首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In response to physiological stimuli, neuroendocrine cells secrete neurotransmitters through a Ca(2+)-dependent fusion of secretory granules with the plasma membrane. We studied insertion of granules in bovine chromaffin cells using capacitance as a measure of plasma membrane area and fluorescence of a membrane marker FM1-43 as a measure of exocytosis. Intracellular dialysis with [Ca(2+)] (1.5-100 microM) evoked massive exocytosis that was sufficient to double plasma membrane area but did not swell cells. In principle, in the absence of endocytosis, the addition of granule membrane would be anticipated to produce similar increases in the capacitance and FM1-43 fluorescence responses. However, when endocytosis was minimal, the changes in capacitance were markedly larger than the corresponding changes in FM1-43 fluorescence. Moreover, the apparent differences between capacitance and FM1-43 fluorescence changes increased with larger exocytic responses, as more granules fused with the plasma membrane. In experiments in which exocytosis was suppressed, increasing membrane tension by osmotically induced cell swelling increased FM1-43 fluorescence, suggesting that FM1-43 fluorescence is sensitive to changes in the membrane tension. Thus, increasing membrane area through exocytosis does not swell chromaffin cells but may decrease membrane tension.  相似文献   

2.
We studied whether regulated exocytosis affects the glutamate transporter density in cultured astrocytes, in which the expression of a fluorescently labeled excitatory amino acid transporter 2 (EAAT2-EGFP) predominantly labeled the plasma membrane. The addition of ionomycin that elevates cytosolic Ca(2+) strongly increased the fluorescence of FM 4-64 membrane area dye, confirming the presence of regulated exocytosis in transfected astrocytes. However, concomitant with Ca(2+)-dependent FM 4-64 fluorescence increase, ionomycin induced a significant steady-state decrease in EAAT2-EGFP fluorescence. This is likely due to a secondary inner filter effect since,(i) in the absence of FM 4-64, ionomycin stimulation was ineffective in changing the EAAT2-EGFP fluorescence, and (ii) fluorescence changes in FM 4-64 and EAAT2-EGFP were inversely correlated. To test whether subcellular EAAT2-EGFP structures are translocated from the cytoplasm to the plasma membrane during ionomycin stimulation, EAAT2-EGFP fluorescence was monitored locally at the plasma membrane and a few microns away in the adjacent cytoplasm. Measurements revealed sites with an increase in EAAT2-EGFP plasma membrane fluorescence correlated with a fluorescence decrease beneath the plasma membrane, and sites with plasma membrane fluorescence decrease correlated with fluorescence increase within the adjacent cytoplasm. The sites of rapid translocation/retrieval of EAAT2-EGFP structures to/from the plasma membrane appeared to be distributed in a punctuate pattern around the cell perimeter. The density of EAAT2-EGFP was regulated in a Ca(2+)-dependent manner, since in the absence of extracellular Ca(2+) local translocation/retrieval events were absent, revealing rapid surface density regulation of EAAT2 in astrocytes by regulated exo/endocytosis.  相似文献   

3.
Stimulation ofpancreatic acinar cells induces the release of digestive enzymes viathe exocytotic fusion of zymogen granules and activates postfusiongranule membrane retrieval and receptor cycling. In the present study,changes in membrane surface area of rat single pancreatic acinar cellswere monitored by cell membrane capacitance(Cm)measurements and by the membrane fluorescent dye FM1-43. When measuredwith the Cmmethod, agonist treatment evoked a graded, transient increase in acinarcell surface area averaging 3.5%. In contrast, a 13% increase insurface area was estimated using FM1-43, corresponding to the fusion of48 zymogen granules at a rate of 0.5 s1. After removal of FM1-43from the surface-accessible membrane, a residual fluorescence signalwas shown by confocal microscopy to be localized in endosome-likestructures and confined to the apical regions of acinar cells. Thedevelopment of an optical method for monitoring the membrane turnoverof single acinar cells, in combination with measurements ofCm changes,reveals coincidence of exocytotic and endocytotic activity in acinarcells after hormonal stimulation.

  相似文献   

4.
We studied whether regulated exocytosis affects the glutamate transporter density in cultured astrocytes, in which the expression of a fluorescently labeled excitatory amino acid transporter 2 (EAAT2-EGFP) predominantly labeled the plasma membrane. The addition of ionomycin that elevates cytosolic Ca2+ strongly increased the fluorescence of FM 4-64 membrane area dye, confirming the presence of regulated exocytosis in transfected astrocytes. However, concomitant with Ca2+-dependent FM 4-64 fluorescence increase, ionomycin induced a significant steady-state decrease in EAAT2-EGFP fluorescence. This is likely due to a secondary inner filter effect since,(i) in the absence of FM 4-64, ionomycin stimulation was ineffective in changing the EAAT2-EGFP fluorescence, and (ii) fluorescence changes in FM 4-64 and EAAT2-EGFP were inversely correlated. To test whether subcellular EAAT2-EGFP structures are translocated from the cytoplasm to the plasma membrane during ionomycin stimulation, EAAT2-EGFP fluorescence was monitored locally at the plasma membrane and a few microns away in the adjacent cytoplasm. Measurements revealed sites with an increase in EAAT2-EGFP plasma membrane fluorescence correlated with a fluorescence decrease beneath the plasma membrane, and sites with plasma membrane fluorescence decrease correlated with fluorescence increase within the adjacent cytoplasm. The sites of rapid translocation/retrieval of EAAT2-EGFP structures to/from the plasma membrane appeared to be distributed in a punctuate pattern around the cell perimeter. The density of EAAT2-EGFP was regulated in a Ca2+-dependent manner, since in the absence of extracellular Ca2+ local translocation/retrieval events were absent, revealing rapid surface density regulation of EAAT2 in astrocytes by regulated exo/endocytosis.  相似文献   

5.
We applied the endocytic markers FM1-43, FM4-64 and filipin to internodal cells of the green alga Chara corallina. Both FM dyes stained stable, long-living plasma membrane patches with a diameter of up to 1 microm. After 5 min, FM dyes labeled cortical, trembling structures up to 500 nm in size. After 15 min, FM dyes localized to endoplasmic organelles up to 1 microm in diameter, which migrated actively along actin bundles or participated in cytoplasmic mass streaming. After 30-60 min, FM fluorescence appeared in the membrane of small, endoplasmic vacuoles but not in that of the central vacuole. Some of the FM-labeled organelles were also stained by neutral red and lysotracker yellow, indicative of acidic compartments. Filipin, a sterol-specific marker, likewise labeled plasma membrane domains which co-localized with the FM patches. However, internalization of filipin could not be observed. KCN, cytochalasin D, latrunculin B and oryzalin had no effect on size, shape and distribution of FM- and filipin-labeled plasma membrane domains. Internalization of FM dyes was inhibited by KCN but not by drugs which interfere with the actin or microtubule cytoskeleton. Our data indicate that the plasma membrane of characean internodal cells contains discrete domains which are enriched in sterols and probably correspond to clusters of lipid rafts. The inhibitor experiments suggest that FM uptake is active but independent of actin filaments, actin polymerization and microtubules. The possible function of the sterol-rich, FM labeled plasma membrane areas and the significance of actin-independent FM internalization (via endocytosis or energy-dependent flippases) are discussed.  相似文献   

6.
The fluorescent dye FM1-43 has been used to indicate membrane changes in individual bovine anterior pituitary cells exposed to secretory stimuli. After ten minutes incubation with FM1-43 (2 M), cells showed three patterns of dye fluorescence: annular, partly filled and uniformly filled. FM1-43 fluorescence was increased in 61% of the cells by TRH (40 nM), a physiological stimulus for prolactin secretion, and in 89% of the cells by 60 mM external K+. The fluorescence also increased when cells incubated in the presence of quinpirole, a dopamine D2-receptor agonist which inhibits prolactin secretion, were exposed to raclopride, a D-2 antagonist. The increases in FM1-43 fluorescence caused by these treatments suggests that the dye acts as an indicator of secretion, possibly through incorporation into secretory vesicle membranes exposed on the cell surface during exocytosis. If the dye was washed away after loading, the fluorescence of partly and uniformly filled cells was retained and a rise in fluorescence could still be seen on stimulation by TRH. This suggests that some dye had been taken up by endocytosis and trapped in an intracellular compartment, which expanded through membrane recapture after TRH stimulation. FM1-43 could therefore be a useful probe for membrane cycling associated with secretory responses.  相似文献   

7.
Glutamate-induced exocytosis of glutamate from astrocytes   总被引:3,自引:0,他引:3  
Recent studies indicate that astrocytes can play a much more active role in neuronal circuits than previously believed, by releasing neurotransmitters such as glutamate and ATP. Here we report that local application of glutamate or glutamine synthetase inhibitors induces astrocytic release of glutamate, which activates a slowly decaying transient inward current (SIC) in CA1 pyramidal neurons and a transient inward current in astrocytes in hippocampal slices. The occurrence of SICs was accompanied by an appearance of large vesicles around the puffing pipette. The frequency of SICs was positively correlated with [glutamate]o. EM imaging of anti-glial fibrillary acid protein-labeled astrocytes showed glutamate-induced large astrocytic vesicles. Imaging of FM 1-43 fluorescence using two-photon laser scanning microscopy detected glutamate-induced formation and fusion of large vesicles identified as FM 1-43-negative structures. Fusion of large vesicles, monitored by collapse of vesicles with a high intensity FM 1-43 stain in the vesicular membrane, coincided with SICs. Glutamate induced two types of large vesicles with high and low intravesicular [Ca2+]. The high [Ca2+] vesicle plays a major role in astrocytic release of glutamate. Vesicular fusion was blocked by infusing the Ca2+ chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, or the SNARE blocker, tetanus toxin, suggesting Ca2+- and SNARE-dependent fusion. Infusion of the vesicular glutamate transport inhibitor, Rose Bengal, reduced astrocytic glutamate release, suggesting the involvement of vesicular glutamate transports in vesicular transport of glutamate. Our results demonstrate that local [glutamate]o increases induce formation and exocytotic fusion of glutamate-containing large astrocytic vesicles. These large vesicles could play important roles in the feedback control of neuronal circuits and epileptic seizures.  相似文献   

8.
Kubitscheck U  Homann U  Thiel G 《Planta》2000,210(3):423-431
The dye FM1-43 was used alone or in combination with measurements of the membrane capacitance (Cm) to monitor membrane changes in protoplasts from Viciafaba L. guard cells. Confocal images of protoplasts incubated with FM1-43 (10 μM) at constant ambient osmotic pressure (πo) revealed in confocal images a slow internalisation of FM1-43-labelled membrane into the cytoplasm. As a result of this process the relative fluorescence intensity of the cell interior (fFM,i) increased with reference to the total fluorescence (fFM,t) by 7.4 × 10−4 min−1. This steady internalisation of dye suggests the occurrence of constitutive endocytosis under constant osmotic pressure. Steady internalisation of FM1-43 labelled membrane caused a prominent staining of a ring-like structure located beneath the plasma membrane. Abrupt elevation of πo by 200 mosmol kg−1 caused, over the first minutes of incubation, a rapid internalisation of FM1-43 fluorescence into the cytoplasm concomitant with a decrease in cell perimeter. Within the first 5 min the cell perimeter decreased by 7.9%. Over the same time fFM,i/fFM,t increased by 0.13, reflecting internalisation of fluorescent label into the cytoplasm. Combined measurements of Cm and total fluorescence of a protoplast (fFM,p) showed that an increase in πo evoked a decrease in Cm but no change in fFM,p. This means that surface contraction of the protoplast is due to retrieval of excess membrane from the plasma membrane and internalisation into the cytoplasm. Further inspection of confocal images revealed that protoplast shrinking was only occasionally associated with internalisation of giant vesicles (median diameter 2.7 μm) with FM1-43-labelled membrane. But, in all cases, osmotic contraction was correlated with a diffuse distribution of FM1-43 label throughout the cytoplasm. From this, we conclude that endocytosis of small vesicles into the cytoplasm is the obligatory process by which cells accommodate an osmotically driven decrease in membrane surface area. Received: 4 May 1999 / Accepted: 19 August 1999  相似文献   

9.
Hormones are released from neuroendocrine cells by passing through an exocytotic pore that forms after vesicle and plasma membrane fusion. An elegant way to study this process at the single-vesicle level is to use styryl dyes, which stain not only the membrane, but also the matrix of individual vesicles in some neuroendocrine cells. However, the mechanism by which the vesicle matrix is stained is not completely clear. One possibility is that molecules of the styryl dye in the bath solution dissolve first in the plasma membrane and are then transported into the vesicle by lateral diffusion in the plane of the membrane, and finally the vesicle matrix is stained from the vesicle membrane. On the other hand, these molecules may enter the vesicle lumen and reach the vesicle matrix by permeation through an open aqueous fusion pore. To address these questions, we exposed pituitary lactotrophs to different concentrations of FM 4-64 to monitor the fluorescence increase of single vesicles by confocal microscopy after the stimulation of cells by high K(+). The results show that the membrane and the vesicle matrix exhibit different concentration-dependent properties: the plasma membrane staining by FM 4-64 has a higher affinity in comparison to the vesicle matrix. Moreover, the kinetics of vesicle loading by FM 4-64 exhibited a concentration-dependent process, which indicates that FM 4-64 molecules stain the vesicle matrix by aqueous permeation through an open fusion pore.  相似文献   

10.
Spatially resolved measurements of exocytosis in pancreatic beta-cells were made using amperometry with 1-microm radius electrodes. These measurements revealed that certain portions of a cell actively undergo exocytosis following stimulation with depolarizing agents, but other regions are inactive. The amperometric measurements were compared to measurements made with the membrane indicator dye, FM1-43, which showed uneven increases in fluorescence around the surface of the cell, with amperometric secretion being detected only at the brightest regions. In some instances, a large number of exocytotic events were detected from one electrode position. The number of events was larger than what would be expected based on the number of vesicles that could fit under an electrode of the dimensions used. These results suggest a mechanism of vesicle traffic that allows multiple fusions at a small membrane area.  相似文献   

11.
The mechanism whereby cAMP stimulates Cl(-) flux through CFTR ion channels in secretory epithelia remains controversial. It is generally accepted that phosphorylation by cAMP-dependent protein kinase increases the open probability of the CFTR channel. A more controversial hypothesis is that cAMP triggers the translocation of CFTR from an intracellular pool to the cell surface. We have monitored membrane turnover in Calu-3 cells, a cell line derived from human airway submucosal glands that expresses high levels of CFTR using membrane capacitance and FM1-43 fluorescence measurements. Using a conventional capacitance measurement technique, we observe an apparent increase in membrane capacitance in most cells that exhibit an increase in Cl(-) current. However, after we carefully correct our recordings for changes in membrane conductance, the apparent changes in capacitance are eliminated. Measurements using the fluorescent membrane marker FM1-43 also indicate that no changes in membrane turnover accompany the activation of CFTR. Robust membrane insertion can be triggered with photorelease of caged Ca(2)+ in Calu-3 cells. However, no increase in Cl(-) current accompanies Ca(2)+-evoked membrane fusion. We conclude that neither increases in cAMP or Ca(2)+ lead to transport of CFTR to the plasma membrane in Calu-3 cells. In addition, we conclude that membrane capacitance measurements must be interpreted with caution when large changes in membrane conductance occur.  相似文献   

12.
Zenisek D  Steyer JA  Feldman ME  Almers W 《Neuron》2002,35(6):1085-1097
Perhaps synaptic vesicles can recycle so rapidly because they avoid complete exocytosis, and release transmitter through a fusion pore that opens transiently. This view emerges from imaging whole terminals where the fluorescent lipid FM1-43 seems unable to leave vesicles during transmitter release. Here we imaged single, FM1-43-stained synaptic vesicles by evanescent field fluorescence microscopy, and tracked the escape of dye from single vesicles by watching the increase in fluorescence after exocytosis. Dye left rapidly and completely during most or all exocytic events. We conclude that vesicles at this terminal allow lipid exchange soon after exocytosis, and lose their dye even if they connected with the plasma membrane only briefly. At the level of single vesicles, therefore, observations with FM1-43 provide no evidence that exocytosis of synaptic vesicles is incomplete.  相似文献   

13.
Fluorescence imaging using FM 1-43 and related styryl dyes has provided invaluable insights into presynaptic function of synapses in culture preparations, but has been limited in use for studying central synapses in vivo or in brain slices, because of excessive fluorescence background due to nonspecific membrane binding of dye. We demonstrate here that focal excitation of FM dyes using two-photon laser-scanning microscopy (TPLSM) provides high resolution of FM 1-43-labeled nerve terminals in brain slices by suppressing out-of-focus background and that a readily releasable pool of vesicles can be selectively and stably labeled by hypertonic shock despite slice diffusion barriers. We find direct TPLSM of FM 1-43-labeled nerve terminals to be superior to treatment of slices with either the fluorescent quencher sulforhodamine 101 or dye scavenger ADVASEP-7 in resolving nerve terminal against background fluorescence, enabling continuous monitoring of vesicular uptake, and release of styryl dyes from individual nerve terminals in brain slices.  相似文献   

14.
Changes in synaptic efficacy are considered necessary for learning and memory. Recently, it has been suggested that estrogen controls synaptic function in the central nervous system. However, it is unclear how estrogen regulates synaptic function in central nervous system neurons. We found that estrogen potentiated presynaptic function in cultured hippocampal neurons. Chronic treatment with estradiol (1 or 10 nm) for 24 h significantly increased a high potassium-induced glutamate release. The estrogen-potentiated glutamate release required the activation of both phosphatidylinositol 3-kinase and MAPK.The high potassium-evoked release with or without estradiol pretreatment was blocked by tetanus neurotoxin, which is an inhibitor of exocytosis. In addition, the reduction in intensity of FM1-43 fluorescence, which labeled presynaptic vesicles, was enhanced by estradiol, suggesting that estradiol potentiated the exocytotic mechanism. Furthermore, protein levels of synaptophysin, syntaxin, and synaptotagmin (synaptic proteins, respectively) were up-regulated by estradiol. We confirmed that the up-regulation of synaptophysin was blocked by the MAPK pathway inhibitor, U0126. These results suggested that estrogen enhanced presynaptic function through the up-regulated exocytotic system. In this study, we propose that estrogen reinforced excitatory synaptic transmission via potentiated-glutamate release from presynaptic sites.  相似文献   

15.
The examination of insulin exocytosis at the single cell level by conventional electrophysiologic and amperometric methods possesses inherent limitations, and may not accurately reflect the morphologic events of exocytosis of the insulin granule. To overcome some of these limitations, we show by epifluorescent microscopy of a fluorescent dye, FM1-43, its incorporation into the plasma membrane and oncoming insulin granules undergoing exocytosis, and their core proteins. Using this method, we tracked exocytosis in real-time in insulinoma INS-1 and single rat islet beta cells in response to KCl and glucose. We observed both single transient and multi-stepwise increases in membrane FM1-43 fluorescence, suggesting single granule exocytosis as well as sequential and compound exocytosis, respectively. Confocal microscopy of nonpermeabilized cells shows that some of the exocytosed insulin granules labeled by the FM1-43 dye could also be labeled with insulin antibodies, suggesting prolonged openings of the fusion pores and slow dissolution of the granule core proteins on the membrane surface.  相似文献   

16.
We have investigated constitutive endocytosis in internodal cells of the characean green algae. The endocytic tracer FM1-43 accumulated in distinct plasma membrane domains that are probably enriched in sterol-like substances. Internalization of the dye was active but independent of an intact actin or microtubule cytoskeleton.  相似文献   

17.
Zakharenko SS  Zablow L  Siegelbaum SA 《Neuron》2002,35(6):1099-1110
The site of modification of synaptic transmission during long-term plasticity in the mammalian hippocampus remains controversial. Here we used a fluorescent marker of presynaptic activity, FM 1-43, to directly image presynaptic function during metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD) at CA3-CA1 excitatory synapses in acute hippocampal slices. We found a significant decrease in the rate of FM 1-43 release in response to synaptic stimulation following induction of mGluR-LTD, providing direct evidence for altered presynaptic function. Moreover, we found that mGluR-LTD causes several changes in FM dye release properties that are consistent with a change in the mode of vesicle cycling, possibly involving a switch from a full fusion mode of release to a "kiss-and-run" mode of release through the transient opening of a fusion pore.  相似文献   

18.
We analyzed the contribution of calcium (Ca2+)-induced Ca2+ release to somatic secretion in serotonergic Retzius neurons of the leech. Somatic secretion was studied by the incorporation of fluorescent dye FM1-43 upon electrical stimulation with trains of 10 impulses and by electron microscopy. Quantification of secretion with FM1-43 was made in cultured neurons to improve optical resolution. Stimulation in the presence of FM1-43 produced a frequency-dependent number of fluorescent spots. While a 1-Hz train produced 19.5+/-5.0 spots/soma, a 10-Hz train produced 146.7+/-20.2 spots/soma. Incubation with caffeine (10 mM) to induce Ca2+ release from intracellular stores without electrical stimulation and external Ca2+, produced 168+/-21.7 spots/soma. This staining was reduced by 49% if neurons were preincubated with the Ca2+- ATPase inhibitor thapsigargin (200 nM). Moreover, in neurons stimulated at 10 Hz in the presence of ryanodine (100 microM) to block Ca2+-induced Ca2+ release, FM1-43 staining was reduced by 42%. In electron micrographs of neurons at rest or stimulated at 1 Hz in the ganglion, endoplasmic reticulum lay between clusters of dense core vesicles and the plasma membrane. In contrast, in neurons stimulated at 20 Hz, the vesicle clusters were apposed to the plasma membrane and flanked by the endoplasmic reticulum. These results suggest that Ca2+-induced Ca2+ release produces vesicle mobilization and fusion in the soma of Retzius neurons, and supports the idea that neuronal somatic secretion shares common mechanisms with secretion by excitable endocrine cells.  相似文献   

19.
A study was initiated to test whether the FM1-43 dye technique could beapplied to the study of endocytic membrane activity in two rodent prostatecancer (MAT-LyLu and AT-2) cell lines of markedly different metastaticability. The lipophilic dye FM1-43, which has frequently been used tomonitor endo/exocytic activity in excitable cells was employed. We found,as in excitable tissues, that both strongly metastatic (MAT-LyLu) andweakly metastatic (AT-2) cells in culture take up FM1-43 to give vesicularstaining of a variable pattern, which appeared to differ between the twocell lines. However, unlike excitable tissues, neither cell linesubsequently released the dye. Indeed, both cell lines retained the dyethrough several rounds of cell division suggesting that dye incorporatedby cells does not enter the endo/exocytotic cycle. Uptake of dye wasindependent of temperature, Na+/K+ gradients, pH or metabolism. Wesuggest that passive accumulation of FM1-43 can occur in cancer cells andshould not, automatically, be interpreted as evidence of endocytosis.  相似文献   

20.
The styryl dye FM1-43 becomes highly fluorescent upon binding to cell membranes. The breakdown of membrane phospholipid asymmetry in ionophore-stimulated T-lymphocytes further increases this fluorescence [Zweifach, 2000]. In this study, the capacity of FM1-43 to monitor membrane phospholipid scrambling was explored using flow cytometry in human erythrocytes and human erythrocyte progenitor K562 cells. The Ca2+-dependent phosphatidylserine-specific probe annexin V-FITC was used for comparison. The presented data show that the loss of phospholipid asymmetry that could be induced in human erythrocytes by elevated intracellular Ca2+ or by structurally different membrane intercalated amphiphilic compounds increases the FM1-43 fluorescence two- to fivefold. The profile of FM1-43 fluorescence for various treatments resembles that of phosphatidylserine exposure reported by annexin V-FITC. FM1-43 detected the onset of scrambling more efficiently than annexin V-FITC. The amphiphile-induced scrambling was shown to be a Ca2+-independent process. Monitoring of scrambling in K562 cells caused by NEM-induced Ca2+-release from intracellular stores and by Ca2+ and ionophore A23187 treatment showed that the increase in FM1-43 fluorescence correlated well with the number of annexin V-FITC-detected phosphatidylserine-positive cells. The results presented here show the usefulness of FM1-43 as a Ca2+-independent marker of dissipation in asymmetric membrane phospholipid distribution induced by various stimuli in both nucleated and non-nucleated cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号