首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The glutathione S-transferases are dimeric enzymes whose subunits can be defined by their mobility during sodium dodecyl sulphate/polyacrylamide-gel electrophoresis as Yf (Mr 24,500), Yk (Mr 25,000), Ya (Mr 25,500), Yn (Mr 26,500), Yb1 (Mr 27,000), Yb2 (Mr 27,000) and Yc (Mr 28,500) [Hayes (1986) Biochem. J. 233, 789-798]. Antisera were raised against each of these subunits and their specificities assessed by immuno-blotting. The transferases in extrahepatic tissues were purified by using, sequentially, S-hexylglutathione and glutathione affinity chromatography. Immune-blotting was employed to identify individual transferase polypeptides in the enzyme pools from various organs. The immuno-blots showed marked tissue-specific expression of transferase subunits. In contrast with other subunits, the Yk subunit showed poor affinity for S-hexylglutathione-Sepharose 6B in all tissues examined, and subsequent use of glutathione and glutathione affinity chromatography. Immuno-blotting was employed to identify a new cytosolic polypeptide, or polypeptides, immunochemically related to the Yk subunit but with an electrophoretic mobility similar to that of the Yc subunit; high concentrations of the new polypeptide(s) are present in colon, an organ that lacks Yc.  相似文献   

3.
H C Lai  G Grove    C P Tu 《Nucleic acids research》1986,14(15):6101-6114
We have isolated a Yb-subunit cDNA clone from a GSH S-transferase (GST) cDNA library made from rat liver polysomal poly(A) RNAs. Sequence analysis of one of these cDNA, pGTR200, revealed an open reading frame of 218 amino acids of Mr = 25,915. The deduced sequence is in agreement with the 19 NH2-terminal residues for GST-A. The sequence of pGTR200 differs from another Yb cDNA, pGTA/C44 by four nucleotides and two amino acids in the coding region, thus revealing sequence microheterogeneity. The cDNA insert in pGTR200 also contains 36 nucleotides in the 5' noncoding region and a complete 3' noncoding region. The Yb subunit cDNA shares very limited homology with those of the Ya or Yc cDNAs, but has relatively higher sequence homology to the placental subunit Yp clone pGP5. The mRNA of pGTR200 is not expressed abundantly in rat hearts and seminal vesicles. Therefore, the GST subunit sequence of pGTR200 probably represents a basic Yb subunit. Genomic DNA hybridization patterns showed a complexity consistent with having a multigene family for Yb subunits. Comparison of the amino acid sequences of the Ya, Yb, Yc, and Yp subunits revealed significant conservation of amino acids (approximately 29%) throughout the coding sequences. These results indicate that the rat GSTs are products of at least four different genes that may constitute a supergene family.  相似文献   

4.
GSH S-transferases are dimeric enzymes. The subunits in the rat are resolved into six types, designated Yf, Yk, Ya, Yn, Yb and Yc, by discontinuous SDS/polyacrylamide-gel electrophoresis [Hayes (1986) Biochem. J. 233, 789-798]. The relative electrophoretic mobility of the Ya and Yk subunits is dependent on the amount of cross-linker (NN'-methylenebisacrylamide) in the resolving gel. At low degrees of cross-linking, CBis 0.6% (w/w), the Yk and Ya subunits possess a faster anodal mobility than do the Yf, Yn, Yb and Yc subunits (i.e. order of mobility Yk greater than Ya greater than Yf greater than Yn greater than Yb greater than Yc), whereas at higher degrees of cross-linking, CBis 5.0% (w/w), Yf subunits possess the fastest mobility (i.e. order of mobility Yf greater than Yk greater than or equal to Yn greater than Yb greater than or equal to Ya greater than Yc). Resolving gels that contain low concentrations of cross-linker [CBis 0.6% (w/w)] allow the resolution of a hitherto unrecognized polypeptide that is isolated by S-hexyl-GSH-Sepharose affinity chromatography. This new polypeptide, which we have designated Yb, is normally obscured by the main Yb band in resolving gels that comprise concentrations of cross-linker of at least CBis 1.6% (w/w). The Ya- and Yb-type subunits in guinea pig, mouse, hamster and man were identified by immuno-blotting and their apparent Mr values in different electrophoresis systems were determined. The Ya subunits in all species studied possess a variable cross-linker-dependent mobility during electrophoresis. Since the transferase subunits are currently classified according to their mobilities during SDS/polyacrylamide-gel electrophoresis, it is apparent that the variable electrophoretic behaviour of the Ya and Yk subunits may lead to the mis-identification of enzymes.  相似文献   

5.
A novel cytosolic Alpha class glutathione S-transferase (GST) that is not normally expressed in mouse liver was found to be markedly induced (at least 20-fold) by the anti-carcinogenic compound butylated hydroxyanisole. This enzyme (designated GST Ya1 Ya1) did not bind to either the S-hexylglutathione-Sepharose or the glutathione-Sepharose affinity matrices, and purification was achieved by using bromosulphophthalein-glutathione-Sepharose. The purified isoenzyme, which comprises subunits of Mr 25,600, was characterized, and its catalytic, electrophoretic, immunochemical and structural properties are documented. GST Ya1 Ya1 was shown to be distinct from the Alpha class GST that is expressed in normal mouse liver and is composed of 25,800-Mr subunits; the Alpha class isoenzyme that is constitutively expressed in the liver is now designated GST Ya3 Ya3. Hepatic concentrations of GST Ya3 Ya3 were not significantly affected when mice were treated with butylated hydroxyanisole. Both Pi class GST (subunit Mr 24,800) and Mu class GST (subunit Mr 26,400) from female mouse liver were induced by dietary butylated hydroxyanisole. By contrast, hepatic concentrations of microsomal GST (subunit Mr 17,300) were unaffected.  相似文献   

6.
7.
With the use of cDNA probes reverse transcribed from purified glutathione S-transferase mRNA templates, four cDNA clones complementary to transferase mRNAs have been identified and characterized. Two clones, pGTB38 and pGTB34, have cDNA inserts of approximately 950 and 900 base pairs, respectively, and hybridize to a mRNA(s) whose size is approximately 980 nucleotides. In hybrid-select translation experiments, pGTB38 and pGTB34 select mRNAs specific for the Ya and Yc subunits of rat liver glutathione S-transferases. Clone pGTB33, which harbors a truncated cDNA insert, hybrid-selects only the Ya mRNA. All of the clones, pGTB38, pGTB34, and pGTB33, hybrid-select another mRNA which is specific for a polypeptide with an electrophoretic mobility slightly greater than the Ya subunit. The entire nucleotide sequence of the full length clone, pGTB38, has been determined and the complete amino acid sequence of the corresponding polypeptide has been deduced. The mRNA codes for a protein comprising 222 amino acids with Mr = 25,547. We have also identified a cDNA clone complementary to a Yb mRNA of the rat liver glutathione S-transferases. This clone, pGTA/C36, hybrid-selects only Yb mRNA(s) and hybridizes to a mRNA(s) whose size is approximately 1200 nucleotides. Although the Ya, Yb, and Yc mRNAs are elevated coordinately by phenobarbital and 3-methylcholanthrene, the Ya-Yc mRNAs are induced to a much greater extent compared to the Yb mRNA(s). These data suggest that the mRNAs for each transferase isozyme are regulated independently.  相似文献   

8.
The 13 forms of human liver glutathione S-transferases (GST) (Vander Jagt, D. L., Hunsaker, L. A., Garcia, K. B., and Royer, R. E. (1985) J. Biol. Chem. 260, 11603-11610) are composed of subunits in two electrophoretic mobility groups: Mr = 26,000 (Ha) and Mr = 27,500 (Hb). Preparations purified from the S-hexyl GSH-linked Sepharose 4B affinity column revealed three additional peptides at Mr = 30,800, Mr = 31,200, and Mr = 32,200. Immunoprecipitation of human liver poly(A) RNAs in vitro translation products revealed three classes of GST subunits and related peptides at Mr = 26,000, Mr = 27,500, and Mr = 31,000. The Mr = 26,000 species (Ha) can be precipitated with antisera against a variety of rat liver GSTs containing Ya, Yb, and Yc subunits, whereas the Mr = 27,500 species (Hb) can be immunoprecipitated most efficiently by antiserum against the anionic isozymes as well as a second Yb-containing isozyme (peak V) from the rat liver. The Mr = 31,000 band can be immunoprecipitated by antisera preparations against sheep liver, rat liver, and rat testis isozymes. Human liver GSTs do not have any subunits of the rat liver Yc mobility. Antiserum against the human liver GSTs did not cross-react with the Yc subunits of rat livers or brains in immunoblotting experiments. The human liver GST cDNA clone, pGTH1, selected human liver poly(A) RNAs for the Ha subunit(s) in the hybrid-selected in vitro translation experiments. Southern blot hybridization results revealed cross-hybridization of pGTH1 with the Ya, Yb, and Yc subunit cDNA clones of rat liver GSTs. This sequence homology was substantiated further in that immobilized pGTH1 DNA selected rat liver poly(A) RNAs for the Ya, Yb, and Yc subunits with different efficiency as assayed by in vitro translation and immunoprecipitation. Therefore, we have demonstrated convincingly that sequence homology as well as immunological cross-reactivity exist between GST subunits from several rat tissues and the human liver. Also, the multiple forms of human liver GSTs are most likely encoded by a minimum of three different classes of mRNAs. These results suggest a genetic basis for the subunit heterogeneity of human liver GSTs.  相似文献   

9.
A novel hepatic enzyme, glutathione S-transferase K, is described that, unlike previously characterized transferases, possesses little affinity for S-hexylglutathione-Sepharose 6B but can be isolated because it binds to a glutathione affinity matrix. A purification scheme for this new enzyme was devised, with the use of DEAE-cellulose, S-hexylglutathione-Sepharose 6B, glutathione-Sepharose 6B and hydroxyapatite chromatography. The final hydroxyapatite step results in the elution of three chromatographically interconvertible forms, K1, K2 and K3. The purified protein has an isoelectric point of 6.1 and comprises subunits that are designated Yk (Mr 25,000); during sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, it migrates marginally faster than the Ya subunit but slower than the pulmonary Yf monomer (Mr 24,500). Transferase K displays catalytic, immunochemical and physical properties that are distinct from those of other liver transferases. Tryptic peptide maps suggest that transferase K is a homodimer, or comprises closely homologous subunits. The tryptic fingerprints also demonstrate that, although transferase K is structurally separate from previously described hepatic forms, a limited sequence homology exists between the Yk, Ya and Yc polypeptides. These structural data are in accord with the immunochemical results presented in the accompanying paper [Hayes & Mantle (1986) Biochem. J. 233, 779-788].  相似文献   

10.
The development of the subunits of glutathione S-transferase in rat liver shows that there is a co-ordinated development of the Ya, Yb1, Yb2 and Yc subunits but that the Yf and Yk subunits show unique patterns of development. The Yk subunit is the only form that is expressed at relatively high levels during the foetal period as well as during the adult period. In contrast with all other forms, the Yf subunit in the rat declines rapidly during the last few days before parturition and is virtually undetectable in hepatocytes of adult animals. The expression of the Yf subunit in foetal liver presents a 'patchy' appearance that is similar to that induced by the administration of lead acetate and may reflect cell-cycle-associated regulation of expression.  相似文献   

11.
Using polysomal immunoselected rat liver glutathione S-transferase mRNAs, we have constructed cDNA clones using DNA polymerase I, RNase H, and Escherichia coli ligase (NAD+)-mediated second strand cDNA synthesis as described by Gubler and Hoffman (Gubler, U., and Hoffman, B. S. (1983) Gene 25, 263-269). Recombinant clone, pGTB42, contained a cDNA insert of 900 base pairs whose 3' end showed specificity for the Yc mRNA in hybrid-select translation experiments. The nucleotide sequence of pGTB42 has been determined, and the complete amino acid sequence of a Yc subunit has been deduced. The cDNA clone contains an open reading frame of 663 nucleotides encoding a polypeptide comprising 221 amino acids with a molecular weight of 25,322. The NH2-terminal sequence deduced from pGTB42 is in agreement with the first 39 amino acids determined for a Ya-Yc heterodimer by conventional protein-sequencing techniques. A comparison of the nucleotide sequence of pGTB42 with the sequence of a Ya clone, pGTB38, described previously by our laboratory (Pickett, C. B., Telakowski-Hopkins, C. A., Ding, G. J.-F., Argenbright, L., and Lu, A.Y.H. (1984) J. Biol. Chem. 259, 5182-5188) reveals a sequence homology of 66% over the same regions of both clones; however, the 5'- and 3'-untranslated regions of the Ya and Yc mRNAs are totally divergent in their sequences. The overall amino acid sequence homology between the Ya and Yc subunits is 68%, however, the NH2-terminal domain is more highly conserved than the middle or carboxyl-terminal domains. Our data suggest that the Ya and Yc subunits of the rat liver glutathione S-transferases are products of two different mRNAs which are derived from two related yet different genes.  相似文献   

12.
Expression of glutathione S-transferases in rat brains   总被引:3,自引:0,他引:3  
The tissue-specific expression of glutathione S-transferases (GSTs) in rat brains has been studied by protein purification, in vitro translation of brain poly(A) RNAs, and RNA blot hybridization with cDNA clones of the Ya, Yb, and Yc subunit of rat liver GSTs. Four classes of GST subunits are expressed in rat brains at Mr 28,000 (Yc), Mr 27,000 (Yb), Mr 26,300, and Mr 25,000. The Mr 26,3000 species, or Y beta, has an electrophoretic mobility between that of Ya and Yb, similar to the liver Yn subunit(s) reported by Hayes (Hayes, J. D. (1984) Biochem. J. 224, 839-852). RNA blot hybridization of brain poly(A) RNAs with a liver Yb cDNA probe revealed two RNA species of approximately 1300 and approximately 1100 nucleotides. The band at approximately 1300 nucleotides was absent in liver poly(A) RNAs. The Mr 25,000 species, or Y delta, can be immunoprecipitated by antisera against rat heart and rat testis GSTs, but not by antiserum against rat liver GSTs. Therefore, the Y delta subunit may be related to the "Mr 22,000" subunit reported by Tu et al. (Tu, C.-P.D., Weiss, M.J., Li, N., and Reddy, C. C. (1983) J. Biol. Chem. 258, 4659-4662). The abundant liver GST subunits, Ya, are not expressed in rat brains as demonstrated by electrophoresis of purified brain GSTs and a lack of isomerase activity toward the Ya-specific substrate, delta 5-androstene-3,17-dione. This is apparently because of the absence of Ya mRNA expression prior to RNA processing. The data on the preferential expression of Yc subunits in rat brains, together with the differential phenobarbital inducibility of the Ya subunit(s) in rat liver reported by Pickett et al. (Pickett, C. B., Donohue, A. M., Lu, A. Y. H., and Hales, B. F. (1982) Arch. Biochem. Biophys. 215, 539-543), suggest that the Ya and Yc genes for rat GSTs are two functionally distinct gene families even though they share 68% DNA sequence homology. The expression of multiple GSTs in rat brains suggests that GSTs may be involved in physiological processes other than xenobiotics metabolism.  相似文献   

13.
Multiple human liver GSH S-transferases (GST) with overlapping substrate specificities may be essential to their multiple roles in xenobiotics metabolism, drug biotransformation, and protection against peroxidative damage. Human liver GSTs are composed of at least two classes of subunits, Ha (Mr = 26,000) and Hb (Mr = 27,500). Immunological cross-reactivity and nucleic acid hybridization studies revealed a close relationship between the human Ha subunit and rat Ya, Yc subunits and their cDNAs. We have determined the nucleotide sequence of the Ha subunit 1 cDNA, pGTH1. The alignments of its coding sequence with the rat Ya and Yc cDNAs indicate that they are approximately 80% identical base-for-base without any deletion or insertion. Regions of sequence homology (greater than 50%) have also been found between pGTH1 and a corn GST cDNA and rat GST cDNAs of the Yb and Yp subunits. Among the 62 highly conserved amino acid residues of the rat GST supergene family, 56 of them are preserved in the Ha subunit 1 coding sequences. Comparison of amino-acid replacement mutations in these coding sequences revealed that the percentage divergence between the rat Ya and Yc genes is more than that between the Ha and Ya or Ha and Yc genes.  相似文献   

14.
A full length cDNA clone, pGTB38 (C. B. Pickett et al. (1984) J. Biol. Chem. 259, 5182-5188), complementary to a rat liver glutathione S-transferase Ya mRNA has been expressed in Escherichia coli. The cDNA insert was isolated from pGTB38 using MaeI endonuclease digestion and was inserted into the expression vector pKK2.7 under the control of the tac promoter. Upon transformation of the expression vector into E. coli, two protein bands with molecular weights lower than the full-length Ya subunit were detected by Western blot analysis in the cell lysate of E. coli. These lower-molecular-weight proteins most likely result from incorrect initiation of translation at internal AUG codons instead of the first AUG codon of the mRNA. In order to eliminate the problem of incorrect initiation, the glutathione S-transferase Ya cDNA was isolated from the expression vector and digested with Bal31 to remove extra nucleotides from the 5' noncoding region. The protein expressed by this expression plasmid, pKK-GTB34, comigrated with the Ya subunit on sodium dodecyl sulfate polyacrylamide gels and was recognized by antibodies against the YaYc heterodimer. The expressed Ya homodimer was purified by S-hexylglutathione affinity and ion-exchange chromatographies. Approximately 50 mg pure protein was obtained from 9 liters of E. coli culture. The expressed Ya homodimer displayed glutathione-conjugating, peroxidase, and isomerase activities, which are identical to those of the native enzyme purified from rat liver cytosol. Protein sequencing indicates that the expressed protein has a serine as the NH2 terminus whereas the NH2 terminus of the glutathione S-transferase Ya homodimer purified from rat liver cytosol is apparently blocked.  相似文献   

15.
We have determined the nucleotide sequence of a cloned cDNA derived from liver poly(A) RNA of pentobarbital-treated rats encoding a glutathione S-transferase subunit. This cDNA clone pGTR261 contains one open reading frame of 222 amino acids, a complete 3' noncoding region, and 63 nucleotides in the 5' noncoding region. The cloned DNA hybridizes to rat poly(A) RNA in a tissue-specific fashion, with strong signals to liver and kidney poly(A) RNA(s) of approximately 1100 and approximately 1400 nucleotides in size but little or no hybridization to poly(A) RNAs from heart, lung, seminal vesicles, spleen, or testis under stringent conditions. Our sequence covers the cDNA sequence of pGST94 which contains a partial coding sequence for a liver glutathione S-transferase subunit of Ya size. Comparison of sequences with our earlier clone pGTR112 suggests that there are at least two mRNA species coding for two different subunits of the Ya (Mr = 25,600) subunit family with very limited amino acid substitutions mainly of conserved polarity. The divergent 3' noncoding sequences should be useful molecular probes in differentiating these two different but otherwise very similar subunits in induction and genomic structure analyses. Our results suggest that tissue-specific expression of the glutathione S-transferase subunits represented by the sequences of pGTR261 and pGTR112 may occur at or prior to the level of RNA processing.  相似文献   

16.
Glutathione S-transferases are a complex family of dimeric proteins that play a dual role in cellular detoxification; they catalyse the first step in the synthesis of mercapturic acids, and they bind potentially harmful non-substrate ligands. Bile acids are quantitatively the major group of ligands encountered by the glutathione S-transferases. The enzymes from rat liver comprise Yk (Mr 25 000), Ya (Mr 25 500), Yn (Mr 26 500), Yb1, Yb2 (both Mr 27 000) and Yc (Mr 28 500) monomers. Although bile acids inhibited the catalytic activity of all transferases studied, the concentration of a particular bile acid required to produce 50% inhibition (I50) varies considerably. A comparison of the I50 values obtained with lithocholate (monohydroxylated), chenodeoxycholate (dihydroxylated) and cholate (trihydroxylated) showed that, in contrast with all other transferase monomers, the Ya subunit possesses a relatively hydrophobic bile-acid-binding site. The I50 values obtained with lithocholate and lithocholate 3-sulphate showed that only the Ya subunit is inhibited more effectively by lithocholate than by its sulphate ester. Other subunits (Yk, Yn, Yb1 and Yb2) were inhibited more by lithocholate 3-sulphate than by lithocholate, indicating the existence of a significant ionic interaction, in the bile-acid-binding domain, between (an) amino acid residue(s) and the steroid ring A. By contrast, increasing the assay pH from 6.0 to 7.5 decreased the inhibitory effect of all bile acids studied, suggesting that there is little significant ionic interaction between transferase subunits and the carboxy group of bile acids. Under alkaline conditions, low concentrations (sub-micellar) of nonsulphated bile acids activated Yb1, Yb2 and Yc subunits but not Yk, Ya and Yn subunits. The diverse effects of the various bile acids studied on transferase activity enables these ligands to be used to help establish the quaternary structure of individual enzymes. Since these inhibitors can discriminate between transferases that appear to be immunochemically identical (e.g. transferases F and L), bile acids can provide information about the subunit composition of forms that cannot otherwise be distinguished.  相似文献   

17.
Six forms of glutathione S-transferase (GST) designated as GST 9.3, GST 7.5, GST 6.6, GST 6.1, GST 5.7 and GST 4.9 have been purified to homogeneity from rat brain. All GST isoenzymes of rat brain are apparent homodimers of one of the three type subunits, Ya, Yb, or Yc. More than 60% of total GST activity of rat brain GST activity is associated with the isoenzymes containing only the Yb type of subunits. In these respects brain GST isoenzymes differ from those of lung and liver. The Ya, Yb, and Yc type subunits of brain GST are immunologically similar to the corresponding subunits of liver and lung GST. The isoelectric points and kinetic properties of the Yb type subunit dimers in brain are strikingly different from those of the Yb type dimers present among liver GST isoenzymes indicating subtle differences between these subunits of brain and liver.  相似文献   

18.
A glutathione (GSH) S-transferase (GST), catalyzing the inactivation of reactive sulfate esters as metabolites of carcinogenic arylmethanols, was isolated from the male Sprague-Dawley rat liver cytosol and purified to homogeneity in 12% yield with a purification factor of 901-fold. The purified GST was a homo-dimeric enzyme protein with subunit Mr 26,000 and pI 7.9 and designated as Yrs-Yrs because of its enzyme activity toward "reactive sulfate esters." GST Yrs-Yrs could neither be retained on the S-hexylglutathione gel column nor showed any activity toward 1,2-dichloro-4-nitrobenzene, 4-nitrobenzyl chloride, and 1,2-epoxy-3-(4'-nitrophenoxy)propane. 1-Chloro-2,4-dinitro-benzene was a very poor substrate for this GST. 1-Menaphthyl sulfate was the best substrate for GST Yrs-Yrs among the examined mutagenic arylmethyl sulfates. The enzyme had higher activities toward ethacrynic acid and cumene hydroperoxide. N-terminal amino acid sequence of subunit Yrs, analyzed up to the 25th amino acid, had no homology with any of the known class alpha, mu, and pi enzymes of the Sprague-Dawley rat. Anti-Yrs-IgG raised against GST Yrs-Yrs showed no cross-reactivity with any of subunits Ya, Yc, Yb1, Yb2, and Yp. Anti-IgGs raised against Ya, Yc, Yb1, Yb2, and Yp also showed no cross-reactivity with GST Yrs-Yrs. The purified enzyme proved to differ evidently from the 12 known cytosolic GSTs in various tissues of the rat in all respects. Immunoblot analysis of various tissue cytosols of the male rat indicated that apparent concentrations of the GST Yrs-Yrs protein were in order of liver greater than testis greater than adrenal greater than kidney greater than lung greater than brain greater than skeletal muscle congruent to heart congruent to small intestine congruent to spleen congruent to skin congruent to 0.  相似文献   

19.
Monoclonal antibodies to ligandin (YaYa) and glutathione (GSH) S-transferase B (YaYc) were produced by hybridomas derived from the fusion of mouse myeloma cells and spleen cells of mice immunized with the YaYa or YaYc proteins, respectively. Enzyme-linked immunosorbent assay was used to screen for antibody-producing clones. Immunoblotting of the subunits of transferase B, ligandin, and another GSH S-transferase containing Yb subunits showed that the monoclonal antibodies produced by two anti-YaYa subclones recognized the Ya subunits of both ligandin and transferase B, but they did not bind Yc or Yb subunits. It was also revealed that antibodies produced by several anti-YaYc subclones recognized the Yc subunit, but not the Ya subunit of the antigen which was used for the immunization of the mice. However, these monoclonal antibodies did bind the Ya subunit of ligandin. These results indicate that the Ya subunits of GSH S-transferase B and of ligandin do share at least one common determinant. However, these two Ya subunits are structurally distinct as evidenced by their differences in binding by monoclonal anti-YaYc antibodies.  相似文献   

20.
(1) The tissue-specific expression of various glutathione-dependent enzymes, including glutathione S-transferase (GST), glutathione peroxidase and glyoxalase I, has been studied in bovine adrenals, brain, heart, kidney, liver, lung and spleen. Of the organs studied, liver was found to possess the greatest GST and glyoxalase I activity, and spleen the greatest glutathione peroxidase activity. The adrenals contained large amounts of these glutathione-dependent enzymes, but significant differences were observed between the cortex and medulla. (2) GST and glyoxalase I activity were isolated by S-hexylglutathione affinity chromatography. Glyoxalase I was found in all the organs examined, but GST exhibited marked tissue-specific expression. (3) The alpha, mu and pi classes of GST (i.e., those that comprise respectively Ya/Yc, Yb/Yn and Yf subunits) were all identified in bovine tissues. However, the Ya and Yc subunits of the alpha class GST were not co-ordinately regulated nor were the Yb and Yn subunits of the mu class GST. (4) Bovine Ya subunits (25.5-25.7 kDa) were detected in the adrenal, liver and kidney, but not in brain, heart, lung or spleen. The Yc subunit (26.4 kDa) was expressed in all those organs which expressed the Ya subunit, but was also found in lung. The mu class Yb (27.0 kDa) and Yn (26.1 kDa) subunits were present in all organs; however, brain, lung and spleen contained significantly more Yn than Yb type subunits. The pi class Yf subunit (24.8 kDa) was detected in large amounts in the adrenals, brain, heart, lung and spleen, but not in kidney or liver. (5) Gradient affinity elution of S-hexylglutathione-Sepharose showed that the bovine proteins that bind to this matrix elute in the order Ya/Yc, Yf, Yb/Yn and glyoxalase I. (6) In conclusion, the present investigation has shown that bovine GST are much more complex than previously supposed; Asaoka (J. Biochem. 95 (1984) 685-696) reported the purification of mu class GST but neither alpha nor pi class GST were isolated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号