首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The toxic dinoflagellate Protoceratium reticulatum (Claparède & Lachmann) Buetschli is recurrently present in the Adriatic sea. It is the producing organism of yessotoxin (YTX) and some of its analogues and thus its presence in seawater often results in shellfish farm closure for long periods. However, molluscs become highly toxic also at the presence of low cell concentrations, due to the high YTX content present in most algal strains. As no data were available on the environmental conditions favouring growth and YTX production by Adriatic P. reticulatum strains, in the present work, we investigated the effect of nutrient limitation, salinity and temperature on growth and YTX content in P. reticulatum cultures. Liquid chromatography–mass spectrometry (LC–MS) analyses were carried out to determine YTX production as well as the difference between the YTX amount retained in cells and that released in growth medium, in order to relate cell content to excretion mechanisms. The toxin content was determined in cells collected at the stationary phase, since both toxin production and release were found to be higher in this growth stage than in the exponential phase. As for nutrient-effect, a severe P-limitation strongly affected cell growth and favoured toxin accumulation, as consequences of both impaired cell division and lower toxin release. N-limited cultures, on the contrary, had a toxin content similar to controls and the highest percentage of release. P. reticulatum was confirmed to be tolerant towards salinity changes as it could grow at salinity values in the range of 22–42. The highest YTX production was observed at intermediate salinity values (32) whereas toxin release, expressed as percentage of the total amount produced, decreased as salinity increased. P. reticulatum growth was impaired in cultures kept at 26 °C in respect to those grown at 16 and 20 °C. YTX release decreased as temperature increased; however, cells kept at 26 °C displayed a very high YTX content. The environmental implications of these physiological behaviours highlight that farmed molluscs can become less toxic in colder waters at lower salinity values.  相似文献   

2.
The production dynamics of yessotoxin (YTX) by Protoceratium reticulatum and phosphate uptake in culture were investigated in relation to cell growth. The equations used were: the reparametrized logistic for cell production, Luedeking–Piret model for yessotoxin production and maintenance energy model for phosphate consumption. Thus, the YTX formation rate was proportional to producer biomass at the end of the asymptotic phase of culture as a secondary metabolite. Moreover, the equations proposed showed a high accuracy to predict these bioproductions in different experimental conditions and culture scales.  相似文献   

3.
A solid-phase extract from Protoceratium reticulatum was partitioned between water and butanol and the two fractions purified on an alumina column. Fractionation was monitored by ELISA and LC–MS. Results indicate that while almost all yessotoxin (1) was extracted into butanol, large amounts of yessotoxin analogs remained in the aqueous extract along with lesser amounts in the butanolic extract. NMR analysis of selected fractions from reverse-phase chromatography of the extracts confirmed the presence of yessotoxin analogs, although structure determinations were not possible due to the complexity of the mixtures. Analysis of fractions with LC–MS3 and neutral-loss LC–MS/MS indicated the presence of more than 90 yessotoxin analogs, although structures for most of these have not yet been determined. These analogs provide a mechanism to rationalise the discrepancy between ELISA and LC–MS analyses of algae and shellfish.  相似文献   

4.
Yessotoxin (YTX) was detected in an algal sample and two mussel samples (0.07–0.10 μg g−1) collected from Scripps Pier in La Jolla, California during a bloom of Lingulodinium polyedrum. Mussel samples collected from Monterey Bay, California also contained measurable YTX (levels up to 0.06 μg g−1) in samples obtained during a 6-month (weekly) sampling period. Gonyaulax spinifera and L. polyedrum were identified in background concentrations in Monterey Bay during the time of contamination. An algal sample from Washington coastal waters collected during non-bloom conditions also contained YTX, possibly originating from Protoceratium reticulatum.Three strains of L. polyedrum (CCMP1931, CCMP1936, 104A) isolated from southern California coastal waters and one strain of G. spinifera (CCMP409) isolated from Maine were tested for YTX production using two methods, competitive ELISA and liquid chromatography–mass spectrometry (LC–MS). The ELISA method detected YTX in the particulate phase in two of three L. polyedrum strains. The LC–MS method did not detect YTX in the particulate or dissolved phase of any of the strains.To our knowledge, this is the first study to test and confirm YTX in environmental samples from California and Washington coastal waters. It is highly likely that L. polyedrum was responsible for the YTX contamination in the southern California samples. Future research needs to conclusively determine the biological origin(s) of YTX contamination in central California and Washington coastal waters.  相似文献   

5.
6.
Nutritional insufficiency and toxicity are deleterious effects of phytoplankton on grazers. We hypothesize that toxic food is likely to have stronger evolutionary selective effects on grazers than nutritionally insufficient food. We explore this hypothesis in comparative studies of egg production and egg hatching of the copepod Acartia hudsonica challenged with both a toxic and a nutritionally insufficient alga. Experiments lasting 6 days, in which mixtures of different proportions of the suspect and a control alga were offered as food to female copepods, showed that the dinoflagellate Alexandrium fundyense, which bears paralytic shellfish toxins, was toxic to A. hudsonica. In contrast, the diatom Phaeodactylum tricornutum was nutritionally insufficient to A. hudsonica. In another set of experiments, the effects of A. fundyense and P. tricornutum, respectively, as sole foods on egg production and egg hatching success of two geographically separated populations (Maine and Connecticut) of the copepod A. hudsonica were examined in common-environment experiments, after being raised under identical conditions for two generations. The location in Maine regularly experiences toxic blooms of Alexandrium sp. whereas the location in Connecticut does not. During a 6-day period, A. fundyense reduced the egg production rates of the Connecticut copepod population, but not of the Maine population. In contrast, the diatom P. tricornutum reduced the egg production of both populations. These results of this study are consistent with the hypothesis of local adaptation to toxic food, but not to nutritionally insufficient food.  相似文献   

7.
Dinophysis acuminata and D. norvegica were observed in plankton net samples during the summer of 2002 from the Kandalaksha Gulf in the White Sea (North European Russia). Prorocentrum lima was found as an epiphyte on subtidal macroalgae in August, but not observed in plankton net samples. Protein phosphatase 2A (PP2A) inhibition measured 127.8 ng OA-equivalent/g of mussel (Mytilus edulis) hepatopancreas from samples collected a few days after when Dinophysis was recorded at a density of 1550 cells L−1. Liquid chromatography–mass spectrometry confirmed presence of several classes of lipophilic shellfish toxins associated with Dinophysis spp. in the mussels including okadaic acid, dinophysistoxin-1, pectenotoxins and yessotoxins. No azaspiracid was detected. This represents the first identification of phycotoxicity in the White Sea.  相似文献   

8.
Blooms of the dinoflagellate Alexandrium spp. increase in their frequency, toxicity and historical presence with increasing latitude from New Jersey (USA) to the Gaspé peninsula (Canada). Biogeographic variation in these blooms results in differential exposure of geographically separate copepod populations to toxic Alexandrium. We hypothesize that the ability of copepods to feed and reproduce on toxic Alexandrium should be higher in copepods from regions that are frequently exposed to toxic Alexandrium blooms. We tested this hypothesis with factorial common environment experiments in which female adults of the copepod Acartia hudsonica from five separate populations ranging from New Jersey to New Brunswick were fed toxic and non-toxic strains of Alexandrium, and the non-toxic flagellate Tetraselmis sp. Consistent with the hypothesis, when fed toxic Alexandrium we observed significantly higher ingestion and egg production rates in the copepods historically exposed to toxic Alexandrium blooms relative to copepods from regions in which Alexandrium is rare or absent. Such differences among copepod populations were not observed when copepods were fed non-toxic Alexandrium or Tetraselmis sp. These results were also supported by assays in which copepods from populations both historically exposed and naïve to toxic Alexandrium blooms were fed mixtures of toxic Alexandrium and Tetraselmis sp. Two-week long experiments demonstrated that when copepods from populations naïve to toxic Alexandrium were fed a toxic strain of Alexandrium they failed to acclimate, such that their ingestion rates remained low throughout the entire two-week period. The differences observed among populations suggest that local adaptation of populations of A. hudsonica from Massachusetts (USA) to New Brunswick (Canada) has occurred, such that some populations are resistant to toxic Alexandrium.  相似文献   

9.
Substantial mortalities of Atlantic salmon (Salmo salar) at two aquaculture sites in Long Island Sound, off Grand Manan Island, Bay of Fundy (BoF) (New Brunswick, Canada) in September 2003, were associated with a bloom of Alexandrium fundyense (>3 × 105 cells L−1), a dinoflagellate alga that produces toxins which cause paralytic shellfish poisoning (PSP). Cells of A. fundyense collected from surface waters while fish were dying had total paralytic shellfish (PS) toxin concentrations of 70.6 pg STX equiv. (saxitoxin equivalents) cell−1 and PS toxin profiles rich in carbamate toxins (78.2%). The zooplankton sampled contained PS toxins (63.1 pg STX equiv. g−1 wet wt) and the toxin profile matched that of A. fundyense cells.Mean PS toxin levels were low (<4 μg STX equiv. 100 g−1 wet wt) in stomach, gill and muscle tissues of moribund salmon, suggesting that PS toxins are very lethal to salmon.The PS toxin concentrations in blue mussels (Mytilus edulis) growing on the salmon cages (37; 526 μg STX equiv. 100 g−1 wet wt) were the highest recorded to date from this region. Their PS toxin profiles showed enhanced carbamate contents (85.5%) compared with that found in A. fundyense. Blue mussels collected from an adjacent Canadian Food Inspection Agency (CFIA) monitoring site in Grand Manan had PS toxin concentrations of 4214 and 150 μg STX equiv. 100 g−1 wet wt in late September and December, respectively, well above the regulatory limit (RL), and horse mussels (Modiolus modiolus) collected in late September had PS toxin concentrations of 2357 μg STX equiv. 100 g−1 wet wt. Detoxification under laboratory conditions suggested that blue mussels may require up to 19 weeks for elimination below RL when they accumulate these high concentrations of PS toxins. This depuration period may be shorter in the field.PS toxin levels above RL were detected in hepatopancreatic tissues of lobster (Homarus americanus), with lower levels (<16 μg STX equiv. 100 g−1 wet wt) in tail muscle and gills.These results illustrate the movement of PS toxins through the marine food chain following an A. fundyense bloom in the BoF, and support earlier studies suggesting that kills from the region of zooplanktivorous fish, such as herring (Clupea harengus harengus), can be attributed to blooms of A. fundyense. This is the first reported incident of PSP associated with mortalities of caged Atlantic salmon in the BoF. Analyses of muscle tissues and viscera from the affected salmon indicated that any portion would not be a health hazard if consumed.  相似文献   

10.
The occurrence of Alexandrium taylori and Alexandrium peruvianum is reported for the first time in Malaysia waters. The Malaysian A. taylori isolates were pyriform in shape with a transdiameter range of 36–40 μm and a cell length range of 33–37 μm. The first apical plate (1′) was pentagonal with two distinctive anterior margins. No direct connection between 1′ and the apical pore complex was observed. The posterior sulcal plate (S.p.) was large, elongated and oblique to the right with anterior projections. The ventral pore (vp) was relatively large and situated at a confluence point of 1′, the second apical (2′) and the fourth apical (4′) plates. Cells of A. peruvianum were slightly anteriorly and posteriorly compressed. S.p. had an irregular pentagonal shape, with the anterior margin divided into 2 portions. 1′ was boomerang-shaped with a large and truncated ventral pore in the middle right margin. The anterior right margin of 1′ was straight. The sixth precingular plate (6″) was wider than long. The anterior sulcal plate (S.a.) was triangular and lacked a left portion extension. In laboratory cultures, both A. taylori and A. peruvianum produced paralytic shellfish toxins, with GTX4 and GTX6 as the predominant toxin, respectively. This is the first report of PSP toxins production for both species as well as the occurrences in Malaysia waters.  相似文献   

11.
A series of experiments was conducted to examine effects of four strains of the estuarine dinoflagellate, Pfiesteria shumwayae, on the behavior and survival of larval and adult shellfish (bay scallop, Argopecten irradians; eastern oyster, Crassostrea virginica; northern quahogs, Mercenaria mercenaria; green mussels, Perna viridis [adults only]). In separate trials with larvae of A. irradians, C. virginica, and M. mercenaria, an aggressive predatory response of three strains of algal- and fish-fed P. shumwayae was observed (exception, algal-fed strain 1024C). Larval mortality resulted primarily from damage inflicted by physical attack of the flagellated cells, and secondarily from Pfiesteria toxin, as demonstrated in larval C. virginica exposed to P. shumwayae with versus without direct physical contact. Survival of adult shellfish and grazing activity depended upon the species and the cell density, strain, and nutritional history of P. shumwayae. No mortality of the four shellfish species was noted after 24 h of exposure to algal- or fish-fed P. shumwayae (strains 1024C, 1048C, and CCMP2089) in separate trials at ≤5 × 103 cells ml−1, whereas higher densities of fish-fed, but not algal-fed, populations (>7–8 × 103 cells ml−1) induced low (≤15%) but significant mortality. Adults of all four shellfish species sustained >90% mortality when exposed to fish-fed strain 270A1 (8 × 103 cells ml−1). In contrast, adult M. mercenaria and P. viridis exposed to a similar density of fish-fed strain 2172C sustained <15% mortality, and there was no mortality of A. irradians and C. virginica exposed to that strain. In mouse bioassays with tissue homogenates (adductor muscle, mantle, and whole animals) of A. irradians and M. mercenaria that had been exposed to P. shumwayae (three strains, separate trials), mice experienced several minutes of disorientation followed by recovery. Mice injected with tissue extracts from control animals fed cryptomonads showed no response. Grazing rates of adult shellfish on P. shumwayae (mean cell length ±1 standard error [S.E.], 9 ± 1 μm) generally were significantly lower when fed fish-fed (toxic) populations than when fed populations that previously had been maintained on algal prey, and grazing rates were highest with the nontoxic cryptomonad, Storeatula major (cell length 7 ± 1 μm). Abundant cysts of P. shumwayae were found in fecal strands of all shellfish species tested, and ≤45% of the feces produced viable flagellated cells when placed into favorable culture conditions. These findings were supported by a field study wherein fecal strands collected from field-collected adult shellfish (C. virginica, M. mercenaria, and ribbed mussels, Geukensia demissa) were confirmed to contain cysts of P. shumwayae, and these cysts produced fish-killing flagellated populations in standardized fish bioassays. Thus, predatory feeding by flagellated cells of P. shumwayae can adversely affect survival of larval bivalve molluscs, and grazing can be depressed when adult shellfish are fed P. shumwayae. The data suggest that P. shumwayae could affect recruitment of larval shellfish in estuaries and aquaculture facilities; shellfish can be adversely affected via reduced filtration rates; and adult shellfish may be vectors of toxic P. shumwayae when shellfish are transported from one geographic location to another.  相似文献   

12.
The seasonal variation in diarrhetic shellfish poisoning (DSP)-type toxins was followed in the epibiotic community and in shellfish between 41° and 44°N in coastal waters of the northwest Atlantic during a 2-year period. Low levels of okadaic-acid equivalents were detected at all stations in the <90 μm fraction of the collected epibiota as measured by the protein phosphatase inhibition assay, but only 3.5% of the samples had values greater than 100 ng (g dry weight of epibiota)−1. No seasonal pattern could be detected due to differences in intensity, duration and timing of toxin content in the epibiota between the 2 years and between stations. Nevertheless, the concentration of DSP-type toxins in the epibiota correlated weakly but significantly with the abundance of Prorocentrum lima, when data from all stations were considered. A very limited toxin uptake by shellfish was measured at only one station in October and November 2001 and in June and July 2002 at times of maximum cell concentration of P. lima in the epibiota. Toxin levels in shellfish remained well below regulatory limits that would have required quarantine or bans on harvesting. Results from our 2-year survey suggest that, at this time, the threat of DSP events appears minimal. However, the presence of a known toxin producer and its demonstrated ingestion by shellfish would argue for further studies to better understand conditions leading to DSP outbreaks generated by an epiphytic dinoflagellate.  相似文献   

13.
The marine dinoflagellate Protoceratium reticulatum has been recently identified as a source for the disulfated polyether toxin, yessotoxin (YTX), and may pose a risk to human health, aquaculture development and coastal environments. The requirements of P. reticulatum for selenium, iron and cobalt were assessed in culture. P. reticulatum was grown in nutrient enriched seawater (1/10 GP medium) without selenium or with 0.003 and 0.0003 μM selenium added; without iron or with 0.076 and 0.0076 μM iron added; and without cobalt or with 0.008 μM cobalt added. Test flasks were monitored for growth rate, cell yield and YTX production. P. reticulatum was found to exhibit a strong requirement for both selenium and iron. Growth rate and cell yield in treatments without added selenium were significantly (P<0.05) reduced to 60.2% (μ=0.15 day−1) and 20.2% (4942 cell ml−1), respectively, of those with selenium added (μ=0.23 day−1 and 24, 387 cell ml−1). YTX production was significantly increased by addition of selenium in two of three transfers tested. Cells of P. reticulatum subjected to medium without selenium added showed morphological changes observable at the light microscope level which included enlarged cell size. The diameter of cells in medium without selenium added were significantly (P<0.05) enlarged to 36.7±0.90 μm compared to cells in the medium with selenium added, 27.5±1.25 μm. Growth rate and cell yield in treatments without added iron were also significantly reduced to 70.1% (μ=0.16 day−1) and 34.2% (8003 cells ml−1), respectively, of those with iron added (μ=0.23 day−1 and 23,416 cells ml−1). No significant effect on YTX production was measured. In contrast to selenium and iron, no limitation of growth or cell yield or differences in YTX production were observed for flasks without cobalt as compared to those with cobalt added. The possibility that harmful algal events of P. reticulatum may be influenced by selenium or iron in neritic waters is discussed.  相似文献   

14.
Dissected tissues of two clam species, the Pacific littleneck, Protothaca staminea, and soft-shell, Mya arenaria, were evaluated for in vitro conversion of paralytic shellfish poisoning (PSP) toxins. Tissue homogenates were incubated with purified PSP toxins to determine the time-course of toxin conversion. The effects of boiling and addition of a natural reductant (glutathione) on toxin conversion were also assessed. For P. staminea, the digestive gland showed the greatest capacity for biotransformation, followed by gill, but mantle, adductor muscle, and siphon tissues exhibited very low conversion. In this species, the production of decarbamoyl derivatives was much greater from low potency N-sulfocarbamoyl toxins than from carbamate analogues. Decarbamolyation exhibited apparent specificity for α-epimers of all toxin substrates and this reaction was inhibited by boiling. Glutathione-mediated desulfation was tissue specific and had apparent specificity for β-epimers. These observations on P. staminea suggest that the above reactions are enzyme-mediated. In contrast, there was little toxin conversion in M. arenaria homogenates, but even this low activity was heat-labile and thus likely enzyme-mediated.  相似文献   

15.
Cefas has been responsible for the delivery of official control biotoxin testing of bivalve molluscs from Great Britain for just over a decade. Liquid chromatography tandem mass spectrometric (LC–MS/MS) methodology has been used for the quantitation of lipophilic toxins (LTs) since 2011. The temporal and spatial distribution of okadaic acid group toxins and profiles in bivalves between 2011 and 2016 have been recently reported. Here we present data on the two other groups of regulated lipophilic toxins, azaspiracids (AZAs) and yessotoxins (YTXs), over the same period. The latter group has also been investigated for a potential link with Protoceratium reticulatum and Lingulodinium polyedra, both previously recognised as YTXs producing phytoplankton.On average, AZAs were quantified in 3.2% of all tested samples but notable inter-annual variation in abundance was observed. The majority of all AZA contaminated samples were found between July 2011 and August 2013 in Scotland, while only two, three-month long, AZA events were observed in 2015 and 2016 in the south-west of England. Maximum concentrations were generally reached in late summer or early autumn. Reasons for AZAs persistence during the 2011/2012 and 2012/2013 winters are discussed. Only one toxin profile was identified, represented by both AZA1 and AZA2 toxins at an approximate ratio of 2 : 1, suggesting a single microalgal species was the source of AZAs in British bivalves. Although AZA1 was always the most dominant toxin, its proportion varied between mussels, Pacific oysters and surf clams.The YTXs were the least represented group among regulated LTs. YTXs were found almost exclusively on the south-west coast of Scotland, with the exception of 2013, when the majority of contaminated samples originated from the Shetland Islands. The highest levels were recorded in the summer months and followed a spike in Protoceratium reticulatum cell densities. YTX was the most dominant toxin in shellfish, further strengthening the link to P. reticulatum as the YTX source. Neither homo-YTX, nor 45−OH homo-YTX were detected throughout the monitored period. 45−OH YTX, thought to be a shellfish metabolite associated with YTX elimination, contributed on average 26% in mussels. Although the correlation between 45−OH YTX abundance and the speed of YTX depuration could not be confirmed, we noted the half-life of YTX was more than two-times longer in queen scallops, which contained 100% YTX, than in mussels. No other bivalve species were affected by YTXs.This is the first detailed evaluation of AZAs and YTXs occurrences and their profiles in shellfish from Great Britain over a period of multiple years.  相似文献   

16.
Bacteria associated with toxic dinoflagellates have been implicated in the production of paralytic shellfish poisoning (PSP) toxins, but it has not been substantiated that bacteria are truly capable of autonomous PSP toxin synthesis or what role bacteria may play in shellfish toxification. In this study, different putatively PSP toxin producing bacteria originally isolated from toxic Alexandrium spp. were exposed to the blue mussel Mytilus edulis. To document that these bacteria accumulated in the digestive tract of the mussels, hybridization techniques that use rRNA targeted oligonuceotides for in situ identification of these bacteria were applied. The mussel hepatopancreas was dissected and paraffin and frozen sections were made. The dissected glands were hybridized with digoxigenin-labelled 16S rRNA oligonucleotide probes. Results demonstrate that mussels will readily uptake and accumulate these bacteria in the hepatopancreas. However, the mussels were not rendered toxic by the ingestion of the bacteria as determined by HPLC with UV detection for PSP toxins and determination of sodium channel blocking activity using the mouse neuroblastoma assay. Thus, although the role that bacteria play in mussel toxification remains unclear, methods are now available which will aid in further investigation of this relatively unexplored area.  相似文献   

17.
The toxins associated with paralytic shellfish poisoning (PSP) are potent neurotoxins produced by natural populations of the marine dinoflagellate Alexandrium tamarense. In early June 2000, a massive bloom (>7×105 cells l−1) of this dinoflagellate coincided with an unusually high mortality of farmed salmon in sea cages in southeastern Nova Scotia. Conditions in the water column in the harbour were characterised by the establishment of a sharp pycnocline after salinity stratification due to abundant freshwater runoff. In situ fluorescence revealed a high sub-surface (2–4 m depth) chlorophyll peak related to the plankton bloom. The intense bloom was virtually monospecific and toxicity was clearly related to the concentration of Alexandrium cells in plankton size fractions. Cultured clonal isolates of A. tamarense from the aquaculture sites were very toxic on a per cell basis and yielded a diversity of PSP toxin profiles, some of which were similar to those from plankton concentrates from the natural bloom population. The toxin profile of plankton concentrates from the 21–56 μm size fraction was complex, dominated by the N-sulfocarbamoyl derivative C2, with levels of other PSP toxins GTX4, NEO, GTX5 (=B1), GTX3, GTX1, STX, C1, and GTX2, in decreasing order of relative abundance. Although no PSP toxin was found systemically in the fish tissues (liver, digestive tract) from this salmon kill event, the detection of Alexandrium cells and low levels of PSP toxins in salmon gills provide evidence that the enhanced mortalities were caused by direct exposure to toxic Alexandrium cells and/or to soluble toxins released during the bloom.  相似文献   

18.
The recognition of an apparent association between seasonal oyster spat mortalities (up to 40%) and high Prorocentrum rhathymum density in the Little Swanport Estuary, Tasmania, prompted further experimental investigation into the toxicity by this dinoflagellate. Standard brine shrimp, haemolysis assays and intraperitoneal mouse bioassays revealed fast acting toxins in methanol but not aqueous extracts of P. rhathymum, with mice dying in less than 20 min. Oyster bioassays involved feeding spat (4 mm shell width) for 21 consecutive days on a diet of cultured P. rhathymum at simulated bloom densities (104 cells ml−1). No oyster mortality was observed, however, histopathological signs of thin, dilated gut tubules and sloughing of gut cells resembled those seen in affected field samples. In contrast to field samples, gill pathology was also observed in experimental exposure oysters.  相似文献   

19.
In 1987, there was an episode of shellfish poisoning in Canada with human fatalities caused by the diatom Pseudo-nitzschia multiseries, which produced the toxin domoic acid. In order to examine whether domoic acid in this diatom serves as a grazing deterrent for copepods, we compared feeding rates, egg production rates, egg hatching success and mortality of the calanoid copepods Acartia tonsa and Temora longicornis feeding on unialgal diets of the toxic diatom P. multiseries and the similarly-sized non-toxic diatom Pseudo-nitzschia pungens. Copepods were collected in summers of 1994, 1995 and 1996 from Shediac Bay, New Brunswick, Canada, near Prince Edward Island, the site of the 1987 episode of domoic acid shellfish poisoning. Rates of ingestion of the toxic versus the non-toxic diatom by A. tonsa and T. longicornis were similar, with only one significantly different pair of values obtained in 1994, for which A. tonsa had a higher mean rate of ingestion of the toxic than the non-toxic diatom. Thus, domoic acid did not appear to retard grazing. Analyses of copepods with high performance liquid chromatography (HPLC) revealed that copepods accumulated domoic acid when feeding on P. multiseries. Egg production rates of copepods when feeding on P. multiseries and P. pungens were very low, ranging from 0 to 2.79 eggs female–1 d–1. There did not appear to be differential egg production or egg hatching success on diets of the toxic and non-toxic diatoms. Mortality of females on the toxic diet was low, ranging from 0 to 20%, with a mean of 13%, and there was no apparent difference between mortality of copepods feeding on toxic versus non-toxic diatoms. Egg hatching success on both diets, although based on few eggs, ranged between 22% and 76%, with a mean percentage hatching of 45%. Diets of the non-toxic diatom plus natural seawater assemblages supplemented with dissolved domoic acid, revealed similar rates and percentages when compared to previous experiments. In summary, none of the variables measured indicated adverse effects on copepods feeding on the toxic compared to the non-toxic diatom.  相似文献   

20.
Paralytic shellfish poisoning (PSP) is a syndrome caused by the consumption of shellfish contaminated with neurotoxins produced by organisms of the marine dinoflagellate genus Alexandrium. A. minutum is the most widespread species responsible for PSP in the Western Mediterranean basin. The standard monitoring of shellfish farms for the presence of harmful algae and related toxins usually requires the microscopic examination of phytoplankton populations, bioassays and toxin determination by HPLC. These procedures are time-consuming and require remarkable experience, thus limiting the number of specimens that can be analyzed by a single laboratory unit. Molecular biology techniques may be helpful in the detection of target microorganisms in field samples. In this study, we developed a qualitative PCR assay for the rapid detection of all potentially toxic species belonging to the Alexandrium genus and specifically A. minutum, in contaminated mussels. Alexandrium genus-specific primers were designed to target the 5.8S rDNA region, while an A. minutum species-specific primer was designed to bind in the ITS1 region. The assay was validated using several fixed seawater samples from the Mediterranean basin, which were analyzed using PCR along with standard microscopy procedures. The assay provided a rapid method for monitoring the presence of Alexandrium spp. in mussel tissues, as well as in seawater samples. The results showed that PCR is a valid, rapid alternative procedure for the detection of target phytoplankton species either in seawater or directly in mussels, where microalgae can accumulate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号