首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We sought to investigate the cellular uptake and antiviral activity for the M1 zinc finger peptides derived from influenza A and influenza B viruses in vitro. No cellular uptake was detected by fluorescent microscopy for the synthetic zinc finger peptides. When flanked to a cell permeable peptide Tp10, the zinc finger recombinant proteins were efficiently internalized by MDCK cells. However, no antiviral activity was detected against homologous or heterologous virus infections for the synthetic peptides or the Tp10-flanked recombinant proteins, regardless treated with or without Zn2+. Nevertheless, MDCK cell constitutively expressing the M1 zinc finger peptides in cell nuclei potently inhibited replication of homologous, but not heterologous influenza viruses. Adenoviral vector delivered M1 zinc finger peptides also exhibited potent antiviral activity against homologous viruses challenge. Transduction at 100 PFU dose of recombinant adenovirus efficiently protected 99% of the cells from 100 TCID50 of different virus infections for both peptides. These results brought new insight to the antiviral researches against influenza virus infections.  相似文献   

2.
Studying the interaction between proteins is key in understanding their function(s). A very powerful method that is frequently used to study interactions of proteins with other macromolecules in a complex sample is called co-immunoprecipitation. The described co-immunoprecipitation protocol allows to demonstrate and further investigate the interaction between the antiviral myxovirus resistance protein 1 (Mx1) and one of its viral targets, the influenza A virus nucleoprotein (NP). The protocol starts with transfected mammalian cells, but it is also possible to use influenza A virus infected cells as starting material. After cell lysis, the viral NP protein is pulled-down with a specific antibody and the resulting immune-complexes are precipitated with protein G beads. The successful pull-down of NP and the co-immunoprecipitation of the antiviral Mx1 protein are subsequently revealed by western blotting. A prerequisite for successful co-immunoprecipitation of Mx1 with NP is the presence of N-ethylmaleimide (NEM) in the cell lysis buffer. NEM alkylates free thiol groups. Presumably this reaction stabilizes the weak and/or transient NP–Mx1 interaction by preserving a specific conformation of Mx1, its viral target or an unknown third component. An important limitation of co-immunoprecipitation experiments is the inadvertent pull-down of contaminating proteins, caused by nonspecific binding of proteins to the protein G beads or antibodies. Therefore, it is very important to include control settings to exclude false positive results. The described co-immunoprecipitation protocol can be used to study the interaction of Mx proteins from different vertebrate species with viral proteins, any pair of proteins, or of a protein with other macromolecules. The beneficial role of NEM to stabilize weak and/or transient interactions needs to be tested for each interaction pair individually.  相似文献   

3.
4.
Influenza A virus subtypes are classified on the basis of the antigenicity of their envelope glycoproteins, hemagglutinin (HA; H1–H17) and neuraminidase. Since HA-specific neutralizing antibodies are predominantly specific for a single HA subtype, the contribution of antibodies to the heterosubtypic immunity is not fully understood. In this study, mice were immunized intranasally or subcutaneously with viruses having the H1, H3, H5, H7, H9, or H13 HA subtype, and cross-reactivities of induced IgG and IgA antibodies to recombinant HAs of the H1–H16 subtypes were analyzed. We found that both subcutaneous and intranasal immunizations induced antibody responses to multiple HAs of different subtypes, whereas IgA was not detected remarkably in mice immunized subcutaneously. Using serum, nasal wash, and trachea-lung wash samples of H9 virus-immunized mice, neutralizing activities of cross-reactive antibodies were then evaluated by plaque-reduction assays. As expected, no heterosubtypic neutralizing activity was detected by a standard neutralization test in which viruses were mixed with antibodies prior to inoculation into cultured cells. Interestingly, however, a remarkable reduction of plaque formation and extracellular release of the H12 virus, which was bound by the H9-induced cross-reactive antibodies, was observed when infected cells were subsequently cultured with the samples containing HA-specific cross-reactive IgA. This heterosubtypic plaque reduction was interfered when the samples were pretreated with anti-mouse IgA polyclonal serum. These results suggest that the majority of HA-specific cross-reactive IgG and IgA antibodies produced by immunization do not block cellular entry of viruses, but cross-reactive IgA may have the potential to inhibit viral egress from infected cells and thus to play a role in heterosubtypic immunity against influenza A viruses.  相似文献   

5.
6.
The interferon-induced dynamin-like MxA protein has broad antiviral activity against many viruses, including orthomyxoviruses such as influenza A and Thogoto virus and bunyaviruses such as La Crosse virus. MxA consists of an N-terminal globular GTPase domain, a connecting bundle signaling element, and the C-terminal stalk that mediates oligomerization and antiviral specificity. We previously reported that the disordered loop L4 that protrudes from the compact stalk is a key determinant of antiviral specificity against influenza A and Thogoto virus. However, the role of individual amino acids for viral target recognition remained largely undefined. By mutational analyses, we identified two regions in the C-terminal part of L4 that contribute to an antiviral interface. Mutations in the proximal motif, at positions 561 and 562, abolished antiviral activity against orthomyxoviruses but not bunyaviruses. In contrast, mutations in the distal motif, around position 577, abolished antiviral activity against both viruses. These results indicate that at least two structural elements in L4 are responsible for antiviral activity and that the proximal motif determines specificity for orthomyxoviruses, whereas the distal sequence serves a conserved structural function.  相似文献   

7.
Human LL-37, a cationic antimicrobial peptide, was recently shown to have antiviral activity against influenza A virus (IAV) strains in vitro and in vivo. In this study we compared the anti-influenza activity of LL-37 with that of several fragments derived from LL-37. We first tested the peptides against a seasonal H3N2 strain and the mouse adapted H1N1 strain, PR-8. The N-terminal fragment, LL-23, had slight neutralizing activity against these strains. In LL-23V9 serine 9 is substituted by valine creating a continuous hydrophobic surface. LL-23V9 has been shown to have increased anti-bacterial activity compared to LL-23 and we now show slightly increased antiviral activity compared to LL-23 as well. The short central fragments, FK-13 and KR-12, which have anti-bacterial activity did not inhibit IAV. In contrast, a longer 20 amino acid central fragment of LL-37 (GI-20) had neutralizing activity similar to LL-37. None of the peptides inhibited viral hemagglutination or neuraminidase activity. We next tested activity of the peptides against a strain of pandemic H1N1 of 2009 (A/California/04/09/H1N1 or “Cal09”). Unexpectedly, LL-37 had markedly reduced activity against Cal09 using several cell types and assays of antiviral activity. A mutant viral strain containing just the hemagglutinin (HA) of 2009 pandemic H1N1 was inhibited by LL-37, suggested that genes other than the HA are involved in the resistance of pH1N1. In contrast, GI-20 did inhibit Cal09. In conclusion, the central helix of LL-37 incorporated in GI-20 appears to be required for optimal antiviral activity. The finding that GI-20 inhibits Cal09 suggests that it may be possible to engineer derivatives of LL-37 with improved antiviral properties.  相似文献   

8.
禽流感H5N1亚型病毒感染ICR小鼠的动物模型   总被引:2,自引:1,他引:2  
目的 建立H5N1禽流感病毒感染ICR小鼠的疾病动物模型.方法 将100 μL H5N1 禽流感病毒原液(EID50为105.37/0.2 mL) 鼻腔接种ICR小鼠,设生理盐水组、正常尿囊液组对照,接毒后14 d内每隔12 h观察一次,主要观测指标有临床体征、体重和体温变化、死亡率、病理变化、病毒分离和血清抗体检测 (ELISA方法).结果 被感染的ICR小鼠的病程可以划分为潜伏期 (第0~1天)、急性感染期 (第2~7天)、恢复期 (第8~14天),急性感染期表现出活动明显减少,弓背,反应性差,扎堆;接毒后第1天开始体温和体重下降,第6天体温和体重停止下降;接毒组ICR小鼠累计的死亡率为60%;急性感染期ICR小鼠的肺部病变最严重,表现为间质性肺炎,肺间质充血、水肿和淋巴细胞浸润,毛细血管扩张,上皮细胞变性、坏死、脱落,并有充血和单核细胞浸润;接毒后第1天至第8天可在小鼠的肺、脑、气管和心、肝、脾、肾分离到病毒;接毒后第6天从ICR小鼠血清中检测到抗体.结论 本实验室建立的H5N1禽流感病毒感染ICR小鼠的模型在临床表现、体重变化、死亡率、病理变化、病毒复制指标能达到禽流感病毒疾病模型的造模要求,符合人类禽流感感染疾病的基本特征.  相似文献   

9.
10.
11.
Two antiviral proteins (AVPs) named CAP-I and CAP-II isolated and purified from the leaves of Chenopodium album cv Pusa Bathua 1 were found to inhibit tobacco mosaic virus (TMV) and sunnhemp rosette virus (SRV) infection on their respective host plants. The molecular weight of both the AVPs was found to be 24 kD. They were devoid of carbohydrate moiety and were highly basic with pI ~10.2. However, they differed with respect to amino acid composition and N-terminal sequence. They also differed with respect to IC50 values, and CAP-I was found to be 2.5 fold more effective than CAP-II in inhibiting viral infection.  相似文献   

12.
During 1997 in Hong Kong, 18 human cases of respiratory illness, including 6 fatalities, were caused by highly pathogenic avian influenza A (H5N1) viruses. Since H5 viruses had previously been isolated only from avian species, the outbreak raised questions about the ability of these viruses to cause severe disease and death in humans. To better understand the pathogenesis and immunity to these viruses, we have used the BALB/c mouse model. Four H5N1 viruses replicated equally well in the lungs of mice without prior adaptation but differed in lethality for mice. H5N1 viruses that were highly lethal for mice were detected in multiple organs, including the brain. This is the first demonstration of an influenza A virus that replicates systemically in a mammalian species and is neurotropic without prior adaptation. The mouse model was also used to evaluate a strategy of vaccination against the highly pathogenic avian H5N1 viruses, using an inactivated vaccine prepared from nonpathogenic A/Duck/Singapore-Q/F119-3/97 (H5N3) virus that was antigenically related to the human H5N1 viruses. Mice administered vaccine intramuscularly, with or without alum, were completely protected from lethal challenge with H5N1 virus. Protection from infection was also observed in 70% of animals administered vaccine alone and 100% of mice administered vaccine with alum. The protective effect of vaccination correlated with the level of virus-specific serum antibody. These results suggests a strategy of vaccine preparedness for rapid intervention in future influenza pandemics that uses antigenically related nonpathogenic viruses as vaccine candidates.  相似文献   

13.

Background and Objectives

Influenza A viruses cause highly contagious diseases in a variety of hosts, including humans and pigs. To develop a vaccine that can be broadly effective against genetically divergent strains of the virus, in this study we employed molecular breeding (DNA shuffling) technology to create a panel of chimeric HA genes.

Methods and Results

Each chimeric HA gene contained genetic elements from parental swine influenza A viruses that had a history of zoonotic transmission, and also from a 2009 pandemic virus. Each parental virus represents a major phylogenetic clade of influenza A H1N1 viruses. Nine shuffled HA constructs were initially screened for immunogenicity in mice by DNA immunization, and one chimeric HA (HA-129) was expressed on both a A/Puerto Rico/8/34 backbone with mutations associated with a live, attenuated phenotype (PR8LAIV-129) and a A/swine/Texas/4199-2/98 backbone (TX98-129). When delivered to mice, the PR8LAIV-129 induced antibodies against all four parental viruses, which was similar to the breadth of immunity observed when HA-129 was delivered as a DNA vaccine. This chimeric HA was then tested as a candidate vaccine in a nursery pig model, using inactivated TX98-129 virus as the backbone. The results demonstrate that pigs immunized with HA-129 developed antibodies against all four parental viruses, as well as additional primary swine H1N1 influenza virus field isolates.

Conclusion

This study established a platform for creating novel genes of influenza viruses using a molecular breeding approach, which will have important applications toward future development of broadly protective influenza virus vaccines.  相似文献   

14.

Background

The development of new therapeutic targets and strategies to control highly pathogenic avian influenza (HPAI) H5N1 virus infection in humans is urgently needed. Broadly cross-neutralizing recombinant human antibodies obtained from the survivors of H5N1 avian influenza provide an important role in immunotherapy for human H5N1 virus infection and definition of the critical epitopes for vaccine development.

Methodology/Principal Findings

We have characterized two recombinant baculovirus-expressed human antibodies (rhAbs), AVFluIgG01 and AVFluIgG03, generated by screening a Fab antibody phage library derived from a patient recovered from infection with a highly pathogenic avian influenza A H5N1 clade 2.3 virus. AVFluIgG01 cross-neutralized the most of clade 0, clade 1, and clade 2 viruses tested, in contrast, AVFluIgG03 only neutralized clade 2 viruses. Passive immunization of mice with either AVFluIgG01 or AVFluIgG03 antibody resulted in protection from a lethal H5N1 clade 2.3 virus infection. Furthermore, through epitope mapping, we identify two distinct epitopes on H5 HA molecule recognized by these rhAbs and demonstrate their potential to protect against a lethal H5N1 virus infection in a mouse model.

Conclusions/Significance

Importantly, localization of the epitopes recognized by these two neutralizing and protective antibodies has provided, for the first time, insight into the human antibody responses to H5N1 viruses which contribute to the H5 immunity in the recovered patient. These results highlight the potential of a rhAbs treatment strategy for human H5N1 virus infection and provide new insight for the development of effective H5N1 pandemic vaccines.  相似文献   

15.
16.
《Molecular cell》2014,53(2):221-234
  1. Download : Download high-res image (191KB)
  2. Download : Download full-size image
  相似文献   

17.
The infectivity of the nucleic acids of πX-174 and MS-2 was examined after aerosolization. It was found that the nucleic acids were undamaged by aerosolization.  相似文献   

18.
Currently, two neuraminidase (NA) inhibitors, oseltamivir and zanamivir, which must be administrated twice daily for 5 days for maximum therapeutic effect, are licensed for the treatment of influenza. However, oseltamivir-resistant mutants of seasonal H1N1 and highly pathogenic H5N1 avian influenza A viruses have emerged. Therefore, alternative antiviral agents are needed. Recently, a new neuraminidase inhibitor, R-125489, and its prodrug, CS-8958, have been developed. CS-8958 functions as a long-acting NA inhibitor in vivo (mice) and is efficacious against seasonal influenza strains following a single intranasal dose. Here, we tested the efficacy of this compound against H5N1 influenza viruses, which have spread across several continents and caused epidemics with high morbidity and mortality. We demonstrated that R-125489 interferes with the NA activity of H5N1 viruses, including oseltamivir-resistant and different clade strains. A single dose of CS-8958 (1,500 µg/kg) given to mice 2 h post-infection with H5N1 influenza viruses produced a higher survival rate than did continuous five-day administration of oseltamivir (50 mg/kg twice daily). Virus titers in lungs and brain were substantially lower in infected mice treated with a single dose of CS-8958 than in those treated with the five-day course of oseltamivir. CS-8958 was also highly efficacious against highly pathogenic H5N1 influenza virus and oseltamivir-resistant variants. A single dose of CS-8958 given seven days prior to virus infection also protected mice against H5N1 virus lethal infection. To evaluate the improved efficacy of CS-8958 over oseltamivir, the binding stability of R-125489 to various subtypes of influenza virus was assessed and compared with that of other NA inhibitors. We found that R-125489 bound to NA more tightly than did any other NA inhibitor tested. Our results indicate that CS-8958 is highly effective for the treatment and prophylaxis of infection with H5N1 influenza viruses, including oseltamivir-resistant mutants.  相似文献   

19.
Our lead iminosugar analog called UV-4 or N-(9-methoxynonyl)-1-deoxynojirimycin inhibits activity of endoplasmic reticulum (ER) α-glucosidases I and II and is a potent, host-targeted antiviral candidate. The mechanism of action for the antiviral activity of iminosugars is proposed to be inhibition of ER α-glucosidases leading to misfolding of critical viral glycoproteins. These misfolded glycoproteins would then be incorporated into defective virus particles or targeted for degradation resulting in a reduction of infectious progeny virions. UV-4, and its hydrochloride salt known as UV-4B, is highly potent against dengue virus in vitro and promotes complete survival in a lethal dengue virus mouse model. In the current studies, UV-4 was shown to be highly efficacious via oral gavage against both oseltamivir-sensitive and -resistant influenza A (H1N1) infections in mice even if treatment was initiated as late as 48-72 hours after infection. The minimal effective dose was found to be 80-100 mg/kg when administered orally thrice daily. UV-4 treatment did not affect the development of protective antibody responses after either influenza infection or vaccination. Therefore, UV-4 is a promising candidate for further development as a therapeutic intervention against influenza.  相似文献   

20.
Viruses of the family Coronaviridae have recently emerged through zoonotic transmission to become serious human pathogens. The pathogenic agent responsible for severe acute respiratory syndrome (SARS), the SARS coronavirus (SARS-CoV), is a member of this large family of positive-strand RNA viruses that cause a spectrum of disease in humans, other mammals, and birds. Since the publicized outbreaks of SARS in China and Canada in 2002-2003, significant efforts successfully identified the causative agent, host cell receptor(s), and many of the pathogenic mechanisms underlying SARS. With this greater understanding of SARS-CoV biology, many researchers have sought to identify agents for the treatment of SARS. Here we report the utility of the potent antiviral protein griffithsin (GRFT) in the prevention of SARS-CoV infection both in vitro and in vivo. We also show that GRFT specifically binds to the SARS-CoV spike glycoprotein and inhibits viral entry. In addition, we report the activity of GRFT against a variety of additional coronaviruses that infect humans, other mammals, and birds. Finally, we show that GRFT treatment has a positive effect on morbidity and mortality in a lethal infection model using a mouse-adapted SARS-CoV and also specifically inhibits deleterious aspects of the host immunological response to SARS infection in mammals.The Coronaviridae are a group of enveloped positive-strand RNA viruses of the group Nidovirales. This group of viruses was not, until recently, of major concern as a matter of public health, although they were long recognized as important agents of serious disease in domestic and companion animals. The recent evidence of zoonotic transfer of this family of viruses from bats to animals such as palm civet cats and then to humans during the 2002-2003 outbreak greatly increased scientific interest in the Coronaviridae (7, 14, 19). The best-known coronavirus (CoV) is the causative agent of severe acute respiratory syndrome (SARS), termed the SARS-related coronavirus (SARS-CoV) (7, 14, 19). The lethal SARS outbreaks in China and Canada in 2002-2003 first brought SARS-CoV to public attention. The subsequent identification of two new human coronaviruses associated with acute respiratory infections in humans further illuminated the continuing potential threat that coronaviruses present to public health (31, 36).Infection with SARS-CoV results from the binding of SARS-CoV spike glycoprotein (S) to angiotensin-converting enzyme 2 (ACE2) on the surface of susceptible cells in the lung followed by viral fusion with host cell membranes and transfer of virion contents into the cell (12, 25, 27). The infection stimulates significant cytokine responses in lung tissue that, together with pathologies associated with rapidly replicating virus, cause damage to the airway epithelium and alveolar membranes resulting in edema, respiratory distress, and (in ∼10% of cases) death (5). Due to the proven threat from SARS-CoV infections and the possibility of future zoonotic transmission of coronaviruses, efforts have been initiated to identify agents that could either reduce infection or suppress the deleterious cytokine response to SARS-CoV infection (8, 29).The molecular physiology of the SARS-CoV life cycle and the host response to infection have provided numerous potential targets for chemotherapeutic intervention. In addition to vaccine development strategies, various research groups have targeted the SARS-CoV-specific main protease or viral attachment, entry, and fusion for intervention. SARS-CoV protease inhibitors which inhibit the enzyme at concentrations from 0.5 to 7 μM have been reported (2). The SARS-CoV papain-like protease (PLP) has also been successfully developed as a target for small-molecule antivirals, some of which are active in the 100 nM range (22). Viral entry inhibitors include SARS-CoV S glycoprotein heptad repeat peptides identified as potential inhibitors of viral fusion (3). Another broad-spectrum antiviral approach involves targeting the high-mannose oligosaccharides that are commonly found on viral surface glycoproteins. For example, carbohydrate-binding lectins, including Urtica dioica agglutinin (UDA), have been reported to bind to the SARS-CoV S protein and inhibit viral fusion and entry (33).The antiviral protein griffithsin (GRFT) was originally isolated from the red alga Griffithsia sp. based upon its activity against the human immunodeficiency virus (HIV) (17). This unique 12.7-kDa protein was shown to bind specifically to oligosaccharides on the surface of the HIV envelope glycoprotein gp120. GRFT was shown to possess three largely identical carbohydrate-binding domains orientated as an equatorial triangle and affording multivalent binding and thereby increasing potency (37) (Fig. (Fig.1).1). Due to GRFT''s ability to bind to specific oligosaccharides on envelope glycoproteins and block viral entry, it was hypothesized that GRFT might show broad-spectrum antiviral activity against other viruses, including SARS-CoV (38). Here we report the testing of GRFT for antiviral activity against a spectrum of coronaviruses, including SARS-CoV. In addition we present data on the specific binding interactions between GRFT and the SARS-CoV S protein. Finally, we evaluate the in vivo efficacy of intranasal administration of GRFT against infection with SARS-CoV in a lethal mouse model of pulmonary infection and explore the effects that GRFT treatment has on the induction of host cytokine response to SARS-CoV infection.Open in a separate windowFIG. 1.The amino acid sequence and carbohydrate binding domains of griffithsin. Griffithsin monomers contain three distinct, nonlinear, and uniform binding sites for monosaccharides such as mannose and glucose. The binding sites (red, blue, and yellow) are shown both in the amino acid sequence of griffithsin (A) and binding to the disaccharide maltose in a three-dimensional representation derived from the X-ray crystal structure (B).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号