首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Riparian ecosystems play an important role in modulating a range of ecosystem processes that affect aquatic and terrestrial organisms. Butterflies are a major herbivore in terrestrial ecosystems and are also common in riparian ecosystems. Since butterflies use plants for larval food and adult nectar sources in riparian ecosystems, butterfly diversity can be utilized to evaluate riparian ecosystems. We compiled butterfly data from 33 sites in three riparian ecosystem types across the country and compared butterfly diversity in terms of number of species and quality index in relation to riparian environmental variables. Number of butterfly and plant species was not different among three riparian habitat types. Additionally, there was no significant ecological variable to distinguish the butterfly communities on three riparian habitats. Non-metric multi-dimensional scaling ordination showed that butterfly communities in three riparian ecosystem types differed from each other, and butterfly riparian quality index was the main variable for butterfly assemblages. Five indicator species for moor and another five species for riverine riparian ecosystems were identified. Three and one indicator species for moor and riparian ecosystems, respectively, were plant specialists, while 44 butterflies were general feeders, feeding on a wide range of hostplants in several habitats. These results suggest that butterfly species use actively riparian habitats for nectar and larval food, and the butterfly riparian quality index can be employed to track faunal change in riparian habitats, which are frequently threatened by disturbances such as water level and climate changes, and invasive species.  相似文献   

2.
Species richness patterns along altitudinal gradients are well-documented ecological phenomena, yet very little data are available on how environmental filtering processes influence the composition and traits of butterfly assemblages at high altitudes. We have studied the diversity patterns of butterfly species at 34 sites along an altitudinal gradient ranging from 600 to 2,000 m a.s.l. in the National Park Berchtesgaden (Germany) and analysed traits of butterfly assemblages associated with dispersal capacity, reproductive strategies and developmental time from lowlands to highlands, including phylogenetic analyses. We found a linear decline in butterfly species richness along the altitudinal gradient, but the phylogenetic relatedness of the butterfly assemblages did not increase with altitude. Compared to butterfly assemblages at lower altitudes, those at higher altitudes were composed of species with larger wings (on average 9 %) which laid an average of 68 % more eggs. In contrast, egg maturation time in butterfly assemblages decreased by about 22 % along the altitudinal gradient. Further, butterfly assemblages at higher altitudes were increasingly dominated by less widespread species. Based on our abundance data, but not on data in the literature, population density increased with altitude, suggesting a reversed density–distribution relationship, with higher population densities of habitat specialists in harsh environments. In conclusion, our data provide evidence for significant shifts in the composition of butterfly assemblages and for the dominance of different traits along the altitudinal gradient. In our study, these changes were mainly driven by environmental factors, whereas phylogenetic filtering played a minor role along the studied altitudinal range.  相似文献   

3.
The classification of waterbodies under the Water Framework Directive is dependent on the ability of monitoring programmes to reflect habitat quality using biotic elements including benthic diatom communities. This study investigated the influence of specific riparian habitats, of mixed woodland, grassland and lake artificial structures such as jetties and slipways, on benthic diatom assemblages in nine lakes across gradients of total phosphorus, alkalinity and in the presence or absence of Dreissena polymorpha. The heterogeneity of the benthic diatom assemblages at riparian and lake scale was assessed by taking three replicates per site category per lake, following standard European Union protocols. Canonical correspondence analysis (CCA) and mixed effect modelling was used to investigate the main environmental controls on assemblage structure. Non-metric Multidimensional Scaling (NMDS) was used to examine patterns in assemblage structure. No single environmental gradient was found to control benthic diatom composition, with differences among assemblages influenced both by riparian habitat type within lakes and interaction of multiple environment gradients, including presence of D. polymorpha. Greater control was exerted on community structure at the lake than local riparian scale. The influence of scalar factors on diatom assemblages increased with increasing scale. We recommend that for effective monitoring and assessment of ecological status, standard sampling protocols should include localised littoral habitats with individual samples pooled across riparian habitat types, thereby accounting for both multiple environmental and spatial controls on community structure.  相似文献   

4.
Riparian habitats in the western United States are imperiled, yet they support the highest bird diversity in arid regions, making them a conservation priority. Riparian restoration efforts can be enhanced by information on species response to variation in habitat features. We examined the habitat selection of four riparian birds known as management indicators at restoration and reference sites along the Trinity River, California. We compared vegetation structure and composition at nest sites, territories, and random points to quantify used versus available habitat from 2012 to 2015. Vegetation in focal species' territories differed between site types, and from available habitat, indicating nonrandom site choice. Birds selected aspects of more structurally complex habitats, such as greater canopy cover, canopy height, and tree species richness. Yellow‐breasted Chats preferred greater shrub cover, and Yellow Warblers preferred greater cover by non‐native Himalayan blackberry. Territory preferences on restoration sites were often a subset of those on reference sites. One exception was canopy height, which was taller on restoration site territories than random points for all species, suggesting that birds preferentially used patches of remnant habitat. Few variables were significant in nest site selection. Restoration plantings along the Trinity River were only 3–10 years old during this study, and have not developed many of the characteristics of mature riparian habitat preferred by birds, but may improve in habitat value over time. Understanding habitat selection is especially important in recently human‐modified environments, where indirect cues used to assess habitat quality may become disassociated from actual habitat quality, potentially creating ecological traps.  相似文献   

5.
We studied butterfly assemblages at eight riparian sites over five years. Sites included Tamarix spp.–dominated riparian areas; sites where mechanical means or biological control agents (Diorhabda elongata deserticola) were used to limit Tamarix; sites that were mixtures of native woody vegetation (e.g., Populus and Salix) and Tamarix; and native vegetation sites. We identified a gradient in butterfly community composition that changed from treated Tamarix sites, through mixed vegetation, to native vegetation sites. Tamarix sites had lower butterfly metric (riparian butterfly index [RBI]) values than did native vegetation sites. The RBI is based on a combination of richness measures and the presence of specific species and groups of butterflies. There was no significant change in the RBI over sampling periods at any sites, including both Tamarix eradication sites. The RBI at sites where Tamarix control took place did not approach restoration goals based on values at unimpacted sites. Positive effects on riparian butterfly assemblages were not linked to any Tamarix control efforts, nor did we detect a decline from initial butterfly metrics at Tamarix sites. Direct ordination provided information on environmental variables, such as amount of nectar and herbaceous plant richness, which may be important in riparian restoration efforts.  相似文献   

6.
Grasshoppers could be considered as appropriate ecological indicators for grasslands owing to their sensitive response to environmental features. However, if grasshoppers are a good ecological indicator, they must (i) also represent other taxa, and (ii) provide additional information over straight measurement of environmental variables. To assess this, we compared the congruence of species richness patterns of grasshoppers with butterflies and environmental variables in two areas with extensive ecological networks (ENs). ENs are landscape-scale remnants of corridors and nodes of natural habitat running throughout a transformed, usually agricultural, landscape. Species richness of grasshoppers and butterflies did not differ among reference and EN sites, but guild composition differed significantly. While ENs adequately conserved overall diversity of these two groups, they were utilized preferentially by small-sized grasshoppers and shrub and tree-feeding butterflies. Reference sites had significantly more graminivorous and intermediate-mobility grasshopper species, as well as more butterfly species with widespread distribution, herbaceous dicot feeders and those with no recorded association to forest edges. Nevertheless, grasshopper and butterfly species richness’ were highly correlated. These results were similar across geographic areas, despite the fact that the areas differed significantly in their overall richness and species composition. Although there were some specific significant correlations between environmental variables and diversity, none of the variables could adequately replace use of the insect assemblage for bioindication. We conclude that grasshopper species and guild richness are representative of the butterfly assemblage, and provide information which is not sufficiently clear when utilizing only environmental variables.  相似文献   

7.
River restoration is a central issue of present-day River Basin Management. Unfortunately, many studies have shown limited ecological improvements, hypothesizing catchment influences and missing donor populations as main impeding factors. This study evaluates the ecological status after restoration at 46 river reaches in light of catchment influences upstream. Three groups of environmental parameters were investigated: (i) riparian land use and (ii) physical habitat quality in different lengths upstream of the restorations and (iii) land use in the whole catchment upstream. Ecological quality ratios of standardized fish, invertebrate and macrophyte samples were used as response variables. The results imply that sub-catchment variables influence the ecological status more than local habitat improvements. In particular, fish and invertebrate ecological status was positively linked to percent deciduous forest upstream of restored sites, while macrophytes revealed an opposite trend. Furthermore, we found a strong linkage of site-scale ecological status and physical habitat quality up to 5 km upstream of the restorations; the more natural were riparian land use and river habitat quality upstream, the higher was the chance of a good ecological quality in restored reaches. We conclude that site-scale restoration measures are likely to be unsuccessful, if the sub-catchment physical habitat upstream is degraded.  相似文献   

8.
Human-induced habitat conversion and degradation, along with accelerating climatic change, have resulted in considerable global biodiversity loss. Nevertheless, how local ecological assemblages respond to the interplay between climate and land-use change remains poorly understood. Here, we examined the effects of climate and land-use interactions on butterfly diversity in different ecosystems of southwestern China. Specifically, we investigated variation in the alpha and beta diversities of butterflies in different landscapes along human-modified and climate gradients. We found that increasing land-use intensity not only caused a dramatic decrease in butterfly alpha diversity but also significantly simplified butterfly species composition in tropical rainforest and savanna ecosystems. These findings suggest that habitat modification by agricultural activities increases the importance of deterministic processes and leads to biotic homogenization. The land-use intensity model best explained species richness variation in the tropical rainforest, whereas the climate and land-use intensity interaction model best explained species richness variation in the savanna. These results indicate that climate modulates the effects of land-use intensity on butterfly alpha diversity in the savanna ecosystem. We also found that the response of species composition to climate varied between sites: specifically, species composition was strongly correlated with climatic distance in the tropical rainforest but not in the savanna. Taken together, our long-term butterfly monitoring data reveal that interactions between human-modified habitat change and climate change have shaped butterfly diversity in tropical rainforest and savanna. These findings also have important implications for biodiversity conservation under the current era of rapid human-induced habitat loss and climate change.  相似文献   

9.
Sensitive and cost‐effective indicators of aquatic ecosystem condition in Amazon streams are necessary to assess the effects of anthropogenic disturbances on those systems in a viable and ecologically meaningful manner. We conducted the present study in the municipality of Paragominas, state of Pará, northern Brazil, where we sampled adult dragonflies in 50 100‐m‐long wadeable stream sites in 2011. We collected 1769 specimens represented by 11 families, 41 genera and 97 species. The suborder Zygoptera contributed 961 individuals and Anisoptera 808. Among the 97 recorded species, nine were classified as useful indicators of ecological condition, with four species being associated with more degraded streams (three Anisoptera, one Zygoptera) and five with more preserved streams (all were Zygoptera). Anisoptera (dragonflies) tend to provide more useful indicators of more degraded environments because they have more efficient homeostatic mechanisms and are more mobile, enabling them to tolerate a wider range of environmental conditions. By contrast, Zygoptera (damselflies) tend to provide a more useful role as indicators of more preserved environments and high levels of environmental heterogeneity because of their smaller body sizes and home ranges and greater ecophysiological restrictions. We conclude from our assessment of this low‐order Amazonian stream system that (i) the occurrence of specific odonate species is strongly associated with the configuration of riparian vegetation, (ii) agricultural activities appear to be the main factor determining changes in the composition of odonate assemblages and (iii) these insects can act as useful indicators of the ecological consequences of riparian habitat loss and disturbance. Because generalist species invade moderately degraded areas, those areas may have high species richness but host few species of Zygoptera. Therefore, preserving dense riparian vegetation is necessary to maintain aquatic ecological condition, and that condition can be rehabilitated by planting new trees. Both require enforcing existing environmental regulations, various types of incentives and educating local communities.  相似文献   

10.
According to the guidelines of the European Water Framework Directive, assessment of the ecological quality of streams and rivers should be based on type-specific reference conditions. Moreover to support biological indicators an hydromorphological analysis is also requested for each river type. The rationale for including an habitat assessment in biomonitoring study is that a biological community can be influenced by habitat quality just as water chemistry.In the present work benthic macroinvertebrates were analysed in a specific river type of Central Italy (small-sized streams, volcanic-siliceous), to identify taxa assemblages at the mesohabitat scale and to test how common measures of benthic community used in biomonitoring differ between riffles and pools in order to evaluate if differences may influence water quality classification.Macroinvertebrates were collected in 10 selected streams, covering the whole quality range present in the geographic area from ‘reference sites’ to human-impacted sites, along a pool–riffle sequence following a multihabitat sampling protocol.We compared assemblage of macroinvertebrates found in different mesohabitats using principal component analysis (PCA). Similar site grouping was obtained in riffle, pool and abiotic analysis.The measures of diversity and abundance were used as replicates in ANOVA analysis to test differences between pools and riffles within the groups of sites. There were no significant differences in terms of taxa richness and total abundance.When we compared the abundance of each taxon we found significant differences only in the group of reference sites with 18 taxa (about 25%) that showed a significant habitat preference.Our findings support that macroinvertebrates assemblages reflected primarily the environmental conditions and differences at mesohabitat scale are strongly correlated to hydromorphological condition and are maximized in reference sites. However such differences do not influence the ecological status assessment in this typology.  相似文献   

11.
12.
Ant assemblages are focal ecological indicators of progress in mine-site restoration, often showing increasing species richness with restoration age. Certain functional groups also behave in predictable ways in response to disturbance and changes in the environment. Whether these ant responses can be applied to other types of restoration and ecosystems is unknown, especially in dynamic environments and where gradients may not be as severe as in mine-site restoration. Ant assemblages would be expected to perform poorly as ecological indicators in dynamic environments because such environs are subject to periodic disturbance of important habitat features. Indeed, periodic disturbance may limit the predictive power of any ecological indicator. In this study, we trapped ants on two separate occasions to compare ant assemblages among four riparian habitat types (Unplanted grassland, Young revegetation, Older revegetation and Mature woodland). These habitat types were assumed to represent progressive stages of restoration. In contrast to the findings of others, species richness was variable among replicate locations of the same habitat type, and did not differ among the four habitat types. Also in contrast to what others have found for functional groups, dolichoderines were equally abundant in all habitat types and did not decrease in abundance with vegetation maturity. While generalized myrmicines and opportunists became more common with maturation of the vegetation, they did not replace dolichoderines as the most common ants. Surprisingly, the relative abundance of Subordinate Camponotini, a functional group considered to be of limited use in discriminating structural types, increased across the restoration gradient. There were also fairly distinct species assemblages associated with unplanted grassland and mature woodland. Communities in revegetated habitats were intermediate of these extremes, suggesting there is a level of predictiveness to their response to revegetation in this system. While species richness and a functional group approach would be of little use in this environment, species composition would provide a useful gauge of restoration progress. Ant species richness and functional group metrics have repeatedly been advocated as ecological indicators. Given our results, we caution against the blind application of metrics that have not been validated in the context in which they are to be applied.  相似文献   

13.
In wet eucalypt forest with a rainforest understorey the vegetation adjacent to first order streams does not form a distinct riparian strip. This study investigated the riparian response of terrestrial ground-dwelling beetles adjacent to four such streams in Tasmania, Australia. Beetle assemblages varied more between the four sites than they did with distance from stream within sites, where they exhibited a measurable but subtle riparian response. The extent of the riparian zone varied between the four study sites, with a 1–5 m riparian zone at three sites and a gradually changing community up to 50–100 m upslope at one site. There was a trend for greater between plot variability immediately adjacent to the streams, possibly because this is a more highly disturbed environment. None of the habitat variables measured were consistently associated with riparian or upslope assemblages of beetles, probably explaining the subtlety of the beetles’ riparian response. Forest conservation efforts for terrestrial species should not necessarily be focused on the riparian zone in preference to upslope areas.  相似文献   

14.
Territorial ecological networks (in US and some other countries known as greenways) are coherent assemblages of areas representing the natural and semi-natural landscape elements that need to be conserved, managed or, where appropriate, enriched or restored in order to ensure the favourable conservation status of the ecosystems, habitats, species and landscapes across their traditional range. An ecologically compensating areas network is a hierarchical system with the following levels: (1) core areas, (2) buffer zones of core areas, (3) corridors and stepping stones, and (4) nature development and/or restoration areas that support resources, habitats and species. Rivers form natural ecological networks and riparian buffer zones of rivers are typical elements of ecological networks. We studied the distribution of Clouded Apollo (Parnassius mnemosyne) and its habitat requirements in Estonia. Seventy-eight percent of all Clouded Apollo observations were recorded in riparian meadows along the banks of rivers with riparian strips consisting of bushes and trees. Detailed study showed that the butterfly is in most cases associated with meadows with a riparian strip of alder. This is the habitat of the food plant (fumeworth—Corydalis solida) of the larvae, the feeding and mating place of adults, and the migration and hiding site for the Clouded Apollo. The population area and number of individuals have been increasing during the last years, and a new growing South-Estonian sub-population of Clouded Apollo has also been discovered in Estonia.  相似文献   

15.
A variety of collection methods were used to inventory the insect diversity of the Muni-Pomadze Ramsar site along the Ghana coastline. A total of 75 butterfly species in five families were collected and identified. Twenty-six percent of the butterfly species were open country species. The butterflies were all typical of the coastal zone and no endangered or narrowly endemic species were recorded. The Muni-Pomadze site was also rich in other insect species (67 insect species belonging to 15 orders) as a result of the diverse terrestrial habitats surrounding the lagoon. Butterfly species composition changed with habitat indicating a fine-grained response by the butterfly communities to habitat changes. Data from long-term monitoring of butterfly communities at Muni-Pomadze could prove useful as indicators of habitat quality.  相似文献   

16.
《水生昆虫》2012,34(2):173-187
The aim of this study was to explore the differences between taxa groups with different ecological strategies for persistence, regarding their responses to environmental factors and seasonal variation. We studied the relationship between the seasonal patterns and habitat attributes of the Ephemeroptera, Plecoptera, Trichoptera (EPT) and the Colepotera, Heteroptera (CH) assemblages. Sampling was carried out in May, July and October of 2009. Samples were taken according to the AQEM protocol at 10 stream sections in the Mecsek Mountains. Based on multivariate analyses (RDA, pRDA), distinctive differences were found between the EPT and the CH taxa groups regarding their response to local chemical variables and variables describing the riparian vegetation. The measured environmental variables had a higher relative influence on the distribution patterns of EPT and CH assemblages than spatial variation of species patterns. The physical structure of aquatic habitats, including the type of bedrock, had greater effects on CH than EPT patterns, whereas the structure of riparian vegetation was more important for EPT than CH. Average density and average taxon richness of EPT were seasonally variable, but CH assemblages were not.  相似文献   

17.
Monitoring changes in population levels of a wide range of species in biodiversity research and conservation requires practical, easy-to-use and efficient assessment and monitoring methods. Dragonflies (Insecta: Odonata) are a valuable tool for assessing aquatic systems and have been used as indicators of ecological health, ecological integrity, and environmental change, including climatic change, as well as indicators of habitat recovery. We field-tested a freshwater ecological integrity index, the Dragonfly Biotic Index (DBI), based on dragonfly assemblages at the local scale, and compared the DBI to a biodiversity index (average taxonomic distinctness, AvTD) as well as to a standard freshwater benthic macroinvertebrate-based freshwater health index (South African Scoring System, using Average Score Per Taxon, ASPT). We sampled 20 river sites, selected a priori. Adult dragonflies and benthic macroinvertebrates were collected using standardized methods. Environmental variables were collected in situ, and water samples taken. Temperature and pH were the most important physical environmental variables in explaining the assemblage structure, and we found significant abiotic–biotic relationships, as well as biotic–biotic relationships. Overall, dragonflies were more sensitive to changes in river condition than were macroinvertebrates, in part because they were responding at the species rather than higher taxonomic level. AvTD scores did not show any significant relationship with changes in river condition. Furthermore, sites with low biotic scores (indicating disturbance) had high AvTD values. In contrast, DBI site value and ASPT scores were highly significantly correlated. We conclude that dragonfly assemblages in the form of a DBI are an excellent tool for environmental assessment and monitoring freshwater biodiversity, with the potential to replace labour-intensive benthic macroinvertebrate-based freshwater quality assessments, such as SASS.  相似文献   

18.
19.
In eastern Central Europe the abandonment of traditional land use represents a major threat for biodiversity. Evidence on species loss and shifts in assemblages is often based on butterfly surveys since these are known as sensitive indicators of habitat changes. Butterfly assemblages were studied in meadows of the Transcarpathian lowland in three consecutive years (2012–2014) with standard transect walks in six different sites (two transects/site). More than 6500 individuals of 66 species were recorded. The less disturbed habitats surrounded by natural forests have shown the highest diversity (Shannon-Wiener, dominance profiles). In faunal types the widely distributed, generalist Euro-Siberian species predominated with significant presence of Holo-Mediterranean and southern Continental elements. Three main types of habitats were separated and characterised by indicator species, i.e. we hierarchically classified the species according to their fidelity by the IndVal method. The dry sites were characterised by a few generalist species only, while the humid ones and mostly the transitional sites were inhabited by numerous habitat and/or food plant specialists. The assemblages were compared with multivariate analysis and the concordance of inter-annual changes of the assemblages were surveyed. The concordance profiles of the less diverse dry habitats were clearly separated from others while other sites with dominance profiles with longer sequence of scarce species have also shown similar concordance profiles. The importance of nature-like forest fringe structures was pointed out for both habitat and species conservation. Conservation efforts should be focused to sustain the general level of biodiversity by the preservation of nature-like habitats and the possible re-establishment of some kinds of traditional use.  相似文献   

20.
The majority of forests in urban areas are small and isolated. Improving habitat quality of small forests instead of increasing habitat size and connectivity could be an effective means of conserving the biodiversity of such highly fragmented landscapes. In this study, we investigated the relative importance of habitat quantity, quality and isolation on butterfly assemblages in urban fragmented forests in Tokyo, Japan. We used four habitat geographic parameters: (1) fragment size, (2) shape index, (3) isolation (distance to the mainland), and (4) connectivity; and three habitat quality parameters: (1) herbaceous nectar plant abundance, (2) herbaceous nectar plant diversity, and (3) larval host plant diversity. We surveyed butterfly assemblages along transects in 20 forest fragments that ranged in size from 1 to 122 ha. We used generalized linear models to relate the number of species in a fragment to four habitat geographic parameters and three habitat quality parameters. The averaged models based on AICc showed that fragment size had a strong positive effect on butterfly species richness. There was also a positive effect of herbaceous nectar plant abundance on species diversity. These findings suggest that improving the habitat quality of small and isolated forests in highly fragmented landscapes may be capable of maintaining levels of butterfly diversity comparable to those of large fragments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号