首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The German cockroach, Blattella germanica, and the double-striped cockroach, B. bisignata, are sibling species with a similar period sequence but a distinctive circadian rhythm in locomotion. The cell distribution of immunoreactivity (ir) against three clock-related proteins, Period (PER), Pigment Dispersing Factor (PDF), and Corazonin (CRZ), was compared between the species. The PER-ir cells tend to form clusters and are sprayed out in the central nervous system. Three major PER-ir cells are located in the optic lobes, which are the sites of the major circadian clock. They are interconnected with PER-ir axon bundles. Interestingly, the potential output signal of the circadian clock, PDF, is co-localized with PER in all three groups of cells. However, only two CRZ-ir cells and their axons are found in the optic lobes and they are not co-localized with PER-ir or PDF-ir cells and axons. Since only one circadian rhythm is expressed in locomotion, the time signals from both major clocks in optic lobes are coupled by connection with PDF-ir axons. A group of 3-4 PER-ir cells in the protocerebrum display typical characteristics of neurosecretary cells. In addition, there are numerous, small PER-ir and PDF-ir co-localized cells in the pars intercerebralis (PI), which have direct connections with the neurohemoorgan, corpora cardiaca, through PER-ir and PDF-ir axons. Based on these findings, the cellular connection shows a circadian control through the endocrine route. For the rest of central nervous system, only a few PER-ir and PDF-ir cells or axons are detected. This finding implies the circadian clock for locomotion is not located in subesophageal ganglion, thoracic or abdominal ganglia, but may use other neural messengers to pass on circadian signals. Since the overall distribution pattern of the clock cells are the same for B. germanica and B. bisignata, the possible explanation for the different expressions of locomotion between the species depends on genes downstream of per, pdf, and crz.  相似文献   

2.
The photo-responsiveness of 2 groups of interneurons responding to light in the protocerebrum was investigated at 2 developmental stages, the last instar nymphs and adults, in the cricket Gryllus bimaculatus. The cricket is diurnally active during the nymphal stage but becomes nocturnal as an adult. In both adults and nymphs, light-induced responses of optic lobe light-responding interneurons that conduct light information from the optic medulla to the lobula and the cerebral lobe showed a circadian rhythm peaking during the subjective night. Amplitudes of the rhythms were not significantly different between adults and nymphs, but adults showed more stable day and night states than did nymphs. The medulla bilateral neurons that interconnect the bilateral medulla areas of the optic lobe also showed circadian rhythms in their light-induced responses in both adults and nymphs. The rhythm had a clear peak and a trough in adults, and its amplitude was significantly greater than that of nymphs. These results suggest that the 2 classes of interneurons are differentially controlled by the circadian clock. The difference might be related to their functional roles in the animal's circadian behavioral organization.  相似文献   

3.
The closely related crickets Dianemobius nigrofasciatus and Allonemobius allardi exhibit similar circadian rhythms and photoperiodic responses, suggesting that they possess similar circadian and seasonal clocks. To verify this assumption, antisera to Period (PER), Doubletime (DBT), and Cryptochrome (CRY) were used to visualize circadian clock neurons in the cephalic ganglia. Immunoreactivities referred to as PER-ir, DBT-ir, and CRY-ir were distributed mainly in the optic lobes (OL), pars intercerebralis (PI), dorsolateral protocerebrum, and the subesophageal ganglion (SOG). A system of immunoreactive cells in the OL dominates in D. nigrofasciatus, while immunoreactivities in the PI and SOG prevail in A. allardi. Each OL of D. nigrofasciatus contains 3 groups of cells that coexpress PER-ir and DBT-ir and send processes over the frontal medulla face to the inner lamina surface, suggesting functional linkage to the compound eye. Only 2 pairs of PER-ir cells (no DBT-ir) were found in the OL of A. allardi. Several groups of PER-ir cells occur in the brain of both species. The PI also contains DBT-ir and CRY-ir cells, but in A. allardi, most of the DBT-ir is confined to the SOG. Most immunoreactive cells in the PI and in the dorsolateral brain send their fibers to the contralateral corpora cardiaca and corpora allata. The proximity and, in some cases, proven identity of the PER-ir, DBT-ir, and CRY-ir perikarya are consistent with presumed interactions between the examined clock components. The antigens were always found in the cytoplasm, and no diurnal oscillations in their amounts were detected. The photoperiod, which controls embryonic diapause, the rate of larval development, and the wing length of crickets, had no discernible effect on either distribution or the intensity of the immunostaining.  相似文献   

4.
The circadian clock gene period (Gryllus bimaculatus period, Gbper) plays a core role in circadian rhythm generation in adults of the cricket Gryllus bimaculatus. We examined the role of Gbper in nymphal crickets that show a diurnal rhythm rather than the nocturnal rhythm of the adults. As in the adult optic lobes, Gbper mRNA levels in the head of the third instar nymphs showed daily cycling in light-dark cycles with a peak at mid night, and the rhythm persisted in constant darkness. Injection of Gbper double-stranded RNA (dsRNA) into the abdomen of third instar nymphs knocked-down the mRNA levels to 25% of that in control animals. Most Gbper dsRNA injected nymphs lost their circadian locomotor activity rhythm, while those injected with DsRed2 dsRNA as a negative control clearly maintained the rhythm. These results suggest that nymphs and adults share a common endogenous clock mechanism involving the clock gene Gbper.  相似文献   

5.
Periodic expression of so-called clock genes is an essential part of the circadian clock. In Drosophila melanogaster the cyclic expression of per and tim through an autoregulatory feedback loop is believed to play a central role in circadian rhythm generation. However, it is still elusive whether this hypothesis is applicable to other insect species. Here it is shown that per gene plays a key role in the rhythm generation in the cricket Gryllus bimaculatus. Measurement of per mRNA levels in the optic lobe revealed the rhythmic expression of per in light cycles with a peak in the late day to early night, persisting in constant darkness. A single injection of per double-stranded RNA (dsRNA) into the abdomen of the final instar nymphs effectively knocked down the mRNA levels as adult to about 50% of control animals. Most of the per dsRNA-injected crickets completely lost the circadian locomotor activity rhythm in constant darkness up to 50 days after the injection, whereas those injected with DsRed2 dsRNA as a negative control clearly maintained it. The electrical activity of optic lobe efferents also became arrhythmic in the per dsRNA-injected crickets. These results not only suggest that per plays an important role in the circadian rhythm generation also in the cricket but also show that RNA interference is a powerful tool to dissect the molecular machinery of the cricket circadian clock.  相似文献   

6.
Distribution of neurones detectable with antisera to the corazonin (Crz) and the pigment-dispersing factor (PDF) was mapped in the workers or pseudergates of 10 species representing six out of seven termite families. All species contained two triads of Crz-immunoreactive (Crz-ir) neurones in the protocerebrum. Their fibres were linked to the opposite hemisphere, formed a network in the fronto-lateral protocerebrum, and projected to the corpora cardiaca (CC); in most species the fibres also supplied the deuto- and tritocerebrum and the frontal ganglion. Some species possessed additional Crz-ir perikarya in the protocerebrum and the suboesophageal ganglion (SOG). The PDF-ir somata were primarily located in the optic lobe (OL) and SOG. OL harboured a group (3 groups in Coptotermes) of 2-6 PDF-ir cells with processes extending to the medulla, connecting to the contralateral OL, forming 1-2 networks in the protocerebrum, and in most species running also to CC. Such a PDF-ir system associated with the OL was missing in Reticulitermes. Except for Mastotermes, the termites contained 1-2 PDF-ir cell pairs in the SOG and two species had additional perikarya in the protocerebrum. The results are consistent with the view of a monophyletic termite origin and demonstrate how the Crz-ir and PDF-ir systems diversified in the course of termite phylogeny.  相似文献   

7.
In the laboratory, horseshoe crabs express a circadian rhythm of visual sensitivity as well as daily and circatidal rhythms of locomotion. The major goal of this investigation was to determine whether the circadian clock underlying changes in visual sensitivity also modulates locomotion. To address this question, we developed a method for simultaneously recording changes in visual sensitivity and locomotion. Although every animal (24) expressed consistent circadian rhythms of visual sensitivity, rhythms of locomotion were more variable: 44% expressed a tidal rhythm, 28% were most active at night, and the rest lacked statistically significant rhythms. When exposed to artificial tides, 8 of 16 animals expressed circatidal rhythms of locomotion that continued after tidal cycles were stopped. However, rhythms of visual sensitivity remained stable and showed no tendency to be influenced by the imposed tides or locomotor activity. These results indicate that horseshoe crabs possess at least two biological clocks: one circadian clock primarily used for modulating visual sensitivity, and one or more clocks that control patterns of locomotion. This arrangement allows horseshoe crabs to see quite well while mating during both daytime and nighttime high tides.  相似文献   

8.
Antisera to the neuropeptides corazonin (Crz) and crustacean cardioactive peptide (CCAP) and to the diapause hormone (DH) react with small sets of neurones in the cephalic ganglia of the crickets Dianemobius nigrofasciatus and Allonemobius allardi. The distribution of their immunoreactivities is similar in the two species and overlaps with the locations of presumed circadian clock components in the optic lobes, protocerebrum, tritocerebrum, suboesophageal ganglion (SOG) and frontal ganglion. D. nigrofasciatus contains two Crz-immunoreactive (Crz-ir) cells in each optic lobe, six cell groups in the protocerebrum, four in the tritocerebrum, and one in SOG, whereas A. allardi harbours only five Crz-ir groups in the protocerebrum and four in the tritocerebrum. CCAP immunoreactivity occurs in both species in four protocerebrum cell clusters, four tritocerebrum cell clusters, four SOG cell clusters, one frontal ganglion cell cluster, and two optic lobe cell clusters; D. nigrofasciatus possesses two additional cells with unique links to the lamina in the optic lobe. DH-related antigens are present in four cell clusters in the optic lobe, six (D. nigrofasciatus) or eight (A. allardi) in the protocerebrum, four in the tritocerebrum, and three (A. allardi) or five (D. nigrofasciatus) in the SOG. Some of the detected cells also react with antibody to the clock protein Period (PER) or lie close to PER-ir cells. Crickets reared at two different photoperiods do not differ in the distribution and intensity of immunoreactivities. No changes have been detected during the course of diurnal light/dark cycles, possibly because the antisera react with persistent prohormones, whereas circadian fluctuations may occur at the level of their processing or of hormone release. The projection of immunoreactive fibres to several brain regions, the stomatogastric nervous system and the neurohaemal organs indicates multiple functions of the respective hormones. The work was supported by the “Research for Future” program of the Japan Society for the Promotion of Science (JSPS, 99L01205) and by the JSPS Postdoctoral Fellowship for Foreign Researchers (no. P 04197).  相似文献   

9.
哺乳动物的昼夜节律是基因编码的分子钟在体内产生的一种以大约24 h为周期的生理现象,使机体的生理过程与外界环境的变化相协调,是对环境适应的一种表现.在哺乳动物中,繁殖生理功能受生物钟系统的调节.在下丘脑-垂体-卵巢(hypothalamic-pituitary-ovarian,HPO)轴的各组织中均已观察到生物钟基因的...  相似文献   

10.
  • 1.1. Male crickets Gryllus bimaculatus show a drastic change in circadian rhythm from nymphal diurnality to adult nocturnality, in association with an increase in activity level several days after the imaginai moult.
  • 2.2. The corpora allata implantation into male 7th or 8th instar nymphs produced supernumerary instar nymphs in about 30% of the implanted animals, but did not affected the normal development in the remaining animals.
  • 3.3. The majority of the supernumerary instar nymphs were diurnal and sexually inactive, although their internal reproductive organs appeared to be fully mature.
  • 4.4. The supernumerary instar nymphs became nocturnal with an increase in activity level several days after the imaginai (9th) moult.
  • 5.5. The roles of the nervous system in the regulation of the rhythm reversal are discussed.
  相似文献   

11.
12.
This review presents a new perspective on the circadian regulation and functions of insect developmental hormones. In Rhodnius prolixus (Hemiptera), the brain neuropeptide prothoracicotropic hormone (PTTH) is released with a circadian rhythm that is controlled by paired photosensitive clocks in the brain. These clocks comprise the dorsal and lateral PER/TIM clock neurons known to regulate behavioral rhythms in Drosophila. Axons of PTTH and clock cells make close contact. Photosensitive PER/TIM clocks also reside in the paired prothoracic glands (PGs), which generate rhythmic synthesis and release of the ecdysteroid molting hormones. The PG clocks are entrained by both light and PTTH. These four clocks are coupled together by both nerves and hormones into a timing system whose primary regulated output is the circadian rhythm of ecdysteroids in the hemolymph. This complex timing system appears necessary to ensure circadian organization of the gene expression that is induced in target cells by ecdysteroids via circadian cycling of the nuclear ecdysteroid receptor (EcR). This multioscillator system serves to transduce 'the day outside' into endocrine rhythms that orchestrate 'the day inside'. It has many functional similarities with vertebrate circadian systems.  相似文献   

13.
14.
王丹凤  杨广  陈文锋 《昆虫学报》2019,62(6):769-778
非编码RNA(ncRNA)是生物体细胞内一类重要的调控分子,其介导的昼夜节律调控日益受到研究者的重视。本文主要以黑腹果蝇Drosophila melanogaster和哺乳动物的相关研究为背景,阐述了微小RNA(miRNA)和长链非编码RNA(lncRNA)对昼夜节律的调控。miRNA介导的昼夜节律调控包括:生物体内(尤其是钟神经元中)具有节律性表达的miRNA;输入系统和miRNA存在相互调控,这主要是通过光照这个授时因子起作用;miRNA可直接调控核心振荡器,还可以调控其他基因而间接影响到核心振荡器;miRNA对输出系统的调控主要集中在代谢取食节律、运动节律、睡眠节律等。昼夜节律可调控lncRNA的表达,同时lncRNA也可调控昼夜节律,且lncRNA对基因调控范围广,作用机制复杂,这些都具有广阔的研究前景。本文将有助于进一步深入研究ncRNA对昼夜节律的调控。  相似文献   

15.
周期节律是由内在时钟系统介导的多重生物过程的周期循环.周期节律系统是由位于大脑的视神经交叉上核的中央时钟系统和位于外周的几乎存在于所有细胞的外周时钟系统组成的.中央时钟与外周时钟都能够对生物体的生理过程进行调控,如激素的分泌、能量代谢、细胞增殖、DNA损伤修复等.而周期节律基因的表达失调,对其下游靶基因包括细胞周期相关基因的表达,以及细胞抗凋亡能力等产生重要的影响.而这一结果会导致细胞增殖加速及基因组不稳定,并可能促进肿瘤的发生.许多实验证据表明,肿瘤是一种节律相关的生理失调,在许多肿瘤中都发现周期节律遭到破坏,如乳腺癌、前列腺癌、子宫内膜癌等.本文将从周期节律对细胞周期进程及对细胞DNA损伤修复的影响来讨论分子水平上细胞的周期节律与肿瘤发生发展的关系.  相似文献   

16.
Recent evidence has emerged that peroxisome proliferator-activated receptor alpha (PPARalpha), which is largely involved in lipid metabolism, can play an important role in connecting circadian biology and metabolism. In the present study, we investigated the mechanisms by which PPARalpha influences the pacemakers acting in the central clock located in the suprachiasmatic nucleus and in the peripheral oscillator of the liver. We demonstrate that PPARalpha plays a specific role in the peripheral circadian control because it is required to maintain the circadian rhythm of the master clock gene brain and muscle Arnt-like protein 1 (bmal1) in vivo. This regulation occurs via a direct binding of PPARalpha on a potential PPARalpha response element located in the bmal1 promoter. Reversely, BMAL1 is an upstream regulator of PPARalpha gene expression. We further demonstrate that fenofibrate induces circadian rhythm of clock gene expression in cell culture and up-regulates hepatic bmal1 in vivo. Together, these results provide evidence for an additional regulatory feedback loop involving BMAL1 and PPARalpha in peripheral clocks.  相似文献   

17.
18.
19.
Circadian rhythms are common in many cell types but are reported to be lacking in embryonic stem cells. Recent studies have described possible interactions between the molecular mechanism of circadian clocks and the signaling pathways that regulate stem cell differentiation. Circadian rhythms have not been examined well in neural stem cells and progenitor cells that produce new neurons and glial cells during adult neurogenesis. To evaluate circadian timing abilities of cells undergoing neural differentiation, neurospheres were prepared from the mouse subventricular zone (SVZ), a rich source of adult neural stem cells. Circadian rhythms in mPer1 gene expression were recorded in individual spheres, and cell types were characterized by confocal immunofluorescence microscopy at early and late developmental stages in vitro. Circadian rhythms were observed in neurospheres induced to differentiate into neurons or glia, and rhythms emerged within 3–4 days as differentiation proceeded, suggesting that the neural stem cell state suppresses the functioning of the circadian clock. Evidence was also provided that neural stem progenitor cells derived from the SVZ of adult mice are self-sufficient clock cells capable of producing a circadian rhythm without input from known circadian pacemakers of the organism. Expression of mPer1 occurred in high frequency oscillations before circadian rhythms were detected, which may represent a role for this circadian clock gene in the fast cycling of gene expression responsible for early cell differentiation.  相似文献   

20.
Lu B  Liu W  Guo F  Guo A 《Genes, Brain & Behavior》2008,7(7):730-739
The relationship between light and the circadian system has long been a matter of discussion. Many studies have focused on entrainment of light with the internal biological clock. Light also functions as an environmental stimulus that affects the physiology and behaviour of animals directly. In this study, we used light as an unexpected stimulus for flies at different circadian times. We found that wildtype flies showed circadian changes in light-induced locomotion responses. Elevation of locomotor activity by light occurred during the subjective night, and performance in response to light pulses declined to trough during the subjective day. Moreover, arrhythmic mutants lost the rhythm of locomotion responses to light, with promotion of activity by light in timeless(01)mutants and inhibition of activity by light in Clock(ar)mutants. However, neither ablation of central oscillators nor disturbance of the functional clock inside compound eyes was sufficient to disrupt the rhythm of light responses. We show that, compound eyes, which have been identified as the control point for normal masking (promotion of activity by light), are sufficient but not necessary for paradoxical masking (suppression of activity by light) under high light intensity. This, taken together with the clear difference of light responses in wildtype flies, suggests that two different masking mechanisms may underlie the circadian modulation of light-induced locomotion responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号