首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flower senescence is the terminal phase of developmental processes that lead to the death of flower, which include, flower wilting, shedding of flower parts and fading of blossoms. Since it is a rapid process as compared to the senescence of other parts of the plant it therefore provides excellent model system for the study of senescence. During flower senescence, developmental and environmental stimuli enhance the upregulation of catabolic processes causing breakdown and remobilization of cellular constituents. Ethylene is well known to play regulatory role in ethylene-sensitive flowers while in ethylene-insensitive flowers abscisic acid (ABA) is thought to be primary regulator. Subsequent to perception of flower senescence signal, death of petals is accompanied by the loss of membrane permeability, increase in oxidative and decreased level of protective enzymes. The last stages of senescence involve the loss of of nucleic acids (DNA and RNA), proteins and organelles, which is achieved by activation of several nucleases, proteases and wall modifiers. Environmental stimuli such as pollination, drought and other stresses also affect senescence by hormonal imbalance. In this article we have covered the following: perception mechanism and specificity of flower senescence, flower senescence-associated events, like degradation of cell membranes, proteins and nucleic acids, environmental/external factors affecting senescence, like pollination and abiotic stress, hormonal and non-hormonal regulation of flower/petal senescence and finally the senescence associated genes (SAGs) have also been described.Key Words: environmental factors, ethylene, flowers, petals, plant hormones, pollination, programmed cell death, senescence, senescence-associated genes  相似文献   

2.
3.
4.
In some species pollination may result in rapid changes in perianth colour and form (petal senescence and abscission, flower closure), rendering the flowers less attractive to pollinators. It has been suggested that this effect is mediated by ethylene. Flowers from about 200 species and 50 families were exposed to ethylene (3 ppm for 24 h at 20 degrees C). The effects on petal senescence and abscission have been described previously. Flower closure and perianth colour changes were generally ethylene-sensitive, but responses showed no consistency within families. Several flowers known to respond to pollination by rapid cessation of attractiveness were also exposed to ethylene: this produced the same effect as pollination, both on flower colour and form. Species that respond to pollination by changing flower form or colour were found exclusively in families in which the species are generally ethylene-sensitive (with regard to changes in perianth form and colour). However, several families are generally ethylene-sensitive but contain no species reported to respond to pollination.  相似文献   

5.
Physiology and molecular biology of petal senescence   总被引:6,自引:0,他引:6  
  相似文献   

6.
Categories of Petal Senescence and Abscission: A Re-evaluation   总被引:6,自引:2,他引:4  
van Doorn  W. G. 《Annals of botany》2001,87(4):447-456
In a previous paper (Woltering and van Doorn, 1988, Journalof Experimental Botany39: 1605–1616) we identified threetypes of flower life cessation: by petal wilting or withering,which was either ethylene-sensitive or insensitive, and by abscissionof turgid petals, which was ethylene-sensitive. These categoriestended to be consistent within families. Here we re-examinethese relationships by testing a further 200 species, and anumber of other families. As previously, flowering shoots wereexposed to 3 ppm ethylene for 24 h at 20 °C, in darkness.Most monocotyledonous species tested showed ethylene-insensitivepetal wilting, although ethylene-sensitive wilting occurredin the Alismataceae and Commelinaceae. Petals of the dicotyledonousspecies tested were generally sensitive to ethylene, exceptfor a few groups showing wilting (Crassulaceae, Gentianaceaeand Fumariaceae, and one subfamily in both the Ericaceae andSaxifragaceae). Petal abscission was generally ethylene-sensitive,but ethylene insensitivity was found in some Tulipa cultivarsand three Saxifraga species. In most tulip cultivars tested,the petals wilted and then fell. It is concluded that (a) theresponse to ethylene is often consistent within either familiesor subfamilies; and (b) a fourth category, ethylene-insensitivepetal abscission, exists both in monocotyledons and dicotyledons.Copyright 2001 Annals of Botany Company Ethylene sensitivity, flower longevity, petal abscission, petal wilting, petal withering, petal senescence, taxonomic categories  相似文献   

7.
The effect of ethylene on flower abscission was investigated in monocotyledons and eudicotyledons, in about 300 species from 50 families. In all species studied except Cymbidium, flower abscission was highly sensitive to ethylene. Flower fall was not consistent among the species in any family studied. It also showed no relationship with petal senescence or abscission, nor with petal colour changes or flower closure. Results suggest that flower abscission is generally mediated by endogenous ethylene, but that some exceptional ethylene-insensitive abscission occurs in the Orchidaceae.  相似文献   

8.
Pollination of many flowers leads to an increase in ethylene synthesis and flower senescence. We have investigated the regulation of pollination-induced ethylene synthesis in tomato (Lycopersicon esculentum) using flowers of the dialytic (dl) mutant, in which pollination can be manipulated experimentally, with the aim of developing a model system to study tomato flower senescence. Ethylene synthesis increased rapidly in dl pistils following pollination, leading to accelerated petal senescence, and was delayed in ethylene-insensitive Never-ripe (Nr) pistils. However, Nr pistils eventually produced more ethylene than dl pistils, suggesting the presence of negative feedback regulation of ethylene synthesis following pollination. LEACS1A expression correlated well with increased ethylene production in pollinated dl pistils, and expression in Nr revealed that regulation is via an ethylene-independent mechanism. In contrast, the induction of the 1-aminocyclopropane-1-carboxylic acid oxidases, LEACO1 and LEACO3, following pollination is ethylene dependent. In addition, the expression profiles of ACS and ACO genes were determined during petal senescence and a hypothesis proposed that translocated 1-aminocyclopropane-1-carboxylic acid from the pistil may be important for regulating the initial burst of ethylene production during petal senescence. These results are discussed and differences between tomato and the ornamental species previously studied are highlighted.  相似文献   

9.
Programmed cell death (PCD) is associated with petal senescence, but little is known about the triggering or execution of the process of cell death in petals. In the present study, membrane disruption and DNA fragmentation, events characteristic of PCD, were found to be present in the advanced stage of petal senescence studied with ethylene-insensitive flowers of gladiolus, indicating that plant and animal cell death phenomena share one of the molecular events in the execution phase. When the gladiolus florets were treated with inositol both wilting and DNA fragmentation of petals were suppressed/delayed. The present study has provided the initial evidence that inositol has an inhibitory/suppressive effect on apoptotic cell death.  相似文献   

10.
Burdon  J. N.; Sexton  R. 《Annals of botany》1993,72(4):289-294
The time-course of flower development of Rubus idaeus L. cv.Glen Clova was studied on detached buds opened in the laboratory.After sepal and petal opening petal abscission occurred withthe petals from an individual flower being shed over 3-4 h.Abscission was accompanied by a peak in ethylene production.Treatment of flowers with aminoethoxyvinylglycine eliminatedthe peak in ethylene production but did not prevent petal abscission.However, petal loss was much slower, taking place over a periodof days rather than hours. Abscission was more effectively retardedby silver thiosulphate. Exogenous ethylene accelerated the rateof petal abscission and senescence. The increase in ethyleneproduction coincident with petal abscission appears to accelerateand co-ordinate the shedding of the separate petals on an individualflower. If ethylene is important in the induction of abscissionit would appear that the low rate of production sustained inthe presence of aminoethoxyvinylglycine must be sufficient.Copyright1993, 1999 Academic Press Rubus idaeus L., raspberry, flower, petal, abscission, ethylene  相似文献   

11.
Role of ethylene in the senescence of isolated hibiscus petals   总被引:2,自引:1,他引:1       下载免费PDF全文
Senescence of petals isolated from flowers of Hibiscus rosa-sinensis L. (cv Pink Versicolor) was associated with increased ethylene production. Exposure to ethylene (10 microliters per liter) accelerated the onset of senescence, as indicated by petal in-rolling, and stimulated ethylene production. Senescence was also hastened by basal application of 1-aminocyclopropane-1-carboxylic acid (ACC). Aminooxyacetic acid, an inhibitor of ethylene biosynthesis, effectively inhibited ethylene production by petals and delayed petal in-rolling. In marked contrast to these results with mature petals, immature petals isolated from flowers the day before flower opening did not respond to ethylene in terms of an increase in ethylene production or petal in-rolling. Furthermore, treatment with silver thiosulfate the day before flower opening effectively prevented petal senescence, while silver thiosulfate treatment on the morning of flower opening was ineffective. Application of ACC to both immature and mature petals greatly stimulated ethylene production indicating the presence of an active ethylene-forming enzyme in both tissues. Immature petals contained less free ACC than mature, presenescent petals and appeared to possess a more active system for converting ACC into its conjugated form. Thus, while the nature of the lack of responsiveness of immature petals to ethylene is unknown, ethylene production in hibiscus petals appears to be regulated by the control over ACC availability.  相似文献   

12.
13.
Although the role of the gynoecium in natural senescence of the carnation flower has long been suggested, it has remained a matter of dispute because petal senescence in the cut carnation flower was not delayed by the removal of gynoecium. In this study, the gynoecium was snapped off by hand, in contrast to previous investigations where removal was achieved by forceps or scissors. The removal of the gynoecium by hand prevented the onset of ethylene production and prolonged the vase life of the flower, demonstrating a decisive role of the gynoecium in controlling natural senescence of the carnation flower. Abscisic acid (ABA) and indole-3-acetic acid (IAA), which induced ethylene production and accelerated petal senescence in carnation flowers, did not stimulate ethylene production in the flowers with gynoecia removed (-Gyn flowers). Application of 1-aminocyclopropane-1-carboxylate (ACC), the ethylene precursor, induced substantial ethylene production and petal wilting in the flowers with gynoecia left intact, but was less effective at stimulating ethylene production in the -Gyn flowers and negligible petal in-rolling was observed. Exogenous ethylene induced autocatalytic production of the gas and petal wilting in the -Gyn flowers. These results indicated that ethylene generated in the gynoecium triggers the onset of ethylene production in the petals of carnation during natural senescence.  相似文献   

14.

Background  

Gene expression in Petunia inflata petals undergoes major changes following compatible pollination. Severe flower wilting occurs reproducibly within 36 hours, providing an excellent model for investigation of petal senescence and programmed cell death. Expression of a number of genes and various enzyme activities involved in the degradation and remobilization of macromolecules have been found to be upregulated during the early stages of petal senescence.  相似文献   

15.
Pollination-induced flower senescence: a review   总被引:11,自引:0,他引:11  
Ethylene has long been implicated in the control of the senescence of many cut flower species, but the control of senescence in relation to wild species has received much less attention. The longevity of individual flowers varies greatly from species to species; in some each flower is open for just a few hours, whilst in others the flower may persist for several weeks, or even months. The functional life of the flower may be terminated by petal wilting, abscission or a colour change of all, or part, of the perianth. In some species pollination appears to reduce floral longevity whilst in others, particularly those species having short-lived flowers, the pattern of flower development and senescence appears unaffected by pollination.Examples of the various pollination-induced strategies shown by plants are presented and the role of ethylene and other potential mediators of senescence in these processes discussed.  相似文献   

16.
Ethylene regulates the timing of leaf senescence in Arabidopsis   总被引:20,自引:7,他引:13  
The plant hormone ethylene influences many aspects of plant growth and development, including some specialized forms of programmed senescence such as fruit ripening and flower petal senescence. To study the relationship between ethylene and leaf senescence, etr1-1, an ethylene-insensitive mutant in Arabidopsis, was used. Comparative analysis of rosette leaf senescence between etr1-1 and wild-type plants revealed that etr1-1 leaves live approximately 30% longer than the wild-type leaves. Delayed leaf senescence in etr1-1 coincided with delayed induction of senescence-associated genes (SAGs) and higher expression levels of photosynthesis-associated genes (PAGs). In wild-type plants, exogenous ethylene was able to further accelerate induction of SAGs and decrease expression of PAGs. The extended period of leaf longevity in etr1-1 was associated with low levels of photosynthetic activity. Therefore, the leaves in etr1-1 functionally senesced even though the apparent life span of the leaf was prolonged.  相似文献   

17.
Flower senescence: some molecular aspects   总被引:1,自引:0,他引:1  
  相似文献   

18.
Accumulated experimental evidence suggests that the decline in the content of membrane components such as phospholipids (PL), is a key event in flower senescence. This loss of membrane integrity can be modulated by ethylene. The aim of this work was to examine the interrelationship between ethylene and one of the products of PL metabolism, diacylglycerol (DAG), during petunia ( Petunia hybrida ) flower senescence. DAG's role was studied using phorbol 12-myristate 13-acetate (PMA), which acts similarly in kinase activation. Our results demonstrate for the first time a senescence-related transient increase in the content of DAG in petunia plasma membranes. The climacteric-like ethylene rise associated with petal wilting appeared in petunia flowers well after PL degradation and DAG increase had commenced. The appearance and peak magnitude of the ethylene rise was enhanced or increased, respectively, by PMA treatment, thereby accelerating appearance and magnitude of all senescence parameters assayed. Conversely, suppression of ethylene action by silver thiosulfate (STS) resulted in retardation of flower wilting, as well as in abolishment of the PMA-enhancing effects on senescence. The results suggest an active role for lipid metabolites like DAG in enhancing flower senescence, through regulation of ethylene production and action, or possible activation of kinases. This sequence of events implies that ethylene is a mediator of flower senescence, rather than a trigger of the process.  相似文献   

19.
The functional life of the flower is terminated by senescence and/or abscission. Multiple processes contribute to produce the visible signs of petal wilting and inrolling that typify senescence, but one of the most important is that of protein degradation and remobilization. This is mediated in many species through protein ubiquitination and the action of specific protease enzymes. This paper reports the changes in protein and protease activity during development and senescence of Alstroemeria flowers, a Liliaceous species that shows very little sensitivity to ethylene during senescence and which shows perianth abscission 8-10 d after flower opening. Partial cDNAs of ubiquitin (ALSUQ1) and a putative cysteine protease (ALSCYP1) were cloned from Alstroemeria using degenerate PCR primers and the expression pattern of these genes was determined semi-quantitatively by RT-PCR. While the levels of ALSUQ1 only fluctuated slightly during floral development and senescence, there was a dramatic increase in the expression of ALSCYP1 indicating that this gene may encode an important enzyme for the proteolytic process in this species. Three papain class cysteine protease enzymes showing different patterns of activity during flower development were identified on zymograms, one of which showed a similar expression pattern to the cysteine protease cDNA.  相似文献   

20.
Changes in water status, membrane permeability, ethylene production and levels of abscisic acid (ABA) were measured during senescence of cut carnation flowers ( Dianthus caryophyllus L. cv. White Sim) in order to clarify the temporal sequence of physiological events during this post-harvest period. Ethylene production and ABA content of the petal tissue rose essentially in parallel during natural senescence and after treatment of young flowers with exogenous ethylene, indicating that their syntheses are not widely separated in time. However, solute leakage, reflecting membrane deterioration, was apparent well before the natural rise in ethylene and ABA had begun. In addition, there were marked changes in water status of the tissue, including losses in water potential (ψw), and turgor (ψp), that preceded the rise in ABA and ethylene. As senescence progressed, ψw continued to decline, but ψp returned to normal levels. These temporal relationships were less well resolved when senescence of young flowers was induced by treatment with ethylene, presumably because the time-scale had been shortened. Thus changes in membrane permeability and an associated water stress in petal tissue appear to be earlier symptoms of flower senescence than the rises in ABA or ethylene. These observations support the contention that the climacteric-like rise in ethylene production is not the initial or primary event of senescence and that the rise in ABA titre may simply be a response to changes in water status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号