首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oncogenic human papillomaviruses (HPVs) replicate in differentiating epithelium, causing 5% of cancers worldwide. Like most other DNA viruses, HPV infection initiates after trafficking viral genome (vDNA) to host cell nuclei. Cells possess innate surveillance pathways to detect microbial components or physiological stresses often associated with microbial infections. One of these pathways, cGAS/STING, induces IRF3-dependent antiviral interferon (IFN) responses upon detection of cytosolic DNA. Virion-associated vDNA can activate cGAS/STING during initial viral entry and uncoating/trafficking, and thus cGAS/STING is an obstacle to many DNA viruses. HPV has a unique vesicular trafficking pathway compared to many other DNA viruses. As the capsid uncoats within acidic endosomal compartments, minor capsid protein L2 protrudes across vesicular membranes to facilitate transport of vDNA to the Golgi. L2/vDNA resides within the Golgi lumen until G2/M, whereupon vesicular L2/vDNA traffics along spindle microtubules, tethering to chromosomes to access daughter cell nuclei. L2/vDNA-containing vesicles likely remain intact until G1, following nuclear envelope reformation. We hypothesize that this unique vesicular trafficking protects HPV from cGAS/STING surveillance. Here, we investigate cGAS/STING responses to HPV infection. DNA transfection resulted in acute cGAS/STING activation and downstream IFN responses. In contrast, HPV infection elicited minimal cGAS/STING and IFN responses. To determine the role of vesicular trafficking in cGAS/STING evasion, we forced premature viral penetration of vesicular membranes with membrane-perturbing cationic lipids. Such treatment renders a non-infectious trafficking-defective mutant HPV infectious, yet susceptible to cGAS/STING detection. Overall, HPV evades cGAS/STING by its unique subcellular trafficking, a property that may contribute to establishment of infection.  相似文献   

2.
Both viral infection and DNA transfection expose single-stranded or double-stranded DNA to the cytoplasm of mammalian cells. Recognition of cytosolic DNA activates a series of cellular responses, including induction of pro-inflammatory genes such as type I interferon through the well-known cGAS-STING pathway. Here we show for the first time that intracellular administration of either single or double stranded interferon stimulating DNA (ISD), but not poly(dA) suppresses cell growth in many different cell types. Suppression of cell growth by cytosolic DNA is cGAS/STING independent and associated with inhibition of glucose metabolism, ATP depletion and subsequent cellular energy stress responses including activation of AMPK and inactivation of mTORC1. Our results suggest that in concert with but independent of innate immune response, recognition of cytosolic DNA induced cellular energy stress potentially functions as a metabolic barrier to viral replication.  相似文献   

3.
In general, in mammalian cells, cytosolic DNA viruses are sensed by cyclic GMP-AMP synthase (cGAS), and RNA viruses are recognized by retinoic acid-inducible gene I (RIG-I)-like receptors, triggering a series of downstream innate antiviral signaling steps in the host. We previously reported that measles virus (MeV), which possesses an RNA genome, induces rapid antiviral responses, followed by comprehensive downregulation of host gene expression in epithelial cells. Interestingly, gene ontology analysis indicated that genes encoding mitochondrial proteins are enriched among the list of downregulated genes. To evaluate mitochondrial stress after MeV infection, we first observed the mitochondrial morphology of infected cells and found that significantly elongated mitochondrial networks with a hyperfused phenotype were formed. In addition, an increased amount of mitochondrial DNA (mtDNA) in the cytosol was detected during progression of infection. Based on these results, we show that cytosolic mtDNA released from hyperfused mitochondria during MeV infection is captured by cGAS and causes consequent priming of the DNA sensing pathway in addition to canonical RNA sensing. We also ascertained the contribution of cGAS to the in vivo pathogenicity of MeV. In addition, we found that other viruses that induce downregulation of mitochondrial biogenesis as seen for MeV cause similar mitochondrial hyperfusion and cytosolic mtDNA-priming antiviral responses. These findings indicate that the mtDNA-activated cGAS pathway is critical for full innate control of certain viruses, including RNA viruses that cause mitochondrial stress.  相似文献   

4.
Viruses use diverse strategies to impair the antiviral immunity of host in order to promote infection and pathogenesis. Herein, we found that PCV2 infection promotes the infection of DNA viruses through inhibiting IFN-β induction in vivo and in vitro. In the early phase of infection, PCV2 promotes the phosphorylation of cGAS at S278 via activation of PI3K/Akt signaling, which directly silences the catalytic activity of cGAS. Subsequently, phosphorylation of cGAS at S278 can facilitate the K48-linked poly-ubiquitination of cGAS at K389, which can been served as a signal for recognizing by the ubiquitin-binding domain of histone deacetylase 6 (HDAC6), to promote the translocation of K48-ubiquitinated-cGAS from cytosol to autolysosome depending on the deacetylase activity of HDAC6, thereby eventually resulting in a markedly increased cGAS degradation in PCV2 infection-induced autophagic cells relative to Earle’s Balanced Salt Solution (EBSS)-induced autophagic cells (a typical starving autophagy). Importantly, we found that PCV2 Cap and its binding protein gC1qR act as predominant regulators to promote porcine cGAS phosphorylation and HDAC6 activation through mediating PI3K/AKT signaling and PKCδ signaling activation. Based on this finding, gC1qR-binding activity deficient PCV2 mutant (PCV2RmA) indeed shows a weakened inhibitory effect on IFN-β induction and a weaker boost effect for other DNA viruses infection compared to wild-type PCV2. Collectively, our findings illuminate a systematic regulation mechanism by which porcine circovirus counteracts the cGAS-STING signaling pathway to inhibit the type I interferon induction and promote DNA virus infection, and identify gC1qR as an important regulator for the immunosuppression induced by PCV2.  相似文献   

5.
The cyclic GMP-AMP synthase (cGAS) is a critical regulator of the innate immune response acting as a sensor of double-strand DNAs from pathogens or damaged host DNA. Upon activation, cGAS signals through the STING/TBK1/IRF3 pathway to induce interferon expression. Double stranded DNA viruses target the cGAS pathway to facilitate infection. In HPV positive cells that stably maintain viral episomes, the levels of cGAS were found to be significantly increased over those seen in normal human keratinocytes. Furthermore the downstream effectors of the cGAS pathway, STING and IRF3, were fully active in response to signaling from the secondary messenger cGAMP or poly (dA:dT). In HPV positive cells cGAS was detected in both cytoplasmic puncta as well as in DNA damage induced micronuclei. E6 was responsible for increased levels of cGAS that was dependent on inhibition of p53. CRISPR-Cas9 mediated knockout of cGAS prevented activation of STING and IRF3 but had a minimal effect on viral replication. A primary function of cGAS in HPV positive cells was in response to treatment with etoposide or cisplatin which lead to increased levels of H2AX phosphorylation and activation of caspase 3/7 cleavage while having only a minimal effect on activation of homologous recombination repair factors ATM, ATR or CHK2. In HPV positive cells cGAS was found to regulate the levels of the phosphorylated non-homologous end-joining kinase, DNA-PK, which may contribute to H2AX phosphorylation along with other factors. Importantly cGAS was also responsible for increased levels of DNA breaks along with enhanced apoptosis in HPV positive cells but not in HFKs. This study identifies an important and novel role for cGAS in mediating the response of HPV positive cells to chemotherapeutic drugs.  相似文献   

6.
7.
A recently reported system for recombinant adeno-associated virus (rAAV) production does not require infection of a helper virus and depends on the transfection with a huge amount of three plasmids: AAV-vector, AAV-helper, and adenovirus-helper plasmids. Toward simplifying rAAV production, as a first step, we tested the use of the rAAV itself instead of the AAV-vector plasmid as a source of rAAV DNA and determined the optimal timing of infection and dose of the input rAAV. When 293 cells were infected just after transfection with 100 particles/cell of rAAV, irrespective of the purity, CsCl-purified or crude, up to 2000 particles/cell of rAAV were produced (9- to 20-fold self-amplification), a yield comparable to that obtained by an adenovirus-free transfection. These results indicate that infection of rAAV can greatly reduce the amount of plasmid DNA for a large-scale transfection. This strategy will also be useful when applied to packaging cell lines inducibly expressing Rep and Cap proteins.  相似文献   

8.
Human cytomegalovirus (HCMV) infections of healthy individuals are mostly unnoticed and result in viral latency. However, HCMV can also cause devastating disease, e.g., upon reactivation in immunocompromised patients. Yet, little is known about human immune cell sensing of DNA-encoded HCMV. Recent studies indicated that during viral infection the cyclic GMP/AMP synthase (cGAS) senses cytosolic DNA and catalyzes formation of the cyclic di-nucleotide cGAMP, which triggers stimulator of interferon genes (STING) and thus induces antiviral type I interferon (IFN-I) responses. We found that plasmacytoid dendritic cells (pDC) as well as monocyte-derived DC and macrophages constitutively expressed cGAS and STING. HCMV infection further induced cGAS, whereas STING expression was only moderately affected. Although pDC expressed particularly high levels of cGAS, and the cGAS/STING axis was functional down-stream of STING, as indicated by IFN-I induction upon synthetic cGAMP treatment, pDC were not susceptible to HCMV infection and mounted IFN-I responses in a TLR9-dependent manner. Conversely, HCMV infected monocyte-derived cells synthesized abundant cGAMP levels that preceded IFN-I production and that correlated with the extent of infection. CRISPR/Cas9- or siRNA-mediated cGAS ablation in monocytic THP-1 cells and primary monocyte-derived cells, respectively, impeded induction of IFN-I responses following HCMV infection. Thus, cGAS is a key sensor of HCMV for IFN-I induction in primary human monocyte-derived DC and macrophages.  相似文献   

9.
Varicella‐Zoster virus (VZV) causes chickenpox and shingles. Although the infection is associated with severe morbidity in some individuals, molecular mechanisms that determine innate immune responses remain poorly defined. We found that the cGAS/STING DNA sensing pathway was required for type I interferon (IFN) induction during VZV infection and that recognition of VZV by cGAS restricted its replication. Screening of a VZV ORF expression library identified the essential VZV tegument protein ORF9 as a cGAS antagonist. Ectopically or virally expressed ORF9 bound to endogenous cGAS leading to reduced type I IFN responses to transfected DNA. Confocal microscopy revealed co‐localisation of cGAS and ORF9. ORF9 and cGAS also interacted directly in a cell‐free system and phase‐separated together with DNA. Furthermore, ORF9 inhibited cGAMP production by cGAS. Taken together, these results reveal the importance of the cGAS/STING DNA sensing pathway for VZV recognition and identify a VZV immune antagonist that partially but directly interferes with DNA sensing via cGAS.  相似文献   

10.
cGAS, an innate immune sensor of cellular stress, recognizes double‐stranded DNA mislocalized in the cytosol upon infection, mitochondrial stress, DNA damage, or malignancy. Early models suggested that cytosolic localization of cGAS prevents autoreactivity to nuclear and mitochondrial self‐DNA, but this paradigm has shifted in light of recent findings of cGAS as a predominantly nuclear protein tightly bound to chromatin. This has raised the question how nuclear cGAS is kept inactive while being surrounded by chromatin, and what function nuclear localization of cGAS may serve in the first place? Cryo‐EM structures have revealed that cGAS interacts with nucleosomes, the minimal units of chromatin, mainly via histones H2A/H2B, and that these protein–protein interactions block cGAS from DNA binding and thus prevent autoreactivity. Here, we discuss the biological implications of nuclear cGAS and its interaction with chromatin, including various mechanisms for nuclear cGAS inhibition, release of chromatin‐bound cGAS, regulation of different cGAS pools in the cell, and chromatin structure/chromatin protein effects on cGAS activation leading to cGAS‐induced autoimmunity.  相似文献   

11.
Cyclic guanosine monophosphate–adenosine monophosphate synthase (cGAS) is activated in cells with defective DNA damage repair and signaling (DDR) factors, but a direct role for DDR factors in regulating cGAS activation in response to micronuclear DNA is still poorly understood. Here, we provide novel evidence that Nijmegen breakage syndrome 1 (NBS1) protein, a well-studied DNA double-strand break (DSB) sensor—in coordination with Ataxia Telangiectasia Mutated (ATM), a protein kinase, and Carboxy-terminal binding protein 1 interacting protein (CtIP), a DNA end resection factor—functions as an upstream regulator that prevents cGAS from binding micronuclear DNA. When NBS1 binds to micronuclear DNA via its fork-head–associated domain, it recruits CtIP and ATM via its N- and C-terminal domains, respectively. Subsequently, ATM stabilizes NBS1’s interaction with micronuclear DNA, and CtIP converts DSB ends into single-strand DNA ends; these two key events prevent cGAS from binding micronuclear DNA. Additionally, by using a cGAS tripartite system, we show that cells lacking NBS1 not only recruit cGAS to a major fraction of micronuclear DNA but also activate cGAS in response to these micronuclear DNA. Collectively, our results underscore how NBS1 and its binding partners prevent cGAS from binding micronuclear DNA, in addition to their classical functions in DDR signaling.  相似文献   

12.
Heider H  Verca SB  Rusconi S  Asmis R 《BioTechniques》2000,28(2):260-5, 268-70
Lipid-mediated transfection was compared to adenoviral-mediated gene transfer in COS-7 cells as well as human monocyte-derived macrophages (HMDM). For this purpose, we monitored enhanced green fluorescent protein (EGFP) expression by fluorescence microscopy and quantified gene transfer by competitive PCR. Transfection of COS-7 cells with a novel lipid formulation for DNA transfer was highly effective in COS-7 cells. On average, 30% of the cells were fluorescent 48 h after transfection. In HMDM, the same formulation resulted in the expression of EGFP in less than 0.5% of cells. We measured plasmid DNA by quantitative PCR in lipid-transfected macrophages and found that each macrophage contained on average 2 fg of plasmid DNA 24 h after transfection, that is, more than 400 molecules of plasmid DNA entered each cell. Despite the high level of reporter DNA in lipid transfected cells, expression of the fluorescent protein was suppressed in more than 99.5% of the macrophages. We also used adenoviral gene transfer to introduce the foreign DNA into both COS-7 cells and HMDM. Even though the multiplicity of infection was less than 30, expression of EGFP was observed in nearly all COS-7 cells and in more than 80% of HMDM 48 h after transfection. Despite major advances in the field of lipid-mediated transfection of HMDM, the lipid formulations that are available commercially cannot compete with the efficiency of adenoviral gene transfer.  相似文献   

13.
Transient transfection of recombinant genes into cells is a commonly used approach for analyzing cell-cycle- and/or apoptotic-related activities of cell-cycle control proteins. In this approach, information regarding the functional consequence of expressing a recombinant protein transiently is garnered by comparing against results obtained from cells which are transfected with either a control expression plasmid and/or with mutant expression plasmids. In general however, little attention is paid to whether the transfection procedure itself influences these experiments. Using the calcium phosphate transfection method, we show that the introduction of DNA into cells induces signaling of the cell-cycle control machinery. In Hela cells, a transient increase in G0/G1 cells is observed 8 h after transfection. Furthermore, the introduction of DNA into several cell lines induces apoptosis. Transfection-mediated apoptosis can be elicited through a p53-independent mechanism, suggesting the possible extrapolation to many tumor cell lines. Last, we show that due to a likely cell-cycle-specific entry of marker genes into the nucleus, a highly biased cell-cycle distribution is observed in successfully transfected cells at early times following transfection. The importance of these issues in the interpretation as well as the design of transient transfection-based cell-cycle experiments is discussed.  相似文献   

14.
Cytoplasmic viral RNA and DNA are recognized by RIG-I-like receptors and DNA sensors that include DAI, IFI16, DDX41, and cGAS. The RNA and DNA sensors evoke innate immune responses through the IPS-1 and STING adaptors. IPS-1 and STING activate TBK1 kinase. TBK1 is phosphorylated in its activation loop, leading to IRF3/7 activation and Type I interferon (IFN) production. IPS-1 and STING localize to the mitochondria and endoplasmic reticulum, respectively, whereas it is unclear where phosphorylated TBK1 is localized in response to cytoplasmic viral DNA. Here, we investigated phospho-TBK1 (p-TBK1) subcellular localization using a p-TBK1-specific antibody. Stimulation with vertebrate DNA by transfection increased p-TBK1 levels. Interestingly, stimulation-induced p-TBK1 exhibited mitochondrial localization in HeLa and HepG2 cells and colocalized with mitochondrial IPS-1 and MFN-1. Hepatitis B virus DNA stimulation or herpes simplex virus type-1 infection also induced p-TBK1 mitochondrial localization in HeLa cells, indicating that cytoplasmic viral DNA induces p-TBK1 mitochondrial localization in HeLa cells. In contrast, p-TBK1 did not show mitochondrial localization in RAW264.7, L929, or T-23 cells, and most of p-TBK1 colocalized with STING in response to cytoplasmic DNA in those mammalian cells, indicating cell type-specific localization of p-TBK1 in response to cytoplasmic viral DNA. A previous knockout study showed that mouse IPS-1 was dispensable for Type I IFN production in response to cytoplasmic DNA. However, we found that knockdown of IPS-1 markedly reduced p-TBK1 levels in HeLa cells. Taken together, our data elucidated the cell type-specific subcellular localization of p-TBK1 and a cell type-specific role of IPS-1 in TBK1 activation in response to cytoplasmic viral DNA.  相似文献   

15.
The bioluminescence system (luciferase reporter assay system) is widely used to study gene expression, signal transduction and other cellular activities. Although transfection of reporter plasmid DNA to mammalian cell lines is an indispensable experimental step, the transfection efficiency of DNA varies among cell lines, and several cell lines are not suitable for this type of assay because of the low transfection efficiency. In this study, we confirm the transfection efficiency of reporter DNA to several cancer and normal cell lines after transient transfection by single‐cell imaging. Luminescence images could be obtained from living single cells after transient transfection, and the calculated transfection efficiency of this method was similar to that of the conventional reporter assay using a luminometer. We attempted to measure the activity of the Bip promoter under endoplasmic reticulum stress conditions using both high and low transfection efficiency cells for plasmid DNA at the single‐cell level, and observed activation of this promoter even in cells with the lowest transfection efficiency. These results show that bioluminescence imaging of single cells is a powerful tool for the analysis of gene expression based on a reporter assay using limited samples such as clinical specimens or cells from primary culture, and could provide additional information compared with the conventional assay. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Cytosolic DNA stimulates innate immune responses, including type I interferons (IFN), which have antiviral and immunomodulatory activities. Cyclic GMP‐AMP synthase (cGAS) recognizes cytoplasmic DNA and signals via STING to induce IFN production. Despite the importance of DNA in innate immunity, the nature of the DNA that stimulates IFN production is not well described. Using low DNA concentrations, we show that dsDNA induces IFN in a length‐dependent manner. This is observed over a wide length‐span of DNA, ranging from the minimal stimulatory length to several kilobases, and is fully dependent on cGAS irrespective of DNA length. Importantly, in vitro studies reveal that long DNA activates recombinant human cGAS more efficiently than short DNA, showing that length‐dependent DNA recognition is an intrinsic property of cGAS independent of accessory proteins. Collectively, this work identifies long DNA as the molecular entity stimulating the cGAS pathway upon cytosolic DNA challenge such as viral infections.  相似文献   

17.
Listeria monocytogenes is a gram‐positive facultative intracellular bacterium, which replicates in the cytoplasm of myeloid cells. Interferon β (IFNβ) has been reported to play an important role in the mechanisms underlying Listeria disease. Although studies in murine cells have proposed the bacteria‐derived cyclic‐di‐AMP to be the key bacterial immunostimulatory molecule, the mechanism for IFNβ expression during L. monocytogenes infection in human myeloid cells remains unknown. Here we report that in human macrophages, Listeria DNA rather than cyclic‐di‐AMP is stimulating the IFN response via a pathway dependent on the DNA sensors IFI16 and cGAS as well as the signalling adaptor molecule STING. Thus, Listeria DNA is a major trigger of IFNβ expression in human myeloid cells and is sensed to activate a pathway dependent on IFI16, cGAS and STING.  相似文献   

18.
Toxicity associated with plasmid/liposome transfection of eucaryote cells has been attributed to the inherent toxicity of cationic lipid formulations and also to bacterial contaminants of plasmid DNA preparations, such as lipopolysaccharides (LPS). Certain plasmid preparations were observed to trigger apoptosis in DNA/liposome transfected OVCAR3 human epithelial ovarian cancer cells. In contrast, AZ224 and SKOV3 cells were unaffected under the same conditions. Agarose gel electrophoresis with recovery of the plasmid DNA removed the toxic component, but not purification by phenol/chloroform extraction or isopicnic CsCl ultracentrifugation. The toxicity of individual preparations correlated with the concentration of bacterial LPS. However, polymixin B could not neutralise the toxicity and neither could the effect be reproduced by the addition of bacterial LPS to non-toxic plasmid preparations. Surprisingly, the conditioned medium of OVCAR3 cells undergoing apoptosis was found to kill non-transfected OVCAR3 cells but not AZ224 or SKOV3 cells. This observation illustrates the possibility that unpredictable contaminants of bacterial plasmid preparations are able to cause cell death in the context of plasmid/liposome transfection in a cell-type specific way. It emphasizes the importance of achieving maximal plasmid DNA purity when performing DNA transfection experiments that focus on cell survival.  相似文献   

19.
Endonuclease G (EndoG) is a mitochondrial apoptosis regulator that also has roles outside of programmed cell death. It has been implicated as a defence DNase involved in the degradation of exogenous DNA after transfection of mammalian cells and in homologous recombination of viral and endogenous DNA. In this study, we looked at the effect of EndoG depletion on plasmid DNA uptake and the levels of homologous recombination in HeLa cells. We show that the proposed defence role of EndoG against uptake of non-viral DNA vectors does not extend to the cervical carcinoma HeLa cells, as targeting of EndoG expression by RNA interference failed to increase intracellular plasmid DNA levels. However, reducing EndoG levels in HeLa cells resulted in a statistically significant reduction of homologous recombination between two plasmid DNA substrates. These findings suggest that non-viral DNA vectors are also substrates for EndoG in its role in homologous recombination.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号