red and blue light on the orientation of cortical microtubules (MTs) underneath the outer epidermal wall of maize (Zea mays L.) coleoptiles were investigated with immunofluorescent techniques. The epidermal cells of dark-grown coleoptiles demonstrated an irregular pattern of regions of parallel MTs with a random distribution of orientations. This pattern could be changed into a uniformly transverse MT alignment with respect to the long cell axis by 1 h of irradiation with red light. This response was transient as the MTs spontaneously shifted into a longitudinal orientation after 1–2 h of continued irradiation. Induction/reversion experiments with short red and far-red light pulses demonstrated the involvement of phytochrome in this response. In contrast to red light, irradiation with blue light induced a stable longitudinal MT alignment which was established within 10 min. The blue-light response could not be affected by subsequent irradiations with red or far-red light indicating the involvement of a separate blue-light photoreceptor which antagonizes the effect of phytochrome. In mixed light treatments with red and blue light, the blue-light photoreceptor always dominated over phytochrome which exhibited an apparently less stable influence on MT orientation. Long-term irradiations with red or blue light up to 6 h did not reveal any rhythmic changes of MT orientation that could be related to the rhythmicity of helicoidal cell-wall structure. Subapical segments isolated from dark-grown coleoptiles maintained a longitudinal MT arrangement even in red light indicating that the responsiveness to phytochrome was lost upon isolation. Conversely auxin induced a transverse MT arrangement in isolated segments even in blue light, indicating that the responsiveness to blue-light photoreceptor was eliminated by the hormone. These complex interactions are discussed in the context of current hypotheses on the functional significance of MT reorientations for cell development.Abbreviations MT cortical microtubule - Pr, Pfr red and far-red absorbing form of phytochrome  相似文献   

2.
In a previous study (Nick and Schäfer 1991, Planta 185, 415–424), unilateral blue light had been shown, in maize coleoptiles, to induce phototropism and a stable transverse polarity, which became detectable as stable curvature if counteracting gravitropic stimulation was removed by rotation on a horizontal clinostat. This response was accompanied by a reorientation of cortical microtubules in the outer epidermis (Nick et al. 1990, Planta 181, 162–168). In the present study, this stable transverse polarity is shown to be correlated with stability of microtubule orientation against blue light and changes of auxin content. The role of auxin in this stabilisation was assessed. Although auxin can induce reorientation of microtubules it fails to induce the stabilisation of microtubule orientation induced by blue light. This was even true for gradients of auxin able to induce a bending response similar to that ellicited by phototropic stimulation. Experiments involving partial irradiation demonstrated different perception sites for phototropism and polarity induction. Phototropism starts from the very coleoptile tip and involves transmission of a signal (auxin) towards the subapical elongation zone. In contrast, polarity induction requires local action of blue light in the elongation zone itself. This blue-light response is independent of auxin.This work was supported by the Deutsche Forschungsgemeinschaft and two grants of the Studienstiftung des Deutschen Volkes and the Human Frontier Science Program Organization to P.N.  相似文献   

3.
Summary Cortical microtubules in the epidermis of regeneratingGraptopetalum plants were examined by in situ immunofluorescence. Paradermal slices of tissue were prepared by a method that preserves microtubule arrays and also maintains cell junctions. To test the hypothesis that cortical microtubule arrays align perpendicular to the direction of organ growth, arrays were visualized and their orientation quantified. A majority of microtubules are in transverse orientation with respect to the organ axis early in shoot development when the growth habit is uniform. Later in development, when growth habit is non-uniform and the tissue is contoured, cortical microtubules are increasingly longitudinal and oblique in orientation. Microtubules show only a minor change in orientation at the site of greatest curvature, the transition zone of a developing leaf. To assess the role of the division plane on orientation of arrays, the pattern of microtubules was examined in individual cells of common shape. Cells derived from transverse divisions have predominately transverse cortical arrays, whereas cells derived from oblique and longitudinal divisions have non-transverse arrays. The results show that, regardless of the stage of development, microtubules orient with respect to cell shape and plane of division. The results suggest that cytoskeletal function is best considered in small domains of growth within an organ.Abbrevations DMSO dimethylsulfoxide - EGTA ethylene glycol-bis-(ß-aminoethyl ether)-N, N, N, N-tetra acetic acid - FITC fluorescein isothiocyanate - MTSB microtubule stabilizing buffer - PBS phosphate buffered saline  相似文献   

4.
Critical analysis of a recent article raises questions regarding the inhibition of cell expansion by rapid ABP1-mediated auxin effect on microtubules.How do cortical microtubules shape plant cells? This has been an important question ever since the microtubular cytoskeleton was found to orientate the deposition of cellulose microfibrils in the primary cell wall and control long-term anisotropic cell expansion under isotropic turgor pressure (Green, 1962). In axial plant organs, longitudinal microtubule/microfibril arrays hamper expansion in length and favor expansion in girth, while transverse microtubule/microfibril arrays have the opposite effect (Baskin, 2001). By generating mechanical anisotropy in the cell wall, microtubule orientation controls the ratio of longitudinal versus circumferential cell expansion (the allometric ratio). A recent study by Chen et al. (2014) concludes that auxin inhibits cell growth by causing a rapid reorientation of microtubules from a transverse to a longitudinal orientation in cells of the submeristematic root zone and the elongation zone of the hypocotyl of Arabidopsis (Arabidopsis thaliana) seedlings. This conclusion warrants attention because the cell expansion that drives auxin-mediated organ elongation is generally thought to be controlled by the regulated breaking of bonds between existing cell wall polymers by chemical means (wall loosening; Cosgrove, 2005).It has been clear for more than 25 years that auxin does induce rapid changes in the orientation of microtubules in growing cells, either during straight growth (Bergfeld et al., 1988) or tropic bending (Nick et al., 1990). These studies form part of a group of investigations that show that numerous growth-affecting endogenous, environmental, and even artificial physical factors have very similar effects on microtubule orientation: during active cell expansion or related mechanical strains, microtubules are aligned against the direction of expansion, and they are aligned with it during the inhibition of expansion (Fischer and Schopfer, 1997). An important insight that emerges from this extensive evidence is that the type of reorientation elicited by a particular factor depends on its physiological context, thereby allowing auxin to induce either transverse or longitudinal microtubule orientations depending on whether elongation growth is promoted (as in shoot organs) or inhibited (as in roots). Clearly, ordered microtubule reorientations require the input of directional information (Williamson, 1990). Auxin signaling as such cannot provide this information, but the directional growth responses produced by auxin can. This brings us to the crucial question: is the orientation of microtubules determined by the effector signal directly or by changes in growth? The answer given by Chen et al. (2014) comes as a surprise: the inhibition of cell expansion is mediated by the rapid AUXIN-BINDING PROTEIN1 (ABP1)-dependent action of auxin on microtubules. The authors imply that it is microtubular reorientation per se that is responsible for the sudden growth inhibition caused by auxin in roots and hypocotyls rather than any changes in cell wall structure. Related microtubule reorientations at the concave side of gravitropically curving roots are interpreted in a similar way.Coming as an even bigger surprise, Chen and collaborators do not provide any evidence to support the claim made in their title, nor do they touch the obvious question of how microtubule reorientation from transverse to longitudinal might produce the growth inhibition elicited by auxin in the Arabidopsis root so quickly (Evans et al., 1994). Modification of the allometric ratio by changing the orientation of newly deposited cellulose microfibrils happens over hours and, therefore, is much too slow to account directly for the inhibition of cell expansion by auxin. Accompanying data on the growth changes produced by auxin in their experiments are not included in the report, nor are specifications of the investigated cell layers, despite the fact that the different cell layers show different responses to hormones (Ubeda-Tomás et al., 2012). Hence, critical questions regarding the quantitative relationship between microtubule reorientation and cell elongation remain unanswered. The gap between the experimental data presented and the far-reaching conclusions derived from them has been pointed out by Baskin (2015).There is, to our knowledge, no evidence for any fast growth-controlling mechanisms involving microtubules. There is, on the other hand, ample evidence for a causal relationship between wall-relaxing processes (such as the secretion or activation of wall-loosening enzymes or the generation of reactive oxygen species) and the rapid regulation of cell growth by auxin (Cosgrove, 2005; Perrot-Rechenmann, 2010). Modification of the allometric ratio by changing the orientation of newly deposited cellulose microfibrils appears much too slow (happening over hours) to account for the inhibition of cell expansion within minutes (Evans et al., 1994). Gravitropic bending of maize (Zea mays) roots has been shown to proceed normally even after the disassembly or immobilization of microtubules, and the inhibition of bending prohibits unilateral microtubule reorientation (Baluška et al., 1996). Chen et al. (2014) do not consider any of this evidence.So, can the data presented by Chen and collaborators be explained without coming into conflict with previously published results? The answer to this question is straightforward and has long been accessible in the pertinent literature: the observed changes in microtubule pattern are trivial consequences of either growth inhibition or the auxin insensitivity of growth in abp1 (Tromas et al., 2009). Consider the following points.First, mechanical forces can reorientate microtubules. There is a large body of experimental evidence that indicates that microtubule reorientations in single cells or tissues can be induced by oriented mechanical forces causing oriented stresses and strains in the affected cell walls (Landrein and Hamant, 2013). For example, Fisher and Cyr (2000) subjected protoplasts, embedded in an elastic agarose matrix, to mechanically induced stretching. The originally randomly oriented microtubules responded to this treatment by aligning at right angles to the major tensive force vector. Similarly, growing coleoptile segments respond to mechanical bending by reorientating the microtubules of epidermal cells at right angles to the direction of tension (extended side) and parallel to the direction of compression (compressed side; Fischer and Schopfer, 1997).Second, anisotropic cell growth mirrors patterns of stress and strain within the cell wall (Hamant and Traas, 2010). In biophysical terms, turgid plant cells can be regarded as pressurized vessels surrounded by an elastically stretched wall. Auxin-driven cell enlargement is brought about by changing the yielding properties of the wall and the resulting expansion in the direction of growth (Cosgrove, 2005).Third, experiments with maize coleoptiles have shown that auxin, in addition to effecting growth-related microtubule reorientations, strongly promotes their responsivity to mechanical forces. The epidermal microtubules of auxin-deprived coleoptile segments barely respond to bending stresses but reorientate rapidly after a 1-h treatment with auxin (Fischer and Schopfer, 1997). Hence, cell wall strains generated by growth or applied stresses interact in orientating microtubules in a synergistic manner, pointing to a common signaling mechanism activated by changes in strain rate.Summing up, there is well-founded evidence for the conclusion that the microtubule reorientations observed by Chen and collaborators occur as a result of changes in the physical strain pattern that underlies the auxin-induced changes in cell expansion. In agreement with established knowledge, the primary effect of auxin may be a rapid inhibition of cell wall loosening, mediated by the production of hydrogen peroxide (Ivanchenko et al., 2013). Based on these arguments and the weight of published evidence, we conclude that Chen and collaborators have inversed cause and effect.Their observation that the inactivation of ABP1 (and downstream components of the ABP1 pathway) causes microtubules to become unresponsive to auxin and lose their transverse pattern in roots may be explained as trivial consequences of growth inhibition (Tromas et al., 2009). Serious questions now hang over the roles for ABP1 in auxin signaling and auxin-controlled development (Gao et al., 2015; Liu, 2015). However, this does not come as a complete surprise. Hayashi et al. (2008) previously showed that the auxin-induced growth inhibition of root and hypocotyl in Arabidopsis can be suppressed by α[2,4-dimethylphenly-ethyl-2-oxo]-IAA (auxinole). This antagonist specifically competes with auxin at the TIR1-AUX/IAA-type receptor complexes and does not bind to ABP1, thereby suggesting that ABP1 does not act as a receptor in these pathways.There are lessons here, not the least that literature from the pre-Arabidopsis era remains a relevant and valuable source of information.  相似文献   

5.
The arrangements of cortical microtubules (MTs) in a tip-growing protonemal cell of Adiantum capillus-veneris L. and of cellulose microfibrils (MFs) in its wall were examined during blue-light (BL)-induced apical swelling. In most protonemal cells which had been growing in the longitudinal direction under red light, apical swelling was induced within 2 h of the onset of BL irradiation, and swelling continued for at least 8 h. During the longitudinal growth under red light, the arrangement of MFs around the base of the apical hemisphere (the subapical region) was perpendicular to the cell axis, while a random arrangement of MFs was found at the very tip, and a roughly axial arrangement was observed in the cylindrical region of most cells. This orientation of MFs corresponds to that of the cortical MTs reported previously (Murata et al. 1987, Protoplasma 141, 135–138). In cells irradiated with BL, a random rather than transverse arrangement of both MTs and MFs was found in the subapical region. Time-course studies showed that this reorientation occurred within 1 h after the onset of the BL irradiation, i.e. it preceded the change in growth pattern. These results indicate that the orientation of cortical MTs and of cellulose MFs is involved in the regulation of cell diameter in a tip-growing Adiantum protonemal cell.Abbreviations BL blue light - MF(s) microfibril(s) - MT(s) microtubule(s)  相似文献   

6.
T. Murata  M. Wada 《Protoplasma》1989,151(2-3):73-80
Summary Microtubule organization during preprophase band development was investigated using immunofluorescence microscopy in filamentous protonemal cells (approx. 600 m in length, 20 m in width) ofAdiantum capillus-veneris L. Protonemata pre-cultured under red light were transferred to continuous blue light or total darkness to induce synchronous cell division. Preprophase bands were found under both light conditions. In an early stage of development, the preprophase band which is transverse to the cell axis overlapped with an interphase cortical array of microtubules which is random or parallel to the cell axis. The interphase cortical array disappeared thereafter. While the width of the preprophase band became narrow during development under dark conditions, under blue light conditions it did not.Spatial and temporal aspects of the disappearance of the interphase cortical array of microtubules were also investigated. The interphase cortical array began to disappear at nearly the same time as the beginning of preprophase band formation. Under blue light, the disruption of cortical microtubules started at approx. 150 m from the tip (approx. 120 m from the nucleus), and spread toward the tip as far as the nuclear region and toward the base to an area approx. 300–400 m from the tip. Cortical microtubules remained in the basal part of the protonema. The pattern of disappearance between the tip and nucleus could not be determined. Under dark conditions, the pattern of the disappearance of cortical microtubules was somewhat different in many cells from that encountered with exposure to blue light. Microtubules first re-oriented from longitudinal to transverse, and then gradually disappeared. In some cells, the pattern of disappearance was similar to that observed under blue light.Abbreviations DAPI 4, 6-diamidino-2-phenylindole - ICM interphase cortical microtubules - PBS phosphate buffered saline - PPB preprophase band - MT microtubule  相似文献   

7.
Nick P  Schäfer E  Furuya M 《Plant physiology》1992,99(4):1302-1308
In red-light grown corn (Zea mays L. cv Brio42.HT) coleoptiles, cortical microtubules adjacent to the outer cell wall of the outer epidermis reorient from transverse to longitudinal in response to auxin depletion and after phototropic stimulation in the lighted side of the coleoptile. This was used as an in situ assay of cellular auxin concentration. The fluence-response relation for the blue light-induced reorientation is compared with that for first positive phototropism and the dose-response relationship for the auxin-dependent reorientation. The result supports the theory by Cholodny and Went, claiming that phototropic stimulation results in auxin displacement across the coleoptile. In terms of microtubule orientation, this displacement becomes even more pronounced after preirradiation with a weak blue light pulse from above.  相似文献   

8.
Summary In epidermal cells of azuki bean (Vigna angularis) epicotyl segments, that were sequentially treated with an auxin-free solution and an auxin solution, cortical microtubules changed their orientation from longitudinal to transverse. Auxin caused the reorientation of microtubules from longitudinal to transverse in segments that were kept under anaerobic conditions and, therefore, showed no elongation, indicating that auxin can regulate the orientation of microtubules by a mechanism that does not involve auxin-induced change in the rate of cell elongation.Abbreviations DMSO dimethylsulfoxide - GA3 gibberellic acid - IAA indoleacetic acid - MT microtubule - PBS phosphate-buffered saline  相似文献   

9.
Auxin controls the orientation of cortical microtubules in maize coleoptile segments. We used tyrosinylated alpha-tubulin as a marker to assess auxin-dependent changes in microtubule turnover. Auxin-induced tyrosinylated alpha-tubulin, correlated with an elevated sensitivity of growth to antimicrotubular compounds such as ethyl-N-phenylcarbamate (EPC). We determined the affinity of alpha-tubulin to EPC and found that it was dramatically increased when the tubulin was de-tyrosinylated. By proteolytic cleavage of the carboxy terminal tyrosine, such an increased affinity could be induced in vitro. Thus, the auxin-induced sensitivity of growth to EPC is not caused by an increased affinity for this inhibitor, but caused by a reduced microtubule turnover. Double visualization assays revealed that the transverse microtubules induced by auxin consist predominantly of tyrosinylated alpha-tubulin, whereas the longitudinal microtubules induced by auxin depletion contain de-tyrosinylated alpha-tubulin. The results are discussed in terms of direction-dependent differences in the lifetime of microtubules.  相似文献   

10.
T. Murata  M. Wada 《Protoplasma》1989,151(2-3):81-87
Summary 5 mM colchicine and 1 g/ml amiprophos-methyl, known antimicrotubule agents, were applied to fernAdiantum protonemata under red light. Both drugs caused microtubule disruption and subsequent apical swelling of protonemal cells after certain lag periods. While the lag periods for the onset of microtubule disruption after application of the two drugs were different (within 15 minutes in amiprophos-methyl, 1 hour in colchicine), the lag periods of apical swelling after microtubule disruption were nearly the same (approx. 70 minutes). The results suggest that the apical swelling is a consequence of microtubule disruption.In cells examined 1 hour after microtubule disruption by either drug, the microfibril arrangement of the innermost layer of the cell wall was random at the tip, transverse in the subapical region, and roughly longitudinal in the cylindrical region. This pattern of microfibrils was similar to that of untreated cells in which the microtubules show a similar arrangement (Murata and Wada 1989). Surprisingly, even after approx. 4 hours of microtubule disruption, when apical swelling had occurred in most cells, the pattern of microfibril deposition was not altered. The role of microtubules in oriented microfibril deposition and the mechanism of control of cell shape are discussed.Abbreviations APM amiprophos-methyl - DMSO dimethylsulfoxide - MT(s) microtubule(s) - PBS phosphate buffered saline  相似文献   

11.
Zandomeni K  Schopfer P 《Protoplasma》1994,182(3-4):96-101
Summary Plants respond to mechanical stress by adaptive changes in growth. Although this phenomenon is well established, the mechanism of the perception of mechanical forces by plant cells is not yet known. We provide evidence that the cortical microtubules sub-adjacent to the growth-controlling outer epidermal cell wall of maize coleoptiles respond to mechanical extension and compression by rapidly reorientating perpendicular to the direction of the effective force change. These findings shed new light on many seemingly unrelated observations on microtubule reorientation by growth factors such as light or phytohormones. Moreover, our results suggest that microtubules associated with the plasma membrane are causally involved in sensing vectorial forces and provide vectorial information to the cell that can be utilized in the orientation of plant organ expansion.Abbreviation MT cortical microtubule  相似文献   

12.
A recently proposed hypothesis [Nick et al. (1990) Planta 181:162] suggests that, in maize coleoptiles, tropistic curvaturemight be caused by a stimulus-induced trans-organ gradient overthe orientation of cortical microtubules adjacent to the outercell wall of the outer epidermis. This gradient, in turn, iscontrolled by a light-induced redistribution of auxin. The hypothesiswas tested by following the behaviour of microtubules for variouslight stimuli using indirect immuno-fiuorescence in epidermalstrips as assay. Analysis of gravitropic straightening, nasticcurvature on the horizontal clinostat, effects of tonic irradiationwith red and/or blue light, and experiments involving opposinglight pulses demonstrate that bending direction and microtubuleorientation gradients are not as closely linked as predicted:Considerable bending can be produced without detectable gradientsof microtubule orientation, and conspicuous gradients of microtubuleorientation are not necessarily expressed as corresponding curvature.Thus, a monocausal relationship between microtubules and tropismis excluded. Furthermore, a comparison of tonic light effectson microtubules to earlier studies into the impact of lightupon auxin content indicate that the relationship between auxinand microtubules might be more complex than hitherto assumed.It is concluded that, at least in maize coleoptiles, growthcan be regulated by various mechanisms, and that microtubules,although somehow related to tropism, are probably not the causeof the fast tropistic responses. (Received April 26, 1991; Accepted July 17, 1991)  相似文献   

13.
Summary Tip cells of dark-grown protonemata of the mossCeratodon purpureus are negatively gravitropic (grow upward). They possess a unique longitudinal zonation: (1) a tip group of amylochloroplasts in the apical dome, (2) a plastid-free zone, (3) a zone of significant plastid sedimentation, and (4) a zone of mostly non-sedimenting plastids. Immunofluorescence of vertical cells showed microtubules distributed throughout the cytoplasm in a mostly axial orientation extending through all zones. Optical sectioning revealed a close spatial association between microtubules and plastids. A majority (two thirds) of protonemata gravistimulated for >20 min had a higher density of microtubules near the lower flank compared to the upper flank in the plastid-free zone. This apparent enrichment of microtubules occurred just proximal to sedimented plastids and near the part of the tip that presumably elongates more to produce curvature. Fewer than 5% of gravistimulated protonemata had an enrichment in microtubules near the upper flank, whereas 14% of vertical protonemata were enriched near one of the side walls. Oryzalin and amiprophos-methyl (APM) disrupted microtubules, gravitropism, and normal tip growth and zonation, but did not prevent plastid sedimentation. We hypothesize that a microtubule redistribution plays a role in gravitropism in this protonema. This appears to be the first report of an effect of gravity on microtubule distribution in plants.Abbreviations APM amiprophos-methyl - DIC differential interference contrast - DMSO dimethyl sulfoxide - EGTA ethylene glycolbis-(-amino-ethylether) N,N,N',N'-tetraacetic acid - FITC fluorescein isothiocyanate - GS gravitropic stimulus - MT microtubule - PIPES piperazine-N,N'-bis-2-ethanesulfonic acid  相似文献   

14.
Summary The orientation of cortical microtubules in plant cells has been extensively studied, in part because of their influence on the expansion of most plant cell types. Cortical microtubules are often arranged in helical arrays, which are well known to occur with a specific pitch as a function of development or experimental treatment; however, it is not known if the handedness of helical arrays can also be specified. We have studied the handedness of helical arrays by using Vibratome sectioning of maize primary roots and confocal microscopy of Arabidopsis primary roots. In cortical cells of maize roots, the helical array was found to have the same handedness at a given position, not only for the cells of a single root, but also for the cells of more than one hundred roots examined. Quantification of angular distribution of apparent individual microtubules showed that defined regions of the root were composed of cells with highly uniform microtubule orientation. In the region between transverse and longitudinal microtubules (5–10.5 mm from the tip), the array formed a right-handed helix, and basal of cells with longitudinal microtubules (11.5–15 mm from the tip), the array formed a left-handed helix. Similarly, in epidermal cells of Arabidopsis roots right-handed helical arrays were found in the region between transverse and longitudinal microtubules. These results suggest that, in addition to the orientation of microtubules, the handedness of helical microtubule arrays is under cellular control.Abbreviations Cy3 indocarbocyanine - PBS phosphate-buffered saline - PIPES piperazine-N,N-bis-[2-ethanesulfonic acid]  相似文献   

15.
Microfibrillar structure, cortical microtubule orientation andthe effect of amiprophos-methyl (APM) on the arrangement ofthe most recently deposited cellulose microfibrils were investigatedin the marine filamentous green alga, Chamaedoris orientalis.The thallus cells of Chamaedoris showed typical tip growth.The orientation of microfibrils in the thick cell wall showedorderly change in longitudinal, transverse and oblique directionsin a polar dependent manner. Microtubules run parallel to thelongitudinally arranged microfibrils in the innermost layerof the wall but they are never parallel to either transverseor obliquely arranged microfibrils. The ordered change in microfibrilorientation is altered by the disruption of the microtubuleswith APM. The walls, deposited in the absence of the microtubules,showed typical helicoidal pattern. However, the original crossedpolylamellate pattern was restored by the removal of APM. Thissuggests that cortical microtubules in this alga do not controlthe direction of microfibril orientation but control the orderedchange of microfibril orientation. Amiprophos-methyl, Chamaedoris orientalis, coenocytic green alga, cortical microtubule, microfibrillar structure, tip growth  相似文献   

16.
Melissa A. Melan 《Protoplasma》1990,153(3):169-177
Summary We have investigated the effects of microtubule stabilizing conditions upon microtubule patterns in protoplasts and developed a new method for producing protoplasts which have non-random cortical microtubule arrays. Segments of elongating pea epicotyl tissue were treated with the microtubule stabilizing drug taxol for 1 h before enzymatic digestion of the cell walls in the presence of the drug. Anti-tubulin immunofluorescence showed that 40 M taxol preserved regions of ordered microtubules. The microtubules in these regions were arranged in parallel arrays, although the arrays did not always show the transverse orientation seen in the intact tissue. Protoplasts prepared without taxol had microtubules which were random in distribution. Addition of taxol to protoplasts with random microtubule arrangements did not result in organized microtubule arrays. Taxol-treated protoplasts were used to determine whether or not organized microtubule arrays would affect the organization of cell wall microfibrils as new walls were regenerated. We found that protoplasts from taxol-treated tissue which were allowed to regenerate cell walls produced organized arrays of microfibrils whose patterns matched those of the underlying microtubules. Protoplasts from untreated tissue synthesized microfibrils which were disordered. The synthesis of organized microfibrils by protoplasts with ordered microtubules arrays shows that microtubule arrangements in protoplasts influence the arrangement of newly synthesized microfibrils.Abbreviations DIC differential interference contrast - DMSO dimethyl sulfoxide - FITC fluorescein isothiocyanate - IgG immunoglobulin G - PIPES piperazine-N,N-bis[2-ethane-sulfonic acid] - PBS phosphate buffered saline  相似文献   

17.
Branches were induced in centrifugedAdiantum protonemal cells by partial irradiation with polarized red light. Nuclear behavior and microtubule pattern change during branch formation were investigated. A branch formed at any part where a red microbeam was focused along a long apical cell. The nucleus moved towards the irradiated area and remained there until a branch developed. The pattern of microtubules changed from parallel to oblique at the irradiated area and then a transverse arrangement of microtubules appeared on both sides of the area. It appeared as if the nucleus was suspended between two microtubule rings. This nuclear behavior and the changes in microtubule pattern were different from those observed during branch formation under whole cell irradiation. From the results of this work we suggest that there is an importance for precise control of experimental conditions.  相似文献   

18.
The stem elongation responses of etiolated peas (Pisum sativum L.) to fluorescent light (35–45 mol.mt-2.s-1) were recorded using high resolution position transducers. Continuous fluorescent light decreased growth by 70% within 9 min. The growth rate declined to 5% of the control over the next 2 h and remained at this level for 7 h. Pulses of fluorescent light ranging from 8 s to 34 min led to partial suppression of growth and resulted in a complex kinetic response. The distinctive kinetics of blue and red light inhibition were apparent as components of the responses to non-saturating levels of fluorescent light. The rapid suppression of growth by blue light was not affected by concomitant red light. The lag time for the onset of red light inhibition was not affected by concomitant blue, but the rate of inhibition appeared accelerated.  相似文献   

19.
Abstract Growth redistribution which occurs as a result of phototropic stimulation was studied in red light-grown, maize (Zea mays L.) seedlings. The pattern of elongation of small areas (0.1mm2) of coleoptile epidermis on intact plants was analysed from time-lapse, photomicrographic records. Growth following unilateral, pulse irradiation with blue light was depressed on the illuminated side and was stimulated on the shaded side. The time at which the change in growth rate occurred, on both illuminated and shaded sides, was significantly earlier in apical patches than it was in basal patches. Both kinds of change in the growth rate (stimulation and depression) occurred rapidly such that a new, constant growth rate was often established within five minutes. Micrographic, time-lapse records were also obtained of growth changes induced by sub-apical, unilateral application of a spot of an indole-3-acetic acid (IAA) and lanolin mixture. Growth on the side of the coleoptile to which IAA had been applied was similar to the growth on shaded sides of phototropically stimulated plants. The distance between apical and basal patches and the elapsed time between their changes in growth rate gave a velocity at which the growth response moved basipetally. Calculation of this velocity for blue light and auxin treatment gave values that were not significantly different. Thus, basipetal movement of a transverse auxin gradient could mediate growth changes that cause curvature of the coleoptile towards first positive fluences of blue light.  相似文献   

20.
Mutants in rice (Oryza sativa L. cv. japonica) were used to study the role of the cytoskeleton in signal-dependent morphogenesis. Mutants obtained by gamma ray irradiation were selected that failed to show inhibition of coleoptile elongation by the antimicrotubular drug ethyl-N-phenylcarbamate (EPC). The mutation EPC-Resistant 31 (ER31), isolated from such a screen, caused lethality in putatively homozygous embryos. Heterozygotes exhibited drug resistance, impaired development of crown roots, and characteristic changes in the pattern of cell elongation: cell elongation was enhanced in mesocotyls and leaf sheaths, but inhibited in coleoptiles. The orientation of cortical microtubules changed correspondingly: for etiolated seedlings, compared with the wild-type, they were more transverse with respect to the long cell axis in mesocotyls and leaf sheaths, but more longitudinal in coleoptiles. In mutant coleoptiles, in contrast to wild-type, microtubules did not reorient in response to auxin, and their response to microtubule-eliminating and microtubule-stabilizing drugs was conspicuously reduced. In contrast, they responded normally to other stimuli such as gibberellins or red light. Auxin sensitivity as assayed by the dose-response for callus induction did not show any significant differences between wild-type and mutant. The mutant phenotype is interpreted in terms of an interrupted link between auxin-triggered signal transduction and microtubule reorientation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号