首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The present study examined the functional characteristics of L-DOPA transporters in two functionally different clonal subpopulations of opossum kidney (OKLC and OKHC) cells. The uptake of L-DOPA was largely Na+-independent, though in OKHC cells a minor component (approximately 15%) required extracellular Na+. At least two Na+-independent transporters appear to be involved in L-DOPA uptake. One of these transporters has a broad specificity for small and large neutral amino acids, is stimulated by acid pH and inhibited by 2-aminobicyclo(2,2,l)-heptane-2-carboxylic acid (BCH; OKLC, Ki = 291 mM; OKHC, Ki = 380 mM). The other Na+-independent transporter binds neutral and basic amino acids and also recognizes the di-amino acid cystine. [14C]-L-DOPA efflux from OKLC and OKHC cells over 12 min corresponded to a small amount of intracellular [14C]-L-DOPA. L-Leucine, nonlabelled L-DOPA, BCH and L-arginine, stimulated the efflux of [14C]-L-DOPA in a Na+-independent manner. It is suggested that L-DOPA uses at least two major transporters, systems LAT-2 and b0,+. The transport of L-DOPA by LAT-2 corresponds to a Na+-independent transporter with a broad specificity for small and large neutral amino acids, stimulated by acid pH and inhibited by BCH. The transport of L-DOPA by system b0,+ is a Na+-independent transporter for neutral and basic amino acids that also recognizes cystine. LAT-2 was found equally important at the apical and basolateral membranes, whereas system b0,+ had a predominant distribution in apical membranes.  相似文献   

2.
Nitric oxide synthesis depends on the availability of its precursor L-arginine, which could be regulated by the presence of a specific uptake system. In the present report, the characterization of the L-arginine transport system in mouse adrenal Y1 cells was performed. L-arginine transport was mediated by the cationic/neutral amino acid transport system y+L and the cationic amino acid transporter (CAT) y+ in Y1 cells. These Na+-independent transporters were identified by their selectivity for neutral amino acids in both the presence and absence of Na+ and by the effect of N-ethylmaleimide. Transport data correlated to expression of genes encoding for CAT-1, CAT-2, CD-98, and y+LAT-2. A similar expression profile was detected in rat adrenal zona fasciculata. In addition, cationic amino acid uptake in Y1 cells was upregulated by ACTH and/or cAMP with a concomitant increase in nitric oxide (NO) production.  相似文献   

3.
A cDNA was isolated from the mouse brain that encodes a novel Na(+)-independent neutral amino acid transporter. The encoded protein, designated as Asc-1 (asc-type amino acid transporter 1), was found to be structurally related to recently identified mammalian amino acid transporters for the transport systems L, y(+)L, x(C)(-), and b(0,+), which are linked, via a disulfide bond, to the type II membrane glycoproteins, 4F2 heavy chain (4F2hc), or rBAT (related to b(0,+) amino acid transporter). Asc-1 required 4F2hc for its functional expression. In Western blot analysis in the nonreducing condition, a 118-kDa band, which seems to correspond to the heterodimeric complex of Asc-1 and 4F2hc, was detected in the mouse brain. The band shifted to 33 kDa in the reducing condition, confirming that Asc-1 and 4F2hc are linked via a disulfide bond. Asc-1-mediated transport was not dependent on the presence of Na(+) or Cl(-). Although Asc-1 showed a high sequence homology (66% identity at the amino acid level) to the Na(+)-independent broad scope neutral amino acid transporter LAT2 (Segawa, H., Fukasawa, Y., Miyamoto, K., Takeda, E., Endou, H., and Kanai, Y. (1999) J. Biol. Chem. 274, 19745-19751), Asc-1 also exhibited distinctive substrate selectivity and transport properties. Asc-1 preferred small neutral amino acids such as Gly, L-Ala, L-Ser, L-Thr, and L-Cys, and alpha-aminoisobutyric acid as substrates. Asc-1 also transported D-isomers of the small neutral amino acids, in particular D-Ser, a putative endogenous modulator of N-methyl-D-aspartate-type glutamate receptors, with high affinity. Asc-1 operated preferentially, although not exclusively, in an exchange mode. Asc-1 mRNA was detected in the brain, lung, small intestine, and placenta. The functional properties of Asc-1 seem to be consistent with those of a transporter subserving the Na(+)-independent small neutral amino acid transport system asc.  相似文献   

4.
We have previously shown that the heterodimer CD98/LAT-2 (LAT-2: amino acid transporter) is expressed in the basolateral membrane of intestinal epithelia and is associated with beta1 integrin (Merlin, D., Sitaraman, S., Liu, X., Easterburn, K., Sun, J., Kucharzik, T., Lewis, B., and Madara, J. L. (2001) J. Biol. Chem. 276, 39282-39289). In the present study we examined the interaction of CD98/LAT2 with intracellular adhesion molecule I (ICAM-1) and the potential of such interaction on the activation of intracellular signal in Caco2-BBE cell monolayers. ICAM-1 was found to be expressed to the basolateral domain and to selectively coimmunoprecipitate with CD98/LAT-2 in Caco2-BBE monolayers. Using antibodies as ligands to CD98 and ICAM-1, we demonstrate that the basolateral cross-linking of CD98 and ICAM-1 differentially affects the intrinsic activity of the LAT-2 transporter. Whereas CD98 ligation decreases the Km and Vm of the LAT-2 transporter, ICAM-1 ligation increases Km and Vm of the amino acid transporter LAT-2. In addition, basolateral cross-linking of CD98 or ICAM-1 induces threonine phosphorylation of an approximately 160-kDa supramolecular complex that is consistent with CD98/LAT-2-ICAM-1 complex. Together these findings demonstrate that (i). CD98/LAT-2 interacts with ICAM-1 in Caco2-BBE cell monolayers, and (ii). CD98 and ICAM-1 ligands generate intracellular signals that regulate the amino acids transporter (LAT-2) activity. Our data provide a novel mechanism by which events such as adhesion may be integrated by amino acid transport activity resulting from the direct interaction of cell surface molecules such as CD98 and ICAM-1.  相似文献   

5.
6.
7.
We identified a novel Na(+)-independent acidic amino acid transporter designated AGT1 (aspartate/glutamate transporter 1). AGT1 exhibits the highest sequence similarity (48% identity) to the Na(+)-independent small neutral amino acid transporter Asc (asc-type amino acid transporter)-2 a member of the heterodimeric amino acid transporter family presumed to be associated with unknown heavy chains (Chairoungdua, A., Kanai, Y., Matsuo, H., Inatomi, J., Kim, D. K., and Endou, H. (2001) J. Biol. Chem. 276, 49390-49399). The cysteine residue responsible for the disulfide bond formation between transporters (light chains) and heavy chain subunits of the heterodimeric amino acid transporter family is conserved for AGT1. Because AGT1 solely expressed or coexpressed with already known heavy chain 4F2hc (4F2 heavy chain) or rBAT (related to b(0,+)-amino acid transporter) did not induce functional activity, we generated fusion proteins in which AGT1 was connected with 4F2hc or rBAT. The fusion proteins were sorted to the plasma membrane and expressed the Na(+)-independent transport activity for acidic amino acids. Distinct from the Na(+)-independent cystine/glutamate transporter xCT structurally related to AGT1, AGT1 did not accept cystine, homocysteate, and l-alpha-aminoadipate and exhibited high affinity to aspartate as well as glutamate, suggesting that the negative charge recognition site in the side chain-binding site of AGT1 would be closer to the alpha-carbon binding site compared with that of xCT. The AGT1 message was predominantly expressed in kidney. In mouse kidney, AGT1 protein was present in the basolateral membrane of the proximal straight tubules and distal convoluted tubules. In the Western blot analysis, AGT1 was detected as a high molecular mass band in the nonreducing condition, whereas the band shifted to a 40-kDa band corresponding to the AGT1 monomer in the reducing condition, suggesting the association of AGT1 with other protein via a disulfide bond. The finding of AGT1 and Asc-2 has established a new subgroup of the heterodimeric amino acid transporter family whose members associate not with 4F2hc or rBAT but with other unknown heavy chains.  相似文献   

8.
Transport systems y+, asc and ASC exhibit dual interactions with dibasic and neutral amino acids. For conventional Na(+)-dependent neutral amino acid system ASC, side chain amino and guanido groups bind to the Na+ site on the transporter. The topographically equivalent recognition site on related system asc binds harmaline (a Na(+)-site inhibitor) with the same affinity as asc (apparent Ki range 1-4 mM), but exhibits no detectable affinity for Ha. Although also classified as Na(+)-independent, dibasic amino acid transport system y+ accepts neutral amino acids when Na+ or another acceptable cation is also present. This latter observation implies that the y+ translocation site binds Na+ and suggests possible functional and structural similarities with ASC/asc. In the present series of experiments with human erythrocytes, system y(+)-mediated lysine uptake (5 microM, 20 degrees C) was found to be 3-fold higher in isotonic sucrose medium than in normal 150 mM NaCl medium. This difference was not a secondary consequence of changes in membrane potential, but resulted from Na+ functioning as a competitive inhibitor of transport. Apparent Km and Vmax values for lysine transport at 20 degrees C were 15.2 microM and 183 mumol/l cells per h, respectively, in sucrose medium and 59.4 microM and 228 mumol/l cells per h in Na+ medium. Similar results were obtained with y+ in erythrocytes of a primitive vertebrate, the Pacific hagfish (Eptatretus stouti), indicating that Na(+)-inhibition is a general property of this class of amino acid transporter. At a permeant concentration of 5 microM, the IC50 value for Na(+)-inhibition of lysine uptake by human erythrocytes was 27 mM. Other inorganic and organic cations, including K+ and guanidinium+, also inhibited transport. In parallel with its actions on ASC/asc harmaline competitively inhibited lysine uptake by human cells in sucrose medium. As predicted from mutually competitive binding to the y+ translocation site, the presence of 150 mM Na+ increased the harmaline inhibition constant (Ki) from 0.23 mM in sucrose medium to 0.75 mM in NaCl medium. We interpret these observations as further evidence that y+, asc and ASC represent a family of closely related transporters with a common evolutionary origin.  相似文献   

9.
A cDNA was isolated from rat small intestine by expression cloning which encodes a novel Na+-independent transporter for aromatic amino acids. When expressed in Xenopus oocytes, the encoded protein designated as TAT1 (T-type amino acid transporter 1) exhibited Na+-independent and low-affinity transport of aromatic amino acids such as tryptophan, tyrosine, and phenylalanine (Km values: approximately 5 mm), consistent with the properties of classical amino acid transport system T. TAT1 accepted some variations of aromatic side chains because it interacted with amino acid-related compounds such as l-DOPA and 3-O-methyl-DOPA. Because TAT1 accepted N-methyl- and N-acetyl-derivatives of aromatic amino acids but did not accept their methylesters, it is proposed that TAT1 recognizes amino acid substrates as anions. Consistent with this, TAT1 exhibited sequence similarity (approximately 30% identity at the amino acid level) to H+/monocarboxylate transporters. Distinct from H+/monocarboxylate transporters, however, TAT1 was not coupled with the H+ transport but it mediated an electroneutral facilitated diffusion. TAT1 mRNA was strongly expressed in intestine, placenta, and liver. In rat small intestine TAT1 immunoreactivity was detected in the basolateral membrane of the epithelial cells suggesting its role in the transepithelial transport of aromatic amino acids. The identification of the amino acid transporter with distinct structural and functional characteristics will not only facilitate the expansion of amino acid transporter families but also provide new insights into the mechanisms of substrate recognition of organic solute transporters.  相似文献   

10.
Amino acid transport across cellular membranes is mediated by multiple transporters with overlapping specificities. We recently have identified the vertebrate proteins which mediate Na+-independent exchange of large neutral amino acids corresponding to transport system L. This transporter consists of a novel amino acid permease-related protein (LAT1 or AmAT-L-lc) which for surface expression and function requires formation of disulfide-linked heterodimers with the glycosylated heavy chain of the h4F2/CD98 surface antigen. We show that h4F2hc also associates with other mammalian light chains, e.g. y+LAT1 from mouse and human which are approximately 48% identical with LAT1 and thus belong to the same family of glycoprotein-associated amino acid transporters. The novel heterodimers form exchangers which mediate the cellular efflux of cationic amino acids and the Na+-dependent uptake of large neutral amino acids. These transport characteristics and kinetic and pharmacological fingerprints identify them as y+L-type transport systems. The mRNA encoding my+LAT1 is detectable in most adult tissues and expressed at high levels in kidney cortex and intestine. This suggests that the y+LAT1-4F2hc heterodimer, besides participating in amino acid uptake/secretion in many cell types, is the basolateral amino acid exchanger involved in transepithelial reabsorption of cationic amino acids; hence, its defect might be the cause of the human genetic disease lysinuric protein intolerance.  相似文献   

11.
The properties of system y(+)L-mediated transport were investigated on rat system y(+)L transporter, ry(+)LAT1, coexpressed with the heavy chain of cell surface antigen 4F2 in Xenopus oocytes. ry(+)LAT1-mediated transport of basic amino acids was Na(+)-independent, whereas that of neutral amino acids, although not completely, was dependent on Na(+), as is typical of system y(+)L-mediated transport. In the absence of Na(+), lowering of pH increased leucine transport, without affecting lysine transport. Therefore, it is proposed that H(+), besides Na(+) and Li(+), is capable of supporting neutral amino acid transport. Na(+) and H(+) augmented leucine transport by decreasing the apparent K(m) values, without affecting the V(max) values. We demonstrate that although ry(+)LAT1-mediated transport of [(14)C]l-leucine was accompanied by the cotransport of (22)Na(+), that of [(14)C]l-lysine was not. The Na(+) to leucine coupling ratio was determined to be 1:1 in the presence of high concentrations of Na(+). ry(+)LAT1-mediated leucine transport, but not lysine transport, induced intracellular acidification in Chinese hamster ovary cells coexpressing ry(+)LAT1 and 4F2 heavy chain in the absence of Na(+), but not in the presence of physiological concentrations of Na(+), indicating that cotransport of H(+) with leucine occurred in the absence of Na(+). Therefore, for the substrate recognition by ry(+)LAT1, the positive charge on basic amino acid side chains or that conferred by inorganic monovalent cations such as Na(+) and H(+), which are cotransported with neutral amino acids, is presumed to be required. We further demonstrate that ry(+)LAT1, due to its peculiar cation dependence, mediates a heteroexchange, wherein the influx of substrate amino acids is accompanied by the efflux of basic amino acids.  相似文献   

12.
In thoroughbred horses, red blood cell amino acid transport activity is Na(+)-independent and controlled by three codominant genetic alleles (h, l, s), coding for high-affinity system asc1 (L-alanine apparent Km for influx at 37 degrees C congruent to 0.35 mM), low-affinity system asc2 (L-alanine Km congruent to 14 mM), and transport deficiency, respectively. The present study investigated amino acid transport mechanisms in red cells from four wild species: Przewalski's horse (Equus przewalskii), Hartmann's zebra (Zebra hartmannae), Grevy's zebra (Zebra grevyi), and onager (Equus hemonius). Red blood cell samples from different Przewalski's horses exhibited uniformly high rates of L-alanine uptake, mediated by a high-affinity asc1-type transport system. Mean apparent Km and Vmax values (+/- SE) for L-alanine influx at 37 degrees C in red cells from 10 individual animals were 0.373 +/- 0.068 mM and 2.27 +/- 0.11 mmol (L cells.h), respectively. As in thoroughbreds, the Przewalski's horse transporter interacted with dibasic as well as neutral amino acids. However, the Przewalski asc1 isoform transported L-lysine with a substantially (6.4-fold) higher apparent affinity than its thoroughbred counterpart (Km for influx 1.4 mM at 37 degrees C) and was also less prone to trans-stimulation effects. The novel high apparent affinity of the Przewalski's horse transporter for L-lysine provides additional key evidence of functional and possible structural similarities between asc and the classical Na(+)-dependent system ASC and between these systems and the Na(+)-independent dibasic amino acid transport system y+. Unlike Przewalski's horse, zebra red cells were polymorphic with respect to L-alanine transport activity, showing high-affinity or low-affinity saturable mechanisms of L-alanine uptake. Onager red cells transported this amino acid with intermediate affinity (apparent Km for influx 3.0 mM at 37 degrees C). Radiation inactivation analysis was used to estimate the target size of system asc in red cells from Przewalski's horse. The transporter's in situ apparent molecular weight was 158,000 +/- 2500 (SE).  相似文献   

13.
Neutral amino acid transport was characterized in the pluripotent embryonal carcinoma (EC) cell line, OC15. Ten of the thirteen amino acids tested are transported by all three of the major neutral amino acid transport systems--A, L, and ASC--although one system may make a barely measurable contribution in some cases. The characterization of N-methyl-aminoisobutyric acid (meAIB) transport points to this model amino acid as a definitive substrate for System A transport by OC15 cells. Thus, high concentrations of meAIB can be used selectively to block System A transport, and the transport characteristics of meAIB represent system A transport. Kinetic analysis of System A, with a Km = 0.79mM and Vmax = 14.4 nmol/mg protein/5 min, suggests a single-component transport system, which is sensitive to pH changes. While proline transport in most mammalian cells is largely accomplished through System A, it is about equally divided between Systems A and ASC in OC15 cells, and System A does not contribute at all to proline transport by F9 cells, an EC cell line with limited developmental potential. Kinetic analysis of System L transport, represented by Na+-independent leucine transport, reveals a high-affinity, single-component system. This transport system is relatively insensitive to pH changes and has a Km = 0.0031 mM and Vmax = 0.213 nmol/mg protein/min. The putative System L substrate, 2-aminobicyclo-[2,2,1]heptane-2-carboxylic acid (BCH), inhibits Systems A and ASC as well as System L in OC15 cells. Therefore, BCH cannot be used as a definitive substrate for System L in OC15 cells. Phenylalanine is primarily transported by Na+-dependent Systems A and ASC (83% Na+-dependent; 73% System ASC) in OC15 cells, while it is transported primarily by the Na+-independent System L in most other cell types, including early cleavage stage mouse embryos and F9 cells. We have also found this unusually strong Na+-dependency of phenylalanine transport in mouse uterine blastocysts (82% Na+-dependent). There is no evidence for System N transport by OC15 cells, since histidine is transported primarily by a Na+-independent, BCH-inhibitable mechanism.  相似文献   

14.
The transport of L-arginine has been characterized in Chinese hamster ovary cells (CHO). In the absence of Na+ the influx of the amino acid decreased. Both in the presence and in the absence of Na+ L-arginine influx was trans-stimulated and cis-inhibited by cationic amino acids. The amino acid entered CHO cells through an apparently non saturable mechanism and a single saturable agency whose Km increased in the absence of Na+. These results indicate that the agency devoted to transport cationic amino acids in CHO cells resembles system y+, the Na+-independent route that transports cationic amino acids in a number of mammalian models, although its activity is lowered by the replacement of extracellular sodium.  相似文献   

15.
System L is primarily responsible for the Na+-independent transport of neutral amino acids, those with bulky chains such as leucine, isoleucine, phenylalanine, etc., into mammalian cells. mRNA from rat kidney and human lymphoid cells, when microinjected into Xenopus laevis oocytes, induced expression of this transport system. The expressed transport exhibits characteristics similar to those reported for the System L amino acid transporter from a variety of mammalian cells. Injection of size-fractionated mRNA indicates that the System L transporter in both the rat kidney and human lymphoid cells is encoded by mRNA of about 3 to 4 kb.  相似文献   

16.
Several Na+-dependent carriers of amino acids exist on the abluminal membrane of the blood-brain barrier (BBB). These Na+-dependent carriers are in a position to transfer amino acids from the extracellular fluid of brain to the endothelial cells and thence to the circulation. To date, carriers have been found that may remove nonessential, nitrogen-rich, or acidic (excitatory) amino acids, all of which may be detrimental to brain function. We describe here Na+-dependent transport of large neutral amino acids across the abluminal membrane of the BBB that cannot be ascribed to currently known systems. Fresh brains, from cows killed for food, were used. Microvessels were isolated, and contaminating fragments of basement membranes, astrocyte fragments, and pericytes were removed. Abluminal-enriched membrane fractions from these microvessels were prepared. Transport was Na+ dependent, voltage sensitive, and inhibited by 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid, a particular inhibitor of the facilitative large neutral amino acid transporter 1 (LAT1) system. The carrier has a high affinity for leucine (Km 21 +/- 7 microM) and is inhibited by other neutral amino acids, including glutamine, histidine, methionine, phenylalanine, serine, threonine, tryptophan, and tyrosine. Other established neutral amino acids may enter the brain by way of LAT1-type facilitative transport. The presence of a Na+-dependent carrier on the abluminal membrane capable of removing large neutral amino acids, most of which are essential, from brain indicates a more complex situation that has implications for the control of essential amino acid content of brain.  相似文献   

17.
A cDNA that encodes a novel Na+-independent neutral amino acid transporter was isolated from FLC4 human hepatocarcinoma cells by expression cloning. When expressed in Xenopus oocytes, the encoded protein designated LAT3 (L-type amino acid transporter 3) transported neutral amino acids such as l-leucine, l-isoleucine, l-valine, and l-phenylalanine. The LAT3-mediated transport was Na+-independent and inhibited by 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid, consistent with the properties of system L. Distinct from already known system L transporters LAT1 and LAT2, which form heterodimeric complex with 4F2 heavy chain, LAT3 was functional by itself in Xenopus oocytes. The deduced amino acid sequence of LAT3 was identical to the gene product of POV1 reported as a prostate cancer-up-regulated gene whose function was not determined, whereas it did not exhibit significant similarity to already identified transporters. The Eadie-Hofstee plots of LAT3-mediated transport were curvilinear, whereas the low affinity component is predominant at physiological plasma amino acid concentration. In addition to amino acid substrates, LAT3 recognized amino acid alcohols. The transport of l-leucine was electroneutral and mediated by a facilitated diffusion. In contrast, l-leucinol, l-valinol, and l-phenylalaninol, which have a net positive charge induced inward currents under voltage clamp, suggesting these compounds are transported by LAT3. LAT3-mediated transport was inhibited by the pretreatment with N-ethylmaleimide, consistent with the property of system L2 originally characterized in hepatocyte primary culture. Based on the substrate selectivity, affinity, and N-ethylmaleimide sensitivity, LAT3 is proposed to be a transporter subserving system L2. LAT3 should denote a new family of organic solute transporters.  相似文献   

18.
Zhang Z  Grewer C 《Biophysical journal》2007,92(7):2621-2632
The sodium-coupled neutral amino acid transporter SNAT2 mediates cellular uptake of glutamine and other small, neutral amino acids. Here, we report the existence of a leak anion pathway associated with SNAT2. The leak anion conductance was increased by, but did not require the presence of, extracellular sodium. The transported substrates L-alanine, L-glutamine, and alpha-(methylamino)isobutyrate inhibited the anion leak conductance, each with different potency. A transporter with the mutation H-304A did not catalyze alanine transport but still catalyzed anion leak current, demonstrating that substrate transport is not required for anion current inhibition. Both the substrate and Na+ were able to bind to the SNAT2H-304A transporter normally. The selectivity sequence of the SNAT2H-304A anion conductance was SCN->NO3->I->Br->Cl->Mes-. Anion flux mediated by the more hydrophobic anion SCN- was not saturable, whereas nitrate flux demonstrated saturation kinetics with an apparent Km of 29 mM. SNAT2, which belongs to the SLC38 family of transporters, has to be added to the growing number of secondary, Na+-coupled transporters catalyzing substrate-gated or leak anion conductances. Therefore, we can speculate that such anion-conducting pathways are general features of Na+-transporting systems.  相似文献   

19.
Neutral amino acid transport in isolated rat pancreatic islets   总被引:1,自引:0,他引:1  
The neutral amino acid transport systems of freshly isolated rat pancreatic islets have been studied by first examining the transport of L-alanine and the nonmetabolizable analogue 2-(methylamino)isobutyric acid (MeAIB). By comparing the uptake of MeAIB and L-alanine for their pH dependency profile, choline and Li+ substitution for Na+, tolerance to N-methylation, and competition with other amino acids, the existence in pancreatic islets of both A and ASC amino acid transport systems was established. The systems responsible for the inward transport of five natural amino acids was studied using competition analysis and Na+ dependency of uptake. These studies defined three neutral amino acid transport systems: A and ASC (Na+-dependent) and L (Na+-independent). L-Proline entered rat islet cells mainly by system A; L-leucine by the Na+-independent system L. The uptake of L-alanine, L-serine, and L-glutamine was shared by systems ASC and L, the participation of system A being negligible for these three amino acids. An especially broad substrate specificity for systems L and ASC is therefore suggested for the rat pancreatic islet cells. The regulation of amino acid transport was also investigated in two conditions differing as to glucose concentration and/or availability, i.e. islets from fasted rats and islets maintained in tissue culture at high or low glucose concentrations. Neither alanine nor MeAIB transport was altered by fasting of the islet-donor rats. On the other hand, pancreatic islets maintained for 2 days in tissue culture at high (16.7 mM) glucose transported MeAIB at twice the rate of islets maintained at low (2.8 mM) glucose. Amino acid starvation of pancreatic islets during 11 h of tissue culture resulted in a 2-fold increase in MeAIB transport.  相似文献   

20.
Lysinuric protein intolerance (LPI) is a rare, yet inimical, genetic disorder characterized by the paucity of essential dibasic amino acids in the cells. Amino acid transporter y+LAT-1 interacts with 4F2 cell-surface antigen heavy chain to transport the required dibasic amino acids. Mutation in y+LAT-1 is rumored to cause LPI. However, the underlying pathological mechanism is unknown, and, in this analysis, we investigate the impact of point mutation in y+LAT-1's interaction with 4F2 cell-surface antigen heavy chain in causing LPI. Using an efficient and extensive computational pipeline, we have isolated M50K and L334R single-nucleotide polymorphisms to be the most deleterious mutations in y+LAT-1s. Docking of mutant y+LAT-1 with 4F2 cell-surface antigen heavy chain showed decreased interaction compared with native y+LAT-1. Further, molecular dynamic simulation analysis reveals that the protein molecules increase in size, become more flexible, and alter their secondary structure upon mutation. We believe that these conformational changes because of mutation could be the reason for decreased interaction with 4F2 cell-surface antigen heavy chain causing LPI. Our analysis gives pathological insights about LPI and helps researchers to better understand the disease mechanism and develop an effective treatment strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号