首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A structural analysis of two lactate dehydrogenase M4 protein forms has been performed. These structures are the protein products of two lactate dehydrogenase gene (LDH-A) copies in the weatherfish Misgurnus fossilis genome after thermal adaptation (acclimation) to 5 degrees C and 18 degrees C. The localization of three earlier identified amino acid substitutions (Gly214Val, Leu304Ile, Asp312Glu) has been determined, and the molecular dynamics simulation and computer modeling of two forms of the enzyme from skeletal muscles LDH-M4 have been carried out. After molecular dynamics trajectory calculations carried out at 5, 18, and 25 degrees C, the intersubunit distances for all structures used in calculations have been determined. It has been found that the Gly214Val substitution localized in the intersubunit region leads to a new intersubunit interaction, which plays a role in the stabilization of tetrameric enzyme structure after the adaptation to 18 degrees C.  相似文献   

2.
Recombinant formate dehydrogenase (FDH, EC 1.2.1.2) from soy Glycine max (SoyFDH) has the lowest values of Michaelis constants for formate and NAD+ among all studied formate dehydrogenases from different sources. Nevertheless, it also has the lower thermal stability compared to enzymes from bacteria and yeasts. The alignment of full sequences of FDHs from different sources as well as structure of apo- and holo-forms of SoyFDH has been analyzed. Ten mutant forms of SoyFDH were obtained by site-directed mutagenesis. All of them were purified to homogeneity and their thermal stability and substrate specificity were studied. Thermal stability was investigated by studying the inactivation kinetics at different temperatures and by differential scanning calorimetry (DSC). As a result, single-point (Ala267Met) and double mutants (Ala267Met/Ile272Val) were found to be more stable than the wild-type enzyme at high temperatures. The stabilization effect depends on temperature, and at 52°C it was 3.6- and 11-fold, respectively. These mutants also showed higher melting temperatures in DSC experiments — the differences in maxima of the melting curves (T m) for the single and double mutants were 2.7 and 4.6°C, respectively. For mutations Leu24Asp and Val127Arg, the thermal stability at 52°C decreased 5- and 2.5-fold, respectively, and the T m decreased by 3.5 and 1.7°C, respectively. There were no differences in thermal stability of six mutant forms of SoyFDH — Gly18Ala, Lys23Thr, Lys109Pro, Asn247Glu, Val281Ile, and Ser354Pro. Analysis of kinetic data showed that for the enzymes with mutations Val127Arg and Ala267Met the catalytic efficiency increased 1.7- and 2.3-fold, respectively.  相似文献   

3.
A biochemical comparison of ε-crystallin isolated from the duck lens and lactate dehydrogenase of chicken heart has been made in order to establish the structural and functional identities of these two proteins. The native molecular weight of ε-crystallin was re-examined by combining sedimentation and gel-filtration data. It was found that ε-crystallin is 150 kDa in contrast to the 120 kDa reported previously for this crystallin. Subunit cross-linking experiments corroborated that lactate dehydrogenase and ε-crystallin both exist as tetramers of four identical subunits in their native quaternary structures. Amino acid compositions plus N-terminal analyses revealed no differences between the two proteins. Duck ε-crystallin exhibited high enzymatic activity of lactate dehydrogenases even after a long period of storage, and showed characteristic thermostability at 50°C for several hours. Comparison of the enzyme activity of duck lens homogenate with those of heart, liver and muscle tissues revealed that duck lens is a much richer source than other tissues for the isolation and characterization of this important enzyme which appears also as a structural protein in the lens.  相似文献   

4.
Lactobacillus casei L ‐lactate dehydrogenase (LCLDH) is activated through the homotropic and heterotropic activation effects of pyruvate and fructose 1,6‐bisphosphate (FBP), respectively, and exhibits unusually high pH‐dependence in the allosteric effects of these ligands. The active (R) and inactive (T) state structures of unliganded LCLDH were determined at 2.5 and 2.6 Å resolution, respectively. In the catalytic site, the structural rearrangements are concerned mostly in switching of the orientation of Arg171 through the flexible intersubunit contact at the Q‐axis subunit interface. The distorted orientation of Arg171 in the T state is stabilized by a unique intra‐helix salt bridge between Arg171 and Glu178, which is in striking contrast to the multiple intersubunit salt bridges in Lactobacillus pentosus nonallosteric L ‐lactate dehydrogenase. In the backbone structure, major structural rearrangements of LCLDH are focused in two mobile regions of the catalytic domain. The two regions form an intersubunit linkage through contact at the P‐axis subunit interface involving Arg185, replacement of which with Gln severely decreases the homotropic and hetertropic activation effects on the enzyme. These two regions form another intersubunit linkage in the Q‐axis related dimer through the rigid NAD‐binding domain, and thus constitute a pivotal frame of the intersubunit linkage for the allosteric motion, which is coupled with the concerted structural change of the four subunits in a tetramer, and of the binding sites for pyruvate and FBP. The unique intersubunit salt bridges, which are observed only in the R state structure, are likely involved in the pH‐dependent allosteric equilibrium. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
A new pharmacophore-based modeling procedure, including homology modeling, pharmacophore study, flexible molecular docking, and long-time molecular dynamics (MD) simulations, was employed to construct the structure of the human 5-HT_(2C) receptor and determine the characteristics of binding modes of 5-HT_(2C) receptor agonists. An agonist-receptor complex has been constructed based on homology modeling and a pharmacophore hypothesis model based on some high active compounds. Then MD simulations of the ligand-receptor complex in an explicit membrane environment were carried out. The conformation of the 5- HT_(2C) receptor during MD simulation was explored, and the stable binding modes of the studied agonist were determined. Flexible molecular docking of several structurally diverse agonists of the human 5-HT_(2C) receptor was carried out, and the general binding modes of these agonists were investigated. According to the models presented in this work and the results of Flexi-Dock, the involvement of the amino acid residues Asp134, Ser138, Ash210, Asn331, Tyr358, Ile131, Ser132, Val135, Thr139, Ile189, Val202, Val208, Leu209, Phe214, Val215, Gly218, Ser219, Phe223, Trp324, Phe327, and Phe328 in agonist recognition was studied. The obtained binding modes of the human 5-HT_(2C) receptor agonists have good agreement with the site-directed mutagenesis data and other studies.  相似文献   

6.
Activities of lactate dehydrogenase, hydroxy butyric dehydrogenase, glutamic oxalacetic transaminase, glutamic pyruvic transaminase, glutamate dehydrogenase, creatinine kinase, alkaline phosphatase, and leucine amino peptidase were determined in the sera of rainbow trout. The animals had previously been adapted to temperatures of 3.5, 6, 8, 10, 12.5, 15, 17, 19, 21.5 and 23° C. Most of the enzyme activity increased with the rise in temperature. The activity of alkaline phosphatase decreased in the range 6–19° C, while the changes in the glutamate dehydrogenase activity took a complex course. The results are compared with the findings of other authors.  相似文献   

7.
Theras-oncogene-encoded p21 protein becomes oncogenic if amino acid substitutions occur at critical positions in the polypeptide chain. The most commonly found oncogenic forms contain Val in place of Gly 12 or Leu in place of Gln 61. To determine the effects of these substitutions on the three-dimensional structure of the whole p21 protein, we have performed molecular dynamics calculations on each of these three proteins bound to GDP and magnesium ion to compute the average structures of each of the three forms. Comparisons of the computed average structures shows that both oncogenic forms with Val 12 and Leu 61 differ substantially in structure from that of the wild type (containing Gly 12 and Gln 61) in discrete regions: residues 10–16, 32–47, 55–74, 85–89, 100–110, and 119–134. All of these regions occur in exposed loops, and several of them have already been found to be involved in the cellular functioning of the p21 protein. These regions have also previously been identified as the most flexible domains of the wild-type protein and have been bound to be the same ones that differ in conformation between transforming and nontransforming p21 mutant proteins neither of which binds nucleotide. The two oncogenic forms have similar conformations in their carboxyl-terminal domains, but differ in conformation at residues 32–47 and 55–74. The former region is known to be involved in the interaction with at least three downstream effector target proteins. Thus, differences in structure between the two oncogenic proteins may reflect different relative affinities of each oncogenic protein for each of these effector targets. The latter region, 55–74, is known to be a highly mobile segment of the protein. The results strongly suggest that critical oncogenic amino acid substitutions in the p21 protein cause changes in the structures of vital domains of this protein.  相似文献   

8.
Theras-oncogene-encoded p21 protein becomes oncogenic if amino acid substitutions occur at critical positions in the polypeptide chain. The most commonly found oncogenic forms contain Val in place of Gly 12 or Leu in place of Gln 61. To determine the effects of these substitutions on the three-dimensional structure of the whole p21 protein, we have performed molecular dynamics calculations on each of these three proteins bound to GDP and magnesium ion to compute the average structures of each of the three forms. Comparisons of the computed average structures shows that both oncogenic forms with Val 12 and Leu 61 differ substantially in structure from that of the wild type (containing Gly 12 and Gln 61) in discrete regions: residues 10–16, 32–47, 55–74, 85–89, 100–110, and 119–134. All of these regions occur in exposed loops, and several of them have already been found to be involved in the cellular functioning of the p21 protein. These regions have also previously been identified as the most flexible domains of the wild-type protein and have been bound to be the same ones that differ in conformation between transforming and nontransforming p21 mutant proteins neither of which binds nucleotide. The two oncogenic forms have similar conformations in their carboxyl-terminal domains, but differ in conformation at residues 32–47 and 55–74. The former region is known to be involved in the interaction with at least three downstream effector target proteins. Thus, differences in structure between the two oncogenic proteins may reflect different relative affinities of each oncogenic protein for each of these effector targets. The latter region, 55–74, is known to be a highly mobile segment of the protein. The results strongly suggest that critical oncogenic amino acid substitutions in the p21 protein cause changes in the structures of vital domains of this protein.  相似文献   

9.
The temperature stability of the cytoplasmic enzyme of glycolysis, lactate dehydrogenase from pig muscle (isoenzyme M4) in complex with anionic polyelectrolyte poly(styrenesulfonate) has been investigated by the methods of adiabatic differential scanning microcalorimetry, own protein fluorescence, and circular dichroism. Calorimetric investigations of the complex of lactate dehydrogenase with poly(styrenesulfonate) in 50 mM phosphate buffer at pH 7.0 have shown that the temperature of the transition and enthalpy of lactate dehydrogenase thermal denaturation sharply decreases with growing weight ratio poly(styrenesulfonate)/lactate dehydrogenase, though at 20°C the enzyme activity of lactate dehydrogenase remains unchanged for several hours irrespective of the addition of poly(styrenesulfonate). The addition of phosphate ions to the solution enhances the resistance of lactate dehydrogenase to both thermal denaturation and inactivation by polyelectrolyte. The data obtained are interpreted from the viewpoint of a special role of two anion-binding centers in intersubunits contacts of lactate dehydrogenase, which enhance its resistance to both thermal denaturation and destruction by polyelectrolyte.  相似文献   

10.
Temperature acclimation in poikilotherms entails metabolic rearrangements provided by variations in enzyme properties. However, in most cases the underlying molecular mechanisms that result in structural changes in the enzymes are obscure. This study reports that acclimation to low (5 degrees C) and high (18 degrees C) temperatures leads to differential expression of alternative forms of the LDH-A gene in white skeletal muscle of weatherfish, Misgurnus fossilis. Two isoforms of LDH-A mRNA were isolated and characterized: a short isoform (= 1332 bp) and a long isoform ( = 1550 bp), which both have 5'-UTRs and ORFs of the same length (333 amino acid residues), but differ in the length of the 3'-UTR. In addition, these two mRNAs have 44 nucleotide point mismatches of an irregular pattern along the complete sequence, resulting in three amino acid mismatches (Gly214Val; Val304Ile and Asp312Glu) between protein products from the short and long mRNA forms, correspondingly LDH-A(alpha) and LDH-A(beta) subunits. It is expected that the beta-subunit is more aliphatic due to the properties of the mismatched amino acids and therefore sterically more restricted. According to molecular modelling of M. fossilis LDH-A, the Val304Ile mismatch is located in the subunit contact area of the tetramer, whereas the remaining two mismatches surround the contact area; this is expected to manifest in the kinetic and thermodynamic properties of the assembled tetramer. In warm-acclimated fish the relative expression between alpha and beta isoforms of the LDH-A mRNA is around 5 : 1, whereas in cold-acclimated fish expression of is reduced almost to zero. This indicates that at low temperature the pool of total tetrameric LDH-A is more homogeneous in terms of alpha/beta-subunit composition. The temperature acclimation pattern of proportional pooling of subunits with different kinetic and thermodynamic properties of the tetrameric enzyme may result in fine-tuning of the properties of skeletal LDH-A, which is in line with previously observed kinetic and thermodynamic differences between 'cold' and 'warm' LDH-A purified from weatherfish. Also, an irregular pattern of nucleotide mismatches indicates that these mRNAs are the products of two independently evolving genes, i.e. paralogues. Karyotype analysis has confirmed that the experimental population of M. fossilis is tetraploid (2n = 100), therefore gene duplication, possibly through tetraploidy, may contribute to the adaptability towards temperature variation.  相似文献   

11.
Substrate inhibition of chicken lactate dehydrogenase (EC 1.1.1.27) isoenzyme 5, was studied with the enzyme in the soluble phase and bound to muscle subcellular particulate structures. Inhibition studies were performed by incubating bound or soluble enzyme with NAD+ prior to measuring the reaction with a stopped-flow technique at 40 °C and a concentration of enzyme of 10?7m. The value of V for soluble lactate dehydrogenase was 610 nmoles per sec, and for the bound enzyme it was 262. km (pyruvate) values were similar for both enzymes. Under our experimental conditions, up to 73% inhibition of the soluble enzyme was observed. On the other hand, there was no detectable inhibition of bound lactate dehydrogenase. It is suggested that the resistance to substrate inhibition of bound lactate dehydrogenase may possibly be due to the prevention of dissociation of the enzyme into monomeric or other subunits because of attachment to the particulate structures.  相似文献   

12.
The three dimensional structure (3D structure) of GH-11 xylanase from Thermomyces lanuginosus was obtained through homology modeling. To study the enzyme interaction with an end product of enzyme catalysis, the xylanase two sugar molecules xylose and xylobiose has been docked into the active site of GH-11 xylanase through molecular docking. Based on the free binding energy and Inhibition constant, concluded xylose makes more stable complex than xylobiose. Further, the molecular dynamic simulation studies were carried out at different temperature, i.e. 323, 333, 343 and 353 K (i.e. 50, 60, 70 and 80 °C). It has been observed that there was minor structural modification in 3D-structure of xylanase at 323, 333, and 343 K. But the helix and sheets moved out of the initial structure when simulation carried out at during 353 K (80 °C).  相似文献   

13.
Several mutations are known to increase the thermostability of α-amylase of B. licheniformis and other α-amylases. Site-directed mutagenesis was used to introduce similar mutations into the sequence of the α-amylase gene from mesophilic Bacillus sp. 406. The influence of the mutations on thermostability of the enzyme was studied. It was shown that the Gly211Val and Asn192Phe substitutions increased the half-inactivation temperature (Tm) of the enzyme from 51.94±0.45 to 55.51±0.59 and 58.84±0.68°C respectively, in comparison to the wild-type enzyme. The deletion of Arg178-Gly179 (dRG) resulted in an increase of Tm of the α-amylase to 71.7±1.73°C. The stabilising effect of mutations was additive. When combined they increase the Tm of the wild-type amylase by more than 26°C. Thermostability rates of the triple mutant are close to the values which are typical for industrial heat-stable α-amylases, and its ability to degrade starch at 75°C was considerably increased. The present research confirmed that the Gly211Val, Asn192Phe and dRG mutations could play a significant role in thermostabilization of both mesophilic and thermophilic α-amylases.  相似文献   

14.
Summary The effect of hypoxia was studied in cold (15°C) and warm (30°C) acclimated goldfish. The hypoxic thresholds, defined as the lowest sustainablePO2 were found to be 1.6 and 4.0 kPa O2 at, respectively, 15°C and 30°C. At these levels the fish did not loose either weight or appetite over a 2-months period. While during starvation under normonic conditions a significant weight loss and breakdown of lactate dehydrogenase (90%) was observed, no such changes were found in fed hypoxic animals. In red lateral muscle, white epaxial muscle and liver of goldfish from 4 differently acclimated groups the maximal activities were measured of: glycogen phosphorylase, hexokinase, malate dehydrogenase, glycerol-3-P dehydrogenase, glucose-6-P dehydrogenase, malic enzyme, succinate oxidase, pyruvate carboxylase, phosphoenol-pyruvate carboxykinase, fructose-bisphosphatase and glucose-6-phosphatase. Thermal compensation, according to Precht's typology, was predominantly observed in red muscle and to a lesser extent in white muscle. The liver glucose-6-P dehydrogenase showed a strong inverse response, which points to enhanced synthetic activity at the higher temperature. Hypoxia acclimation exerted weaker responses at 15°C than at 30°C. Changes in liver enzyme activities suggest depressed protein synthesis and enhanced gluconeogenesis in hypoxic animals. In muscle of 30°C-acclimated goldfish hypoxia induces a significant increase of succinate oxidase activity, indicating adaptation of the aerobic energy metabolism. The occurrence of pyruvate carboxylase, never before observed in vertebrate muscle, probably plays an important role in pyruvate catabolism. Because its action produces oxalo-acetate, the enzyme may stimulate pyruvate oxidation and thus prevent early lactate accumulation. Since all gluconeogenic enzymes were shown to be active in goldfish muscle, the possible occurrence of gluconeogenesis in muscle (albeit at low rate) must be accepted. Enzyme activities in goldfish muscle were compared with literature data for a number of other fish species. This comparison indicates that maximal glycolytic flux in goldfish muscle tissue is rather low, although muscular glycogen levels are very high. It is suggested that this is part of the gold-fish's strategy to cope with hypoxia.  相似文献   

15.
Flavin mononucleotide (FMN)-binding proteins (FBPs) play an important role in the electron transport process in bacteria. In this study, the structures of the FBP from Desulfovibrio vulgaris (DvFBP) (Miyazaki F) were compared between those obtained experimentally by nuclear magnetic resonance (NMR) spectroscopy and those derived from molecular dynamics simulations (MDSs). A high-residue root of mean square deviation (RMSD) was observed in residues located at both sides of the wings (Gly22, Glu23, Asp24, Ala59, Arg60, Asp61, Glu62, Gly75, Arg76, Asn77, Gly78 and Pro79), while a low-residue RMSD was found in residues located in a hollow of the structure (Asn12, Glu13, Gly14, Val15, Val16, Asn30, Thr31, Trp32, Asn33, Ser34, Gly69, Ser70, Arg71 and Lys72). Inter-planar angles between the Phe7 and Iso and between the Phe7 and Trp106 residues were remarkably different between the MDS- and NMR-derived DvFBP structures. Distribution of the torsion angles around the covalent bonds in the aliphatic chain of FMN was similar in the MDS- and NMR-derived structures, except for those around the C1′–C2′ and C5′–O5′ bonds. Hydrogen bond formation between IsoO2 and the Gly49 or Gly50 peptide NH was formed in both the NMR- and MDS-derived structures. Overall, the MDS-derived structures were found to be considerably different from the NMR-derived structures, which must be considered when the photoinduced electron transfer in flavoproteins is analysed with MDS-derived structures.  相似文献   

16.
We present free energy calculations using molecular dynamics on different substrates of alpha-lytic protease in the gas phase, in solution, while forming a noncovalent Michaelis complex with the enzyme, and in a tetrahedral structure representing a transition state/intermediate for acylation by the enzyme. Various P1 substrates were studied, with P1 = Gly, Ala, Val, and Leu. In qualitative agreement with experiment, the enzyme was calculated to bind and catalyze most effectively substrates with P1 = Ala over those with P1 = Gly, Val or Leu. Also, the calculated relative solvation free energies of Gly----Ala and Ala----Val were in qualitative agreement with experimental values in corresponding model systems. However, the level of quantitative agreement with experiment achieved in our earlier study of relative binding and catalysis of native subtilisin and an Asn-155----Ala mutant was not achieved. We surmise that this is due to the greater difficulty in quantitatively simulating effects that are predominantly van der Waals and hydrophobic compared to those that are hydrogen bonding/electrostatic.  相似文献   

17.
Escherichia coli inorganic pyrophosphatase (PPase) is a one-domain globular enzyme characterized by its ability to easily undergo minor structure rearrangements involving flexible segments of the polypeptide chain. To elucidate a possible role of these segments in catalysis, catalytic properties of mutant variants of E. coli PPase Gly100Ala and Gly147Val with substitutions in the conservative loops II and III have been studied. The main result of the mutations was a sharp decrease in the rates of conformational changes required for binding of activating Mg2+ ions, whereas affinity of the enzyme for Mg2+ was not affected. The pH-independent parameters of MgPP(i) hydrolysis, kcat and kcat/Km, have been determined for the mutant PPases. The values of kcat for Gly100Ala and Gly147Val variants were 4 and 25%, respectively, of the value for the native enzyme. Parameter kcat/Km for both mutants was two orders of magnitude lower. Mutation Gly147Val increased pH-independent Km value about tenfold. The study of synthesis of pyrophosphate in the active sites of the mutant PPases has shown that the maximal level of synthesized pyrophosphate was in the case of Gly100Ala twofold, and in the case of Gly147Val fivefold, higher than for the native enzyme. The results reported in this paper demonstrate that the flexibility of the loops where the residues Gly100 and Gly147 are located is necessary at the stages of substrate binding and product release. In the case of Gly100Ala PPase, significant impairment of affinity of enzyme effector site for PP(i) was also found.  相似文献   

18.
To investigate the mechanism of the deacylation reaction in the active site of human butyrylcholinesterase (BuChE), we carried out quantum mechanical (QM) calculations on cluster models of the active site built from a crystallographic structure. The models consisted of the substrate butyrate moiety, the catalytic triad of residues (Ser198, Glu325, and His438), the "oxy-anion hole" (Gly116, Gly117, and Ala199), the side chain of Glu197, four water molecules, the side chain of Ser225, and the peptide linkage between Val321 and Asn322. Analyses of the equilibrium geometries, electronic properties, and energies of the QM models gave insights into the catalytic mechanism. In addition, the QM calculations provided the data required to build a molecular mechanics representation of the reactive BuChE region that was employed in molecular dynamics simulations followed by molecular-mechanics-Poisson-Boltzmann (MM-PB) calculations. Subsequently, we combined the QM energies with average MM-PB energies to estimate the free energy of the reactive structures in the enzyme. The rate-determining step corresponds to the formation of a tetrahedral intermediate with a free-energy barrier of approximately 14.0 kcal/mol. The modulation of the BuChE activity, exerted by either neutral molecules (glycerol, GOL) or a second butyrylcholine (CHO) molecule bound to the cation-pi site, does not involve any significant allosteric effect. Interestingly, the presence of GOL or CHO stabilizes a product complex formed between a butyric acid molecule and BuChE. These results are in consonance with the crystallographic structure of BuChE, in which the catalytic Ser198 interacts with a butyric fragment, while the cation-pi site is occupied by one GOL molecule.  相似文献   

19.
Free and bound forms of hexokinase, pyruvate kinase, and lactate dehydrogenase were prepared from the brain of the sea scorpion (Scorpaena porcus) in a low ionic strength medium. Properties of the free and bound forms were compared to determine whether binding to particulate matter could influence enzyme function or stability in vivo. Changes in pH differently affected the activity of the free and bound forms of all three enzymes. Furthermore, bound forms of hexokinase and pyruvate kinase were more stable than the free enzymes to heating at 45 degrees C. Bound hexokinase showed higher affinity for substrates (ATP, glucose) than the free form and bound lactate dehydrogenase had greater affinity for pyruvate and NADH. Although the affinities of the two forms of pyruvate kinase for substrates were similar, Hill coefficients for phosphoenolpyruvate as well as inhibition by ATP differed between the two enzyme forms. Free and bound lactate dehydrogenase also showed differences in Hill coefficients and bound lactate dehydrogenase was less sensitive to substrate inhibition by high pyruvate concentrations. The possible physiological role of the binding of these glycolytic enzymes to subcellular structures is discussed.  相似文献   

20.
Glutaric Aciduria Type I (GA-I), is an autosomal recessive neurometabolic disease caused by mutations in the GCDH gene that encodes for glutaryl-CoA dehydrogenase (GCDH), a flavoprotein involved in the metabolism of tryptophan, lysine and hydroxylysine. Although over 200 disease mutations have been reported a clear correlation between genotype and phenotype has been difficult to establish. To contribute to a better molecular understanding of GA-I we undertook a detailed molecular study on two GCDH disease-related variants, GCDH-p.Arg227Pro and GCDH-p.Val400Met. Heterozygous patients harbouring these two mutations have increased residual enzymatic activity in relation to homozygous patients with only one of the mutations, suggesting a complementation effect between the two.Combining biochemical, biophysical and structural methods we here establish the effects of these mutations on protein folding, stability and catalytic activity. We show that both variants retain the overall protein fold, but with compromised enzymatic activities. Detailed enzyme kinetic studies reveal that GCDH-p.Arg227Pro has impaired function due to deficient substrate affinity as evidenced by its higher Km, and that the lower activity in GCDH-p.Val400Met results from weaker interactions with its physiological redox partner (electron transfer flavoprotein). Moreover, the GCDH-p.Val400Met variant has a significantly lower thermal stability (ΔTm ≈ 9 °C), and impaired binding of the FAD cofactor in relation to wild-type protein. On these grounds, we provide a rational for the possible interallelic complementation observed in heterozygous patients based on the fact that in GCDH, the low active p.Arg227Pro variant contributes to stabilize the tetramer while the structurally unstable p.Val400Met variant compensates for enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号