首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Process Biochemistry》2010,45(4):593-597
This paper reports a simple method for producing macroporous silica-monoliths with controllable porosity that can be used for the immobilization of lipases to generate an active and stable micro-reactor for biocatalysis. A range of commercially available lipases has been examined using the hydrolysis reactions of 4-nitrophenyl butyrate in water–decane media. The kinetic studies performed have identified that a similar value for kcat is obtained for the immobilized Candida antarctica lipase A (0.13 min−1) and the free lipase in solution (0.12 min−1) whilst the immobilized apparent Michaelis constant Km (3.1 mM) is 12 times lower than the free lipase in solution (38 mM). A 96% conversion was obtained for the immobilized C. antarctica lipase A compared to only 23% conversion for the free lipase. The significant higher conversions obtained with the immobilized lipases were mainly attributed to the formation of a favourable biphasic system in the continuous flowing micro-reactor system, where a significant increase in the interfacial activation occurred. The immobilized C. antarctica lipase A on the monolith also exhibited improved stability, showing 64% conversion at 80 °C and 70% conversion after continuous running for 480 h, compared to 40 and 20% conversions under the same temperature and reaction time for the free lipase.  相似文献   

2.
Immobilization of Saccharomyces cerevisiae lipase by physical adsorption on Mg–Al hydrotalcite with a Mg/Al molar ratio of 4.0 led to a markedly improved performance of the enzyme. The immobilized lipase retained activity over wider ranges of temperature and pH than those of the free lipase. The immobilized lipase retained more than 95% relative activity at 50 °C, while the free lipase retained about 88%. The kinetic constants of the immobilized and free lipases were also determined. The apparent activation energies (Ea) of the free and immobilized lipases were estimated to be 6.96 and 2.42 kJ mol?1, while the apparent inactivation energies (Ed) of free and immobilized lipases were 6.51 and 6.27 kJ mol?1, respectively. So the stability of the immobilized lipase was higher than that of free lipase. The water content of the oil must be kept below 2.0 wt% and free fatty acid content of the oil must be kept below 3.5 mg KOH g [oil]?1 in order to get the best conversion. This immobilization method was found to be satisfactory to produce a stable and functioning biocatalyst which could maintain high reactivity for repeating 10 batches with ester conversion above 81.3%.  相似文献   

3.
Bioimprinting is a promising, though relatively unexplored, approach to improving the performance of enzymes. In this study, bioimprinting with substrate analogues of fatty acids was systematically conducted to improve the esterification activity of Burkholderia cepacia lipase that had undergone a sol–gel immobilization procedure with methyltrimethoxysilane (MTMS) and tetramethoxysilane (TMOS) as the precursors. The specific activity of the bioimprinted lipases was 3682.0 μmol h?1 mg protein, which was a 47.9- and 2.5-fold increase over the free and non-imprinted immobilized lipases, respectively. Compared to the free and non-imprinted immobilized lipases, bioimprinted lipases exhibited better thermal stability, and their activity did not change after being incubated at 60 °C for 12 h. Bioimprinted lipases were more easily affected by alcohol than the non-imprinted ones, whose specific activity could be markedly enhanced by ethanol, isopropanol and n-butanol by factors of 1.23-, 1.28- and 1.12-fold, respectively. The reasons for the improvement of imprinted enzyme activity are also discussed based on the surface structure, specific surface area and average pore diameter of the silane particles.  相似文献   

4.
In this study porcine pancreatic lipase (PPL) was covalently immobilized on cross-linked polyvinyl alcohol (PVA) in organic media in the presence of fatty acid additives in order to improve its immobilized activity. The effects of fatty acid additions to the immobilization media were investigated choosing tributyrin hydrolysis in water and ester synthesis by immobilized PPL in n-hexane. Various fatty acids which are also the substrates of lipases in esterification reactions were used as active site protecting agents during the immobilization process in an organic solvent. The obtained results showed that covalent immobilization carried out in the presence of fatty acids as protective ligands improved the hydrolytic and esterification activity of immobilized enzyme. A remarkable increase in activity of the immobilized PPL was obtained when octanoic acid was used as an additive and the hydrolytic activity was increased from 5.2 to 19.2 μmol min−1 mg−1 as compared to the non-additive immobilization method. With the increase of hydrolytic activity of immobilized lipase in the presence of octanoic acid, in an analogous manner, the rate of esterification for the synthesis of butyl octanoate was also increased from 7.3 to 26.3 μmol min−1 g−1 immobilized protein using controlled thermodynamic water activities with saturated salt solutions. In addition, the immobilized PPL activity was maintained at levels representing 63% of its original activity value after 5 repeated uses. The proposed method could be adopted for a wide variety of other enzymes which have highly soluble substrates in organic solvent such as other lipases and esterases.  相似文献   

5.
In this study, polyurethane foam (PUF) was used for immobilization of Yarrowia lipolytica lipase Lip2 via polyethyleneimine (PEI) coating and glutaraldehyde (GA) coupling. The activity of immobilized lipases was found to depend upon the size of the PEI polymers and the way of GA treatment, with best results obtained for covalent-bind enzyme on glutaraldehyde activated PEI-PUF (MW 70,000 Da), which was 1.7 time greater activity compared to the same enzyme immobilized without PEI and GA. Kinetic analysis shows the hydrolytic activity of both free and immobilized lipases on triolein substrate can be described by Michaelis–Menten model. The Km for the immobilized and free lipases on PEI-coated PUF was 58.9 and 9.73 mM, respectively. The Vmax values of free and immobilized enzymes on PEI-coated PUF were calculated as 102 and 48.6 U/mg enzyme, respectively. Thermal stability for the immobilization preparations was enhanced compared with that for free preparations. At 50 °C, the free enzyme lost most of its initial activity after a 30 min of heat treatment, while the immobilized enzymes showed significant resistance to thermal inactivation (retaining about 70% of its initial activity). Finally, the immobilized lipase was used for the production of lauryl laurate in hexane medium. Lipase immobilization on the PEI support exhibited a significantly improved operational stability in esterification system. After re-use in 30 successive batches, a high ester yield (88%) was maintained. These results indicate that PEI, a polymeric bed, could not only bridge support and immobilized enzymes but also create a favorable micro-environment for lipase. This study provides a simple, efficient protocol for the immobilization of Y. lipolytica lipase Lip2 using PUF as a cheap and effective material.  相似文献   

6.
Mesoporous activated carbon (MAC) derived from rice husk is used for the immobilization of acidic lipase (ALIP) produced from Pseudomonas gessardii. The purified acidic lipase had the specific activity and molecular weight of 1473 U/mg and 94 kDa respectively. To determine the optimum conditions for the immobilization of lipase onto MAC, the experiments were carried out by varying the time (10–180 min), pH (2–8), temperature (10–50 °C) and the initial lipase activity (49 × 103, 98 × 103, 147 × 103 and 196 × 103 U/l in acetate buffer). The optimum conditions for immobilization of acidic lipase were found to be: time—120 min; pH 3.5; temperature—30 °C, which resulted in achieving a maximum immobilization of 1834 U/g. The thermal stability of the immobilized lipase was comparatively higher than that in its free form. The free and immobilized enzyme kinetic parameters (Km and Vmax) were found using Michaelis–Menten enzyme kinetics. The Km values for free enzyme and immobilized one were 0.655 and 0.243 mM respectively. The immobilization of acidic lipase onto MAC was confirmed using Fourier Transform-Infrared Spectroscopy, X-ray diffraction analysis and scanning electron microscopy.  相似文献   

7.
We previously reported a metabolic engineering strategy to develop an isopropanol producing strain of Cupriavidus necator leading to production of 3.4 g L−1 isopropanol. In order to reach higher titers, isopropanol toxicity to the cells has to be considered. A toxic effect of isopropanol on the growth of C. necator has been indeed observed above a critical value of 15 g L−1. GroESL chaperones were first searched and identified in the genome of C. necator. Native groEL and groES genes from C. necator were over-expressed in a strain deleted for PHA synthesis. We demonstrated that over-expressing groESL genes led to a better tolerance of the strain towards exogenous isopropanol. GroESL genes were then over-expressed within the best engineered isopropanol producing strain. A final isopropanol concentration of 9.8 g L−1 was achieved in fed-batch culture on fructose as the sole carbon source (equivalent to 16 g L−1 after taking into account evaporation). Cell viability was slightly improved by the chaperone over-expression, particularly at the end of the fermentation when the isopropanol concentration was the highest. Moreover, the strain over-expressing the chaperones showed higher enzyme activity levels of the 2 heterologous enzymes (acetoacetate carboxylase and alcohol dehydrogenase) of the isopropanol synthetic operon, translating to a higher specific production rate of isopropanol at the expense of the specific production rate of acetone. Over-expressing the native chaperones led to a 9–18% increase in the isopropanol yield on fructose.  相似文献   

8.
A highly active whole cell lipase (WCL) for efficient methanolysis of palm oil (PO) to biodiesel (BD) was prepared by isolation, cultivation and immobilization of lipase producing fungi. Fungi were screened from soil and the best isolate (PDA-6) identified as Aspergillus nomius exhibited maximum WCL methanolysis activity (1.4 g h−1 g−1) when inexpensive waste cooking oil was used as carbon source. The maximum BD yield with PDA-6 WCL reached 95.3% after 40 h at a lipase load 10% (w/w) of PO and methanol to PO molar ratio 5:1. The immobilization of PDA-6 cells within biomass suspended particle (BSP) made of polyurethane foam improved the repeated use of WCL and the remaining activity after 10 cycles was 88.2%. The PDA-6 WCL was more active in methanolysis of PO to BD than most WCLs previously reported. The newly isolated A. nomius is not only potential for producing WCL but also utilizing waste cooking oil.  相似文献   

9.
A low-cost lipase preparation is required for enzymatic biodiesel synthesis. One possibility is to produce the lipase in solid-state fermentation (SSF) and then add the fermented solids (FS) directly to the reaction medium for biodiesel synthesis. In the current work, we scaled up the production of FS containing the lipases of Rhizopus microsporus. Initial experiments in flasks led to a low-cost medium containing wheat bran and sugarcane bagasse (50:50 w/w, dry basis), supplemented only with urea. We used this medium to scale-up production of FS, from 10 g in a laboratory column bioreactor to 15 kg in a pilot packed-bed bioreactor. This is the largest scale yet reported for lipase production in SSF. During scale-up, the hydrolytic activity of the FS decreased 57%: from 265 U g−1 at 18 h in the laboratory bioreactor to 113 U g−1 at 20 h in the pilot bioreactor. However, the esterification activity decreased by only 14%: from 12.1 U g−1 to 10.4 U g−1. When the FS produced in the laboratory and pilot bioreactors were dried and added directly to a solvent-free reaction medium to catalyze the esterification of oleic acid with ethanol, both gave the same ester content, 69% in 48 h.  相似文献   

10.
Three different functionalized bentonites including acid activated bentonite (Ba), organically modified bentonite with cetyltrimethyl ammonium bromide (BCTMAB) and the composite by acid activation and organo-modification (Ba-CTMAB) were prepared, and used for immobilization of lipase from bovine pancreatic lipase by adsorption. The amount of lipase adsorbed on the functionalized bentonites was in the following sequence: Ba > BCTMAB > Ba-CTMAB, showing the strongest affinity of Ba for lipase among the three supports. However, the immobilized lipase on Ba-CTMAB showed the highest activity in the hydrolysis of olive oil by 1.67 times of activity of free lipase due to the hydrophobically interfacial activation and enlarged catalytic interface. While, the activity of immobilized lipase on Ba was lower than 20% of free lipase’s activity due to the absence of hydrophobic activation and negative impact of excessive hydrogen ions on the surface. The Km values for the immobilized lipase on Ba-CTMAB (0.054 g/mL) and BCTMAB (0.074 g/mL) were both lower than that of free lipase (0.115 g/mL), and the Vmax values were higher for the immobilized lipases, exhibiting a higher affinity of the immobilized lipase toward olive oil than free lipase. In comparison to free lipase, the better resistance to heating inactivation, storage stability and reusability of the immobilized lipases on Ba-CTMAB and BCTMAB were also obtained. The results show that the efficient and stable biocatalysts for industrial application can be prepared by using the low-cost bentonite mineral as the supports.  相似文献   

11.
Lipase (E.C.3.1.1.3) from Thermomyces lanuginosus (TL) was directly bonded, through multiple physical interactions, on citric acid functionalized monodispersed Fe3O4 nanoparticles (NPs) in presence of a small amount of hydrophobic functionalities. A very promising scalable synthetic approach ensuring high control and reproducibility of the results, and an easy and green immobilization procedure was chosen for NPs synthesis and lipase anchoring. The size and structure of magnetic nanoparticles were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The samples at different degree of functionalization were analysed through thermogravimetric measurements. Lipase immobilization was further confirmed by enzymatic assay and Fourier transform infrared (FT-IR) spectra. Immobilized lipase showed a very high activity recovery up to 144% at pH = 7 and 323% at pH = 7.5 (activity of the immobilized enzyme compared to that of its free form). The enzyme, anchored to the Fe3O4 nanoparticles, to be easy recovered and reused, resulted more stable than the native counterpart and useful to produce banana flavour. The immobilized lipase results less sensitive to the temperature and pH, with the optimum temperature higher of 5 °C and optimum pH up shifted to 7.5 (free lipase optimum pH = 7.0). After 120 days, free and immobilized lipases retained 64% and 51% of their initial activity, respectively. Ester yield at 40 °C for immobilized lipase reached 88% and 100% selectivity.  相似文献   

12.
Cross-linked Sepharose beads were treated with laccase–TEMPO system for oxidation of the primary alcohol groups on the sugar moieties. Optimal activation conditions using Trametes versicolor laccase were at pH 5 and 22 °C, giving an aldehyde content of 55 μmol g−1 Sepharose with 28 units g−1 of laccase and 12.5 mM TEMPO. The activated Sepharose was used for immobilization of trypsin as model protein. Highest degree of immobilization was obtained at pH 10.5 but the activity yield was only 31% of that loaded on the gel. The yield of gel bound trypsin activity was increased to 76% (corresponding to about 43 U g−1 Sepharose) when the immobilization was performed in the presence of trypsin inhibitor, benzamidine. The immobilization yields were comparable to that obtained on the matrix activated using sodium periodate (containing 72 μmol aldehyde per g Sepharose). Recycling and storage of the immobilized trypsin preparations showed high stability of the enzyme bound to laccase–TEMPO activated gel.  相似文献   

13.
Steric hindrance leads to limitation in the access of substrate into the enzyme active site. In order to decrease steric hindrance, two conserved residues, Phe181 and Phe182, in the lid domain of Bacillus thermocatenulatus lipase were substituted with alanine by using site-directed mutagenesis. As a result, three mutant lipases were produced. Circular dichroism (CD) spectroscopy showed that the secondary structure of all lipases is similar to one another. F181A mutation increased the distance between phe181 and catalytic ser114, which is buried in the active site by 3.24 Å. It can be suggested that such an increase in distance may lead to a decrease in steric hindrance. F181A mutation increased overall lipase activity by up to 2.6-fold (4670 U mg−1) toward C8 substrate. It also resulted in optimal lipase activity at 65 °C rather than 55 °C. F182A mutation increased the distance between phe182 and catalytic ser114 by 1.54 Å but failed to induce any significant effect on lipase activity. However, F181A–F182A mutation significantly decreased the activity due to decreased van der Waals interactions between the phenyl group of phenylalanines and the acyl chain of triacylglycerol. These results indicate that presence of one of the two residues, Phe181 or Phe182, is important for stabilizing triacylglycerols in active site.  相似文献   

14.
《Process Biochemistry》2004,39(11):1347-1361
The aim of this investigation was to obtain an efficiently immobilized intracellular lipase from Rhizomucor miehei and Yarrowia lipolytica. The activity of intracellular lipases from R. miehei and Y. lipolytica was enhanced by the addition of waste fats (beef tallow or poultry fat) to the medium and by cell immobilization on biomass support particles (BSPs, cubic particle of polypropylene or polyurethane foams). The highest intracellular activity of lipases was obtained after adding 20 and 50 BSPs to the medium of R. miehei (130.5 U) and Y. lipolytica (90.3 U), respectively. The best carrier for immobilizing intracellular lipases was polyurethane foam and the lipolytic activity of immobilized lipases was 2.1–4.3-times higher than the activity of lipases obtained from free biomass. The properties of the immobilized enzymes were very similar to the free enzymes but the immobilized intracellular lipases were more useful for the hydrolysis of waste fats. The highest reaction ratio (72%) and content of free fatty acids (68% (w/w)) in the reaction mixture was obtained after 72 h for beef tallow hydrolysis in a batch reaction with the immobilized lipases from R. miehei.  相似文献   

15.
《Process Biochemistry》2014,49(4):637-646
In this study, Purolite® A109, polystyrenic macroporous resin, was used as immobilization support due to its good mechanical properties and high particle diameter (400 μm), which enables efficient application in enzyme reactors due to lower pressure drops. The surface of support had been modified with epichlorhydrine and was tested in lipase immobilization. Optimized procedure for support modification proved to be more efficient than conventional procedure for hydroxy groups (at 22 °C for 18 h), since duration of procedure was shortened to 40 min by performing modification at 52 °C resulting with almost doubled concentration of epoxy groups (563 μmol g−1). Lipase immobilized on epoxy-modified support showed significantly improved thermal stability comparing to both, free form and commercial immobilized preparation (Novozym® 435). The highest activity (47.5 IU g−1) and thermal stability (2.5 times higher half-life than at low ionic strength) were obtained with lipase immobilized in high ionic strength. Thermal stability of immobilized lipase was further improved by blocking unreacted epoxy groups on supports surface with amino acids. The most efficient was treatment with phenylalanine, since in such a way blocked immobilized enzyme retained 65% of initial activity after 8 h incubation at 65 °C, while non-blocked derivative retained 12%.  相似文献   

16.
This paper studies the synthesis of structured triacylglycerols (STAGs), rich in polyunsaturated fatty acids (PUFAs) by a two-step enzymatic process: (i) alcoholysis of fish oils (cod liver and tuna oils) with ethanol to obtain 2-monoacylglycerols (2-MAGs), catalyzed by 1,3 specific lipases and (ii) esterification of these 2-MAGs with caprylic acid (CA, 8:0), also catalyzed by a 1,3 specific lipase, to produce STAGs of structure CA–PUFA–CA. As regards the alcoholysis reaction, three factors have been studied: the influence of the type of lipase used (lipase D from Rhizopus oryzae, immobilized on Accurel MP1000, and Novozym 435 from Candida antarctica), the operational mode of a stirred tank reactor (STR operating in discontinuous and continuous mode) and the intensity of treatment (IOT = lipase amount × reaction time/oil amount). Although higher 2-MAG yields were obtained with lipase D, Novozym 435 was selected due to its greater stability in the operational conditions. The highest 2-MAG yield (63%) was attained in the STR operating in discontinuous mode at an IOT of 1 g lipase × h g oil?1 (at higher IOT the 2-MAGs were degraded to glycerol). This system was scaled up to 100 times the initial volume, achieving a similar yield (65%) at the same IOT. The 2-MAGs in the final alcoholysis reaction mixture were separated from ethyl esters by solvent extraction using solvents of low toxicity (ethanol and hexane); the 2-MAG recovery yield was over 90% and the purity was approximately 87–90%. Regarding the esterification of the 2-MAGs, the following factors were studied: the influence of the lipase type used, the presence or absence of solvent (hexane) and the reaction time or intensity of treatment (IOT = lipase amount × reaction time/2-MAG amount). Of the five lipases tested, the highest STAG percentages (over 90%) were attained with lipases D and DF, immobilized on Accurel MP1000. These STAGs contain 64% CA, of which 98% is at positions 1 and 3. Position 2 contains 5% CA and 45% PUFAs, which means that all the PUFAs that were located at position 2 in the original oil remain in that position in the final STAGs. The lipase D immobilized on Accurel MP1000 is stable in the operational conditions used in the esterification reaction. Finally the purification of STAGs was carried out by neutralization of free fatty acids with hydroethanolic solution of KOH and extraction of STAGs with hexane. By this method purity was over 95% and separation yields were about 80%.  相似文献   

17.
《Process Biochemistry》2007,42(6):934-942
Pseudomonas luteola was immobilized by entrapment in alginate–silicate sol–gel beads for decolorization of the azo dye, Reactive Red 22. The influences of biomass loading and operating conditions on specific decolorization rate and dye removal efficiency were studied in details. The immobilized cells were found to be less sensitive to changes in agitation rates (dissolved oxygen levels) and pH values. Michaelis–Menten kinetics could be used to describe the decolorization kinetics with the kinetic parameters being 36.5 mg g−1 h−1, 300.1 mg l−1 and 18.2 mg g−1 h−1, 449.8 mg l−1 for free and immobilized cells, respectively. After five repeated batch cycles, the decolorization rate of the free cells decreased by nearly 54%, while immobilized cells still retained 82% of their original activity. The immobilized cells exhibited better thermal stability during storage and reaction when compared with free cells. From SEM observation, a dense silicate gel layer was found to surround the macroporous alginate–silicate core, which resulted in much improved mechanical stability over that of alginate beads when tested under shaking conditions. Alginate–silicate matrices appeared to be the best matrix for immobilization of P. luteola in decolorization of Reactive Red 22 when compared with previous results using synthetic or natural polymer matrices.  相似文献   

18.
《Process Biochemistry》2007,42(4):704-709
Four immobilized forms of glucose oxidase (GOD) were used for biotransformation removal of glucose from its mixture with dextran oligosaccharides. GOD was biospecifically bound to Concanavalin A-bead cellulose (GOD-ConA-TBC) and covalently to triazine-bead cellulose (GOD-TBC). Eupergit C and Eupergit CM were used for preparation of other two forms of immobilized GOD: GOD-EupC and GOD-EupCM. GOD-ConA-TBC and GOD-EupC exhibited the best operational and storage stabilities. pH and temperature optima of these two immobilized enzyme forms were broadened and shifted to higher values (pH 7 and 35 °C) in comparison with those of free GOD. The decrease of Vmax values after immobilization was observed, from 256.8 ± 7.0 μmol min−1 mgGOD−1 for free enzyme to 63.8 ± 4.2 μmol min−1 mgGOD−1 for GOD-ConA-TBC and 45 ± 2.7 μmol min−1 mgGOD−1 for GOD-EupC, respectively. Depending on the immobilization mode, the immobilized GODs were able to decrease the glucose content in solution to 3.8–15.6% of its initial amount The best glucose conversion, was achieved by an action of GOD-EupCM on a mixture of 100 g dextran with 9 g of glucose (i.e. 98.7% removal of glucose).  相似文献   

19.
The synthetic activity of lipases in biphasic o/w systems was investigated with respect to their use in the synthesis of polyester chains via transesterification reactions. Lipase-catalyzed ring-opening polymerization (ROP) of pentadecalactone (ω-PDL) dispersed in water was used as a model reaction to understand the synthetic activity of lipases in biphasic o/w system. We conducted a systematic investigation of the influence of reaction conditions on the macromolecular characteristics of oligo(ω-PDL) encompassing chemical, thermophysical and colloidal properties of the reaction medium. A model was proposed assuming Michaelis–Menten interfacial kinetics followed by chain extension via lipase-catalyzed linear polycondensation. The solidification of oligo(ω-PDL) chains with a degree of polymerization of approximately three was identified as a major factor limiting the molecular weight of obtained oligomers to ∼870 g mol−1, despite the fast reaction rate and complete conversion of ω-PDL. The addition of toluene into the dispersed phase at a volumetric ratio of 0.3–0.5 of toluene to ω-PDL allowed us to circumvent this problem and increase the molecular weight of obtained oligomers up to 1460 g mol−1. The molecular weight of polymer product according to this model was thus inversely related to the weight ratio percentage of interfacial lipase PS to ω-PDL per droplet and correspondingly correlated with the activity of lipase. Taking into account all these parameters allowed increasing the molar mass of oligo(ω-PDL) from 870 g mol−1 to 3507 g mol−1.  相似文献   

20.
The synthesis of chitosan (Chs) and chitin (Chi) copolymer and grafting of acrylamide (AAm) onto the synthesized copolymer have been carried out by chemical methods. The grafted copolymer was characterized by FTIR, SEM and XRD. The extracellular cutinase of Aspergillus sp. RL2Ct (E.C. 3.1.1.3) was purified to 4.46 fold with 16.1% yield using acetone precipitation and DEAE sepharose ion exchange chromatography. It was immobilized by adsorption on the grafted copolymer. The immobilized enzyme was found to be more stable then the free enzyme and has a good binding efficiency (78.8%) with the grafted copolymer. The kinetic parameters KM and Vmax for free and immobilized cutinase were found to be 0.55 mM and 1410 μmol min−1 mg−1 protein, 2.99 mM and 996 μmol min−1 mg−1 protein, respectively. The immobilized cutinase was recycled 64 times without considerable loss of activity. The matrix (Chs-co-Chi-g-poly(AAm)) prepared and cutinase immobilized on the matrix have potential applications in enzyme immobilization and organic synthesis respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号