首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The full-length cDNAs of two novel T-superfamily conotoxins,Lp5.1 and Lp5.2,were clonedfrom a vermivorous cone snail Conus leopardus using 3'/5'-rapid amplification of cDNA ends.The cDNA ofLp5.1 encodes a precursor of 65 residues,including a 22-residue signal peptide,a 28-residue propeptide anda 15-residue mature peptide.Lp5.1 is processed at the common signal site -X-Arg- immediately before themature peptide sequences.In the case of Lp5.2,the precursor includes a 25-residue signal peptide anda 43-residue sequence comprising the propeptide and mature peptide,which is probably cleaved to yield a29-residue propeptide and a 14-residue mature toxin.Although these two conotoxins share a similar signalsequence and a conserved disulfide pattern with the known T-superfamily,the pro-region and mature peptidesare of low identity,especially Lp5.2 with an identity as low as 10.7% compared with the reference Mr5.1a.The elucidated cDNAs of these two toxins will facilitate a better understanding of the species distribution,the sequence diversity of T-superfamily conotoxins,the special gene structure and the evolution of thesepeptides.  相似文献   

2.
Conopeptides display prominent features of hypervariability and high selectivity of large gene families that mediate interactions between organisms. Remarkable sequence diversity of O-superfamily conotoxins was found in a worm-hunting cone snail Conus miles. Five novel cDNA sequences encoding O-superfamily precursor peptides were identified in C. miles native to Hainan by RT-PCR and 3'-RACE. They share the common cysteine pattern of the O-superfamily conotoxin (C-C-CC-C-C, with three disulfide bridges). The predicted peptides consist of 27-33 amino acids. We then performed a phylogenetic analysis of the new and published homologue sequences from C. miles and the other Conus species. Sequence divergence (%) and residue substitutions to view evolutionary relationships of the precursors' signal, propeptide, and mature toxin regions were analyzed. Percentage divergence of the amino acid sequences of the prepro region exhibited high conservation, whereas the sequences of the mature peptides ranged from almost identical with to highly divergent from inter- and intra-species. Despite the O-superfamily being a large and diverse group of peptides, widely distributed in the venom ducts of all major feeding types of Conus and discovered in several Conus species, it was for the first time that the newly found five O-superfamily peptides in this research came from the vermivorous C. miles. So far, conotoxins of the O-superfamily whose properties have been characterized are from piscivorous and molluscivorous Conus species, and their amino acid sequences and mode of action have been discussed in detail. The elucidated cDNAs of the five toxins are new and of importance and should attract the interest of researchers in the field, which would pave the way for a better understanding of the relationship of their structure and function.  相似文献   

3.
从织锦芋螺中克隆α芋螺毒素序列   总被引:13,自引:0,他引:13  
为了从我国南海产织锦芋螺(Conustextile)中分离新的毒素序列并研究其应用价值,进行了织锦芋螺毒素基因的分离工作.从织锦芋螺毒管中提取mRNA,以A族芋螺毒素的信号肽编码部分和3′端非翻译部分的保守序列为引物,通过RT-PCR扩增和序列分析方法获得新的芋螺毒素序列.结果得到两种不同的α芋螺毒素序列,两者都属于α4/7亚型芋螺毒素,预测其成熟肽序列分别为Pro-Glu-Cys-Cys-Ser-Asp-Pro-Arg-Cys-Asn-Ser-Ser-His-Pro-Glu-Leu-Cys-Gly(C端Gly可能被酰胺化)和Pro-Glu-Cys-Cys-Ser-His-Pro-Ala-Cys-Asn-Val-Asp-His-Pro-Glu-Ile-Cys-Arg.采用传统的生化分离手段尚未从织锦芋螺中获得过α芋螺毒素序列,这两种α芋螺毒素作用的种属特异性、受体类型特异性和在小细胞肺癌的诊断和治疗中的应用价值有待进一步研究  相似文献   

4.
织锦芋螺ο家族芋螺毒素的序列分析   总被引:5,自引:0,他引:5  
为了从织锦芋螺(Conustextile)中尽可能多地分离出ο家族的毒素序列和研究其应用价值,在克隆了织锦芋螺α芋螺毒素的基础上进行了织锦芋螺ο家族芋螺毒素基因的分离工作.从织锦芋螺毒管中提取m RNA,通过RACE(rapid am plification ofcDNA ends,cDNA 末端的快速扩增)-PCR方法扩增获得ο家族芋螺毒素cDNA 片段,并进行克隆和序列分析.从织锦芋螺毒液中获得了6种新的芋螺毒素序列,且毒素序列的成熟肽部分均符合C- C- CC- C- C的保守半胱氨酸框架.这些是新的ο家族芋螺毒素序列,新序列的阐明为进一步研究其生物活性和应用打下了基础.  相似文献   

5.
Constant and hypervariable regions in conotoxin propeptides.   总被引:11,自引:0,他引:11       下载免费PDF全文
  相似文献   

6.
A novel conotoxin named lt6c, an O‐superfamily conotoxin, was identified from the cDNA library of venom duct of Conus litteratus. The full‐length cDNA contains an open reading frame encoding a predicted 22‐residue signal peptide, a 22‐residue proregion and a mature peptide of 28 amino acids. The signal peptide sequence of lt6c is highly conserved in O‐superfamily conotoxins and the mature peptide consists of six cysteines arranged in the pattern of C? C? CC? C? C that is defined the O‐superfamily of conotoxins. The mature peptide fused with thioredoxin, 6‐His tag, and a Factor Xa cleavage site was successfully expressed in Escherichia coli. About 12 mg lt6c was purified from 1L culture. Under whole‐cell patch‐clamp mode, lt6c inhibited sodium currents on adult rat dorsal root ganglion neurons. Therefore, lt6c is a novel O‐superfamily conotoxin that is able to block sodium channels. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
Direct cDNA cloning of novel conopeptide precursors of the O-superfamily   总被引:2,自引:0,他引:2  
Kauferstein S  Melaun C  Mebs D 《Peptides》2005,26(3):361-367
Conotoxins from the venom of marine cone snails (genus Conus) represent large families of proteins exhibiting a similar precursor organization, but highly diverse pharmacological activities. A directed PCR-based approach using primers according to the conserved signal sequence was applied to investigate the diversity of conotoxins from the O-superfamily. Using 3' RACE, cDNA sequences encoding precursor peptides were identified in five Conus species (Conus capitaneus, Conus imperialis, Conusstriatus, Conus vexillum and Conus virgo). In all cases, the sequence of the signal region exhibited high conservancy, whereas the sequence of the mature peptides was either almost identical or highly divergent among the five species. These findings demonstrate that beside a common genetic pattern divergent evolution of toxins occurred in a highly mutating peptide family.  相似文献   

8.
To identify the amino acid sequence of the precursor of the Gla-containing peptide, epsilon-TxIX, from the venom of the marine snail Conus textile, the cDNA encoding this peptide was cloned from a C. textile venom duct library. The cDNA of the precursor form of epsilon-TxIX encodes a 67 amino acid precursor peptide, including an N-terminal prepro-region, the mature peptide, and four residues posttranslationally cleaved from the C-terminus. To determine the role of the propeptide in gamma-carboxylation, peptides were designed and synthesized based on the propeptide sequence of the Gla-containing conotoxin epsilon-TxIX and used in assays with the vitamin K-dependent gamma-glutamyl carboxylase from C. textile venom ducts. The mature acarboxy peptide epsilon-TxIX was a high K(M) substrate for the gamma-carboxylase. Synthetic peptides based on the precursor epsilon-TxIX were low K(M) substrates (5 microM) if the peptides included at least 12 residues of propeptide sequence, from -12 to -1. Leucine-19, leucine-16, asparagine-13, leucine-12, leucine-8 and leucine-4 contribute to the interaction of the pro-conotoxin with carboxylase since their replacement by aspartic acid increased the K(M) of the substrate peptide. Although the Conus propeptide and the propeptides of the mammalian vitamin K-dependent proteins show no obvious sequence homology, synthetic peptides based upon the structure of pro-epsilon-TxIX were intermediate K(M) substrates for the bovine carboxylase. The propeptide of epsilon-TxIX contains significant alpha-helix, as estimated by measurement of the circular dichroism spectra, but the region of the propeptide that plays the dominant role in directing carboxylation does not contain evidence of helical structure. These results indicate that the gamma-carboxylation recognition site is defined by hydrophobic residues in the propeptide of this conotoxin precursor.  相似文献   

9.
Vitamin K-dependent gamma-glutamyl carboxylase catalyzes the conversion of glutamyl residues to gamma-carboxyglutamate. Its substrates include vertebrate proteins involved in blood coagulation, bone mineralization, and signal transduction and invertebrate ion channel blockers known as conotoxins. Substrate recognition involves a recognition element, the gamma-carboxylation recognition site, typically located within a cleavable propeptide preceding the targeted glutamyl residues. We have purified two novel gamma-carboxyglutamate-containing conotoxins, Gla-TxX and Gla-TxXI, from the venom of Conus textile. Their cDNA-deduced precursors have a signal peptide but no apparent propeptide. Instead, they contain a C-terminal extension that directs gamma-carboxylation but is not found on the mature conotoxin. A synthetic 13-residue "postpeptide" from the Gla-TxXI precursor reduced the K(m) for the reaction of the Conus gamma-carboxylase with peptide substrates, including FLEEL and conantokin-G, by up to 440-fold, regardless of whether it was positioned at the N- or C-terminal end of the mature toxin. Comparison of the postpeptides to propeptides from other conotoxins suggested some common elements, and amino acid substitutions of these residues perturbed gamma-carboxylation of the Gla-TxXI peptide. The demonstration of a functional and transferable C-terminal postpeptide in these conotoxins indicates the presence of the gamma-carboxylation recognition site within the postpeptide and defines a novel precursor structure for vitamin K-dependent polypeptides. It also provides the first formal evidence to prove that gamma-carboxylation occurs as a post-translational rather than a cotranslational process.  相似文献   

10.
Luo S  Zhangsun D  Zhang B  Chen X  Feng J 《Peptides》2006,27(11):2640-2646
The T-superfamily is a large and diverse group of peptides, widely distributed in venom ducts of all major feeding types of Conus. These peptides are likely to be functionally diverse. A directed PCR-based approach using primers based on the conserved signal sequence was applied to investigate new conotoxins of the T-superfamily from Conus textile native to Hainan. Using RT-PCR and 3'-RACE, four novel cDNA sequences encoding precursor peptides were identified in C. textile. They share a common T-superfamily cysteine pattern (CC-CC, with two disulfide bridges). The predicted peptides are small (9-12 amino acids). TeAr193 composed of nine amino acid residues is one of the shortest T-superfamily conotoxins ever found. Patterns of sequence divergence and Cys codon usage define the major T-superfamily branches and suggest how these separate branches arose. The sequences of the signal regions exhibited highest conservation, whereas the sequences of the mature peptides were either almost identical or highly divergent; and conservation of the pro-region was intermediate between that observed in signal and toxin regions. The elucidated cDNAs of the four toxins will facilitate a better understanding of the relationship between structure and function.  相似文献   

11.
We report here the cloning and characterization of the entire cDNA of a papain-like cysteine protease from a tropical flowering plant. The 1098-bp ORF of the cDNA codify a protease precursor having a signal peptide of 19 amino acids, a cathepsin-L like N-terminal proregion of 114 amino acids, a mature enzyme part of 208 amino acids and a C-terminal proregion of 24 amino acids. The derived amino acid sequence of the mature part tallies with the thermostable cysteine protease Ervatamin-C--as was aimed at. The C-terminal proregion of the protease has altogether a different sequence pattern not observed in other members of the family and it contains a negatively charged helical zone. The three-dimensional model of the precursor, based on the homology modeling and X-ray structure, shows that the extended peptide stretch region of the N-terminal propeptide, covering the interdomain cleft, contains protruding side chains of positively charged residues. This study also indicates that the negatively charged zone of C-terminal propeptide may interact with the positively charged zone of the N-terminal propeptide in a cooperative manner in the maturation process of this enzyme.  相似文献   

12.
The T-superfamily of conotoxins.   总被引:12,自引:0,他引:12  
We report the discovery and initial characterization of the T-superfamily of conotoxins. Eight different T-superfamily peptides from five Conus species were identified; they share a consensus signal sequence, and a conserved arrangement of cysteine residues (- -CC- -CC-). T-superfamily peptides were found expressed in venom ducts of all major feeding types of Conus; the results suggest that the T-superfamily will be a large and diverse group of peptides, widely distributed in the 500 different Conus species. These peptides are likely to be functionally diverse; although the peptides are small (11-17 amino acids), their sequences are strikingly divergent, with different peptides of the superfamily exhibiting varying extents of post-translational modification. Of the three peptides tested for in vivo biological activity, only one was active on mice but all three had effects on fish. The peptides that have been extensively characterized are as follows: p5a, GCCPKQMRCCTL*; tx5a, gammaCCgammaDGW(+)CCT( section sign)AAO; and au5a, FCCPFIRYCCW (where gamma = gamma-carboxyglutamate, W(+) = bromotryptophan, O = hydroxyproline, T( section sign) = glycosylated threonine, and * = COOH-terminal amidation). We also demonstrate that the precursor of tx5a contains a functional gamma-carboxylation recognition signal in the -1 to -20 propeptide region, consistent with the presence of gamma-carboxyglutamate residues in this peptide.  相似文献   

13.
Peng C  Wu X  Han Y  Yuan D  Chi C  Wang C 《Peptides》2007,28(11):2116-2124
Cone snails are a group of ancient marine gastropods with highly sophisticated defense and prey strategies using conotoxins in their venom. Conotoxins are a diverse array of small peptides, mostly with multiple disulfide bridges. Using a 3' RACE approach, we identified six novel peptides from the venom ducts of a worm-hunting cone snail Conus pulicarius. These peptides are named Pu5.1-Pu5.6 as their primary structures show the typical pattern of T-1 conotoxin family, a large and diverse group of peptides widely distributed in venom ducts of all major feeding types of Conus. Except for the conserved signal peptide sequences in the precursors and unique arrangement of Cys residues (CC-CC) in mature domains, the six novel T-1 conotoxins show remarkable sequence diversity in their pro and mature regions and are, thus, likely to be functionally diversified. Here, we present a simple and fast strategy of gaining novel disulfide-rich conotoxins via molecular cloning and our detailed sequence analysis will pave the way for the future functional characterization of toxin-receptor interaction.  相似文献   

14.
Zeng XC  Li WX  Peng F  Zhu ZH 《IUBMB life》2000,49(3):207-210
Based on the amino acid sequence of a bradykinin-potentiating peptide (Bpp) (peptide K-12) from scorpion Buthus occitanus, a full-length cDNA sequence encoding the precursor of a novel venom peptide (named BmKbpp) related to this Bpp, has been isolated and analyzed. The cDNA encodes a precursor of 72 amino acid residues, including a signal peptide of 22 residues and an extra Arg-Arg-Arg tail at the C-terminal end of the precursor, which have to be removed in the processing step. The C-terminal region (21 residues) of the precursor is homologous (57% identical) with the sequence of peptide K-12. Thus, according to the primary structure of the BmKbpp precursor, there may be a propeptide between the signal peptide and the putative mature BmKbpp at the C-terminal region of the precursor.  相似文献   

15.
Luo S  Zhangsun D  Lin Q  Xie L  Wu Y  Zhu X 《Peptides》2006,27(12):3058-3068
The full-length cDNAs of six new O-superfamily conotoxins (CTX) were cloned and sequenced from Conus marmoreus native to Hainan in China South Sea using RT-PCR and 3′-RACE. Six novel conotoxin precursors encoded by these cDNAs consist of three typical regions of signal, pro-peptide and mature peptide. All the six toxin regions share a common O-superfamily cysteine pattern (C-C-CC-C-C, with three disulfide bridges). The predicted precursors are composed of 73–88 amino acids, and the predicted mature peptides consist of 26–34 amino acids. Phylogenetic analysis of new conotoxins from C. marmoreus from the present study and published homologue T-superfamily sequences from other Conus species was performed systematically. Patterns of sequence divergence for three regions of signal, pro-region and mature peptides, as well as Cys codon usage define the major O-superfamily branches and suggest how these separate branches arose. Percent identities of the amino acid sequences of the signal region exhibited high conservation, whereas the sequences of the mature peptides ranged from almost identical to highly divergent between inter- and intra-species. Notably, the diversity of the pro-region was also high with intermediate divergence between that observed in signal and toxin regions. Amino acid sequences and their mode of action (target) of previously identified conotoxins from molluscivorous C. marmoreus for the known conotoxins classes are discussed in detail. The data presented are new and should pave the way for chemical synthesis of these unique conotoxins for to allow determination of the molecular targets of these peptides, and also to provide clues for a better understanding of the phylogeny of these peptides.  相似文献   

16.
Kaji T  Sugiyama N  Ishizaki S  Nagashima Y  Shiomi K 《Peptides》2006,27(12):3069-3076
A novel method, based on the hemolytic screening of a cDNA phage library, was developed to isolate cDNAs encoding grammistins (antibacterial peptide toxins) of the soapfish Pogonoperca punctata. As a result, cDNAs encoding six grammistins were isolated and elucidated for their nucleotide sequences. In common with the grammistins, the precursor protein is composed of a highly conserved signal peptide, a considerably conserved propeptide that is characterized to contain a pair of basic residues (Lys-Arg) at plural positions including the C-terminus and one copy of a mature peptide. This precursor organization is similar to those of dermaseptins, antibacterial peptides from the frog skin.  相似文献   

17.
Most of the >50,000 different pharmacologically active peptides in Conus venoms belong to a small number of gene superfamilies. In this work, the M-conotoxin superfamily is defined using both biochemical and molecular criteria. Novel excitatory peptides purified from the venoms of the molluscivorous species Conus textile and Conus marmoreus all have a characteristic pattern of Cys residues previously found in the mu-, kappaM-, and psi-conotoxins (CC-C-C-CC). The new peptides are smaller (12-19 amino acids) than the mu-, kappaM-, and psi-conotoxins (22-24 amino acids). One peptide, mr3a, was chemically synthesized in a biologically active form. Analysis of the disulfide bridges of a natural peptide tx3c from C. textile and synthetic peptide mr3a from C. marmoreus showed a novel pattern of disulfide connectivity, different from that previously established for the mu- and psi-conotoxins. Thus, these peptides belong to a new group of structurally and pharmacologically distinct conotoxins that are particularly prominent in the venoms of mollusc-hunting Conus species. Analysis of cDNA clones encoding the novel peptides as well as those encoding mu-, kappaM-, and psi-conotoxins revealed highly conserved amino acid residues in the precursor sequences; this conservation in both amino acid sequence and in the Cys pattern defines a gene superfamily, designated the M-conotoxin superfamily. The peptides characterized can be provisionally assigned to four distinct groups within the M-superfamily based on sequence similarity within and divergence between each group. A notable feature of the superfamily is that two distinct structural frameworks have been generated by changing the disulfide connectivity on an otherwise conserved Cys pattern.  相似文献   

18.
Yuan DD  Liu L  Shao XX  Peng C  Chi CW  Guo ZY 《Peptides》2008,29(9):1521-1525
A new conotoxin, ca16a, containing 8 cysteine residues was purified, sequenced, and cloned from a worm-hunting snail, Conus caracteristicus. This conotoxin is an extremely hydrophilic peptide comprising 34 residues, with 4 acidic and 4 basic residues. It is rich in polar Gly, Ser, and Thr residues and includes a hydroxylated Pro residue. The cysteine arrangement pattern of ca16a (-C-C-CC-C-CC-C-, designated as framework #16) is distinct from that of other known conotoxins. Furthermore, the signal peptide sequence of this conotoxin does not share any homology with those of other conotoxins. Leu residues account for almost 50% of its 20-residue signal peptide. The unique cysteine framework and signal peptide sequence of ca16a suggest that it belongs to a new conotoxin superfamily.  相似文献   

19.
Buczek O  Olivera BM  Bulaj G 《Biochemistry》2004,43(4):1093-1101
Conotoxins comprise a large and diverse group of peptide neurotoxins derived from Conus snail venoms; most contain multiple disulfide bonds. The conotoxin precursors consist of three distinct domains: the N-terminal signal sequence, an intervening propeptide region, and the C-terminal mature conotoxin. Formation of the native disulfide bonds during the oxidative folding of conotoxins is a prerequisite for their proper biological function, but in numerous in vitro folding experiments with mature conotoxins, a lack of specificity in formation of the native Cys-Cys connectivities is observed. The mechanisms that ensure that the native disulfide bonds are formed in venom ducts during biosynthesis remain unknown. To evaluate whether the propeptide could potentially function as an intramolecular chaperone, we studied the oxidative folding of a conotoxin precursor, pro-GI, belonging to the alpha-conotoxin family. Our results indicate that the propeptide sequence did not directly contribute to folding kinetics and thermodynamics. However, we found that the propeptide region of pro-GI played an important role when oxidative folding was catalyzed by protein disulfide isomerase (PDI). The PDI-assisted reaction was more efficient during the early folding in the context of the propeptide sequence (pro-GI), as compared to that of the mature conotoxin (alpha-GI). Taken together, our results suggest for the first time that the propeptide region may play a role in the PDI-catalyzed oxidative folding of conotoxin precursors.  相似文献   

20.
A novel M-superfamily conotoxin with a unique motif from Conus vexillum   总被引:2,自引:0,他引:2  
Jiang H  Wang CZ  Xu CQ  Fan CX  Dai XD  Chen JS  Chi CW 《Peptides》2006,27(4):682-689
Cone snails are tropical marine mollusks that envenomate prey with a complex mixture of neuropharmacologically active compounds for the purpose of feeding and defence, each evolved to act in a highly specific manner on different parts of the nervous system. Here, we report the peptide purification, molecular cloning, chemical synthesis, and functional characterization of a structurally unique toxin isolated from the venom of Conus vexillum. The novel peptide, designated Vx2, was composed of 21 amino acid residues cross-linked by 3 disulfide bonds (WIDPSHYCCCGGGCTDDCVNC). Intriguingly, its mature peptide sequence shows low level of similarity with other identified conotoxins, and its unique motif (-CCCGGGC-) was not reported in other Conus peptides. However, its signal peptide sequence shares high similarity with those of the M-superfamily conotoxins. Hence, Vx2 could be classified into a new family of the M-superfamily.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号