首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The scanning electron microscopic study of day 9 embryos reported here documents differences among normal mouse strains in morphology of cranial neural tube closure. The site of initiation of contact and fusion of the cranial neural folds, previously defined as Closure 2 (Macdonald et al., '89), is located in the region of the junction between the forebrain (prosencephalon) and midbrain (mesencephalon) in three normal strains: LM/Bc, AEJ/RkBc, and ICR/Bc. However in a fourth normal strain, SWV/Bc, Closure 2 is initiated much further rostral, in the prosencephalic region. In addition, the anterior neuropore, rostral to Closure 2, closes late in ICR/Bc embryos, relative to the posterior progress of development of the Closure 2 seam. Initiation of closure from the most rostral end of the neural tube (Closure 3) appears to be relatively delayed in ICR/Bc embryos. We hypothesize that the observed genetic polymorphism in location of the first site of fusion between the cranial neural folds in normal mouse embryos may be one basis for differences among normal strains in liability to exencephaly induced by teratogens.  相似文献   

2.
Closure of the cranial neural tube depends on normal development of the head mesenchyme. Homozygous-mutant embryos for the ENU-induced open mind (opm) mutation exhibit exencephaly associated with defects in head mesenchyme development and dorsal-lateral hinge point formation. The head mesenchyme in opm mutant embryos is denser than in wildtype embryos and displays an abnormal cellular organization. Since cells that originate from both the cephalic paraxial mesoderm and the neural crest populate the head mesenchyme, we explored the origin of the abnormal head mesenchyme. opm mutant embryos show apparently normal development of neural crest-derived structures. Furthermore, the abnormal head mesenchyme in opm mutant embryos is not derived from the neural crest, but instead expresses molecular markers of cephalic mesoderm. We also report the identification of the opm mutation in the ubiquitously expressed Hectd1 E3 ubiquitin ligase. Two different Hectd1 alleles cause incompletely penetrant neural tube defects in heterozygous animals, indicating that Hectd1 function is required at a critical threshold for neural tube closure. This low penetrance of neural tube defects in embryos heterozygous for Hectd1 mutations suggests that Hectd1 should be considered as candidate susceptibility gene in human neural tube defects.  相似文献   

3.
4.
5.
Vital dye analysis of cranial neural crest cell migration in the mouse embryo.   总被引:15,自引:0,他引:15  
The spatial and temporal aspects of cranial neural crest cell migration in the mouse are poorly understood because of technical limitations. No reliable cell markers are available and vital staining of embryos in culture has had limited success because they develop normally for only 24 hours. Here, we circumvent these problems by combining vital dye labelling with exo utero embryological techniques. To define better the nature of cranial neural crest cell migration in the mouse embryo, premigratory cranial neural crest cells were labelled by injecting DiI into the amniotic cavity on embryonic day 8. Embryos, allowed to develop an additional 1 to 5 days exo utero in the mother before analysis, showed distinct and characteristic patterns of cranial neural crest cell migration at the different axial levels. Neural crest cells arising at the level of the forebrain migrated ventrally in a contiguous stream through the mesenchyme between the eye and the diencephalon. In the region of the midbrain, the cells migrated ventrolaterally as dispersed cells through the mesenchyme bordered by the lateral surface of the mesencephalon and the ectoderm. At the level of the hindbrain, neural crest cells migrated ventrolaterally in three subectodermal streams that were segmentally distributed. Each stream extended from the dorsal portion of the neural tube into the distal portion of the adjacent branchial arch. The order in which cranial neural crest cells populate their derivatives was determined by labelling embryos at different stages of development. Cranial neural crest cells populated their derivatives in a ventral-to-dorsal order, similar to the pattern observed at trunk levels. In order to confirm and extend the findings obtained with exo utero embryos, DiI (1,1-dioctadecyl-3,3,3',3'-tetramethylindo-carbocyanine perchlorate) was applied focally to the neural folds of embryos, which were then cultured for 24 hours. Because the culture technique permitted increased control of the timing and location of the DiI injection, it was possible to determine the duration of cranial neural crest cell emigration from the neural tube. Cranial neural crest cell emigration from the neural folds was completed by the 11-somite stage in the region of the rostral hindbrain, the 14-somite stage in the regions of the midbrain and caudal hindbrain and not until the 16-somite stage in the region of the forebrain. At each level, the time between the earliest and latest neural crest cells to emigrate from the neural tube appeared to be 9 hours.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
By RNA in situ hybridization and immunohistochemical analyses of early stage mouse embryos, we find that alpha 4 integrin gene is expressed in migratory cranial neural crest cells originating from the presumptive forebrain, midbrain, and rhombomeres 1 and 2 of the presumptive hindbrain. alpha 4 is also expressed in epicardial progenitor cells in the septum transversum that migrate to the heart.  相似文献   

7.
8.
9.
10.
11.
Craniofacial development of vertebrates depends largely on neural crest contribution and each subdomain of the crest-derived ectomesenchyme follows its specific genetic control. The rat small eye ( rSey ) involves a mutation in the Pax-6 gene and the external feature of rSey homozygous embryos exhibits craniofacial defects in ocular and frontonasal regions. In order to identify the mechanism of craniofacial development, we examined the cranial morphology and migration of cephalic crest cells in rSey embryos. The chondrocranial defects of homozygous rSey embryos primarily consisted of spheno-orbital and ethmoidal anomalies. The former defects appeared to be brought about by the lack of the eye. In the ethmoid region, the nasal septum and the derivative of the medial nasal prominence were present, while the rest of the nasal capsule, as well as the nasal and lachrymal bones, were totally absent except for a pair of cartilaginous rods in place of the nasal capsule. This suggests that the primary cranial defect is restricted to the lateral nasal prominence derivatives. Dil labeling revealed the abnormal migration of crest cells specifically from the anterior midbrain to the lateral nasal prominence in homozygous rSey embryos. Pax-6 was not expressed in the crest cells but was strongly expressed in the frontonasal ectoderm. To determine whether or not this migratory defect actually resides in environmental cues, normal midbrain crest cells from wild-type embryos were labeled with Dil and were orthotopically injected into host rSey embryos. Migration of the donor crest cells into the lateral nasal prominence was abnormal in homozygous host embryos, while they migrated normally in wild-type or heterozygous embryos. Therefore, the cranial defects in rSey homozygous embryos are due to inappropriate substrate for crest cell migration towards the lateral nasal prominence, which consistently explains the cranial morphology of homozygous rSey embryos.  相似文献   

12.
Although numerous in vitro experiments suggest that extracellular matrix molecules like laminin can influence neural crest migration, little is known about their function in the embryo. Here, we show that laminin alpha5, a gene up-regulated during neural crest induction, is localized in regions of newly formed cranial and trunk neural folds and adjacent neural crest migratory pathways in a manner largely conserved between chick and mouse. In laminin alpha5 mutant mice, neural crest migratory streams appear expanded in width compared to wild type. Conversely, neural folds exposed to laminin alpha5 in vitro show a reduction by half in the number of migratory neural crest cells. During gangliogenesis, laminin alpha5 mutants exhibit defects in condensing cranial sensory and trunk sympathetic ganglia. However, ganglia apparently recover at later stages. These data suggest that the laminin alpha5 subunit functions as a cue that restricts neural crest cells, focusing their migratory pathways and condensation into ganglia. Thus, it is required for proper migration and timely differentiation of some neural crest populations.  相似文献   

13.
In the head of vertebrate embryos, neural crest cells migrate from the neural tube into the presumptive facial region and condense to form cranial ganglia and skeletal elements in the branchial arches. We show that newly formed neural folds and migrating neural crest cells express the neuropilin 2 (npn2) receptor in a manner that is highly conserved in amniotes. The repulsive npn2 ligand semaphorin (sema) 3F is expressed in a complementary pattern in the mouse. Furthermore, mice carrying null mutations for either npn2 or sema3F have abnormal cranial neural crest migration. Most notably, "bridges" of migrating cells are observed crossing between neural crest streams entering branchial arches 1 and 2. In addition, trigeminal ganglia fail to form correctly in the mutants and are improperly condensed and loosely organized. These data show that npn2/sema3F signaling is required for proper cranial neural crest development in the head.  相似文献   

14.
In an attempt to define the pattern of developmental expression of AP-2rep and AP-2 in Xenopus embryos, we cloned a Xenopus AP-2rep cDNA. The AP-2rep message was localized in the organizer region at the gastrula stage whereas AP-2 was expressed ventro-laterally in the animal hemisphere. Later, AP-2rep was expressed in the entire neural tissue at the neurula stage while AP-2 was predominantly expressed in the cranial neural crest areas. The endogenous expression of AP-2 in the neural crest area was diminished by ectopic injection of AP-2rep RNA, suggesting a role for AP-2rep in the differentiation of neural tissues by restricting the expression of AP-2 in the Xenopus embryo.  相似文献   

15.
16.
BACKGROUND: Closure of the cranial neural tube during embryogenesis is a crucial process in development of the brain. Failure of this event results in the severe neural tube defect (NTD) exencephaly, the developmental forerunner of anencephaly. METHODS: The requirement for methylation cycle function in cranial neural tube closure was tested by treatment of cultured mouse embryos with cycloleucine or ethionine, inhibitors of methionine adenosyl transferase. Embryonic phenotypes were investigated by histological analysis, and immunostaining was performed for markers of proliferation and apoptosis. Methylation cycle intermediates s-adenosylmethionine and s-adenosylhomocysteine were also quantitated by tandem mass spectrometry. RESULTS: Ethionine and cycloleucine treatments significantly reduced the ratio of abundance of s-adenosylmethionine to s-adenosylhomocysteine and are, therefore, predicted to suppress the methylation cycle. Exposure to these inhibitors during the period of cranial neurulation caused a high incidence of exencephaly, in the absence of generalized toxicity, growth retardation, or developmental delay. Reduced neuroepithelial thickness and reduced density of cranial mesenchyme were detected in ethionine-treated but not cycloleucine-treated embryos that developed exencephaly. Reduced mesenchymal density is a potential cause of ethionine-induced exencephaly, although we could not detect a causative alteration in proliferation or apoptosis prior to failure of neural tube closure. CONCLUSIONS: Adequate functioning of the methylation cycle is essential for cranial neural tube closure in the mouse, suggesting that suppression of the methylation cycle could also increase the risk of human NTDs. We hypothesize that inhibition of the methylation cycle causes NTDs due to disruption of crucial reactions involving methylation of DNA, proteins or other biomolecules.  相似文献   

17.
The Patch (Ph) mutation in mice is a deletion of the gene encoding the platelet-derived growth factor receptor alpha subunit (PDGFR alpha). Patch is a recessive lethal recognized in heterozygotes by its effect on the pattern of neural crest-derived pigment cells, and in homozygous mutant embryos by visible defects in craniofacial structures. Since both pigment cells and craniofacial structures are derived from the neural crest, we have examined the differentiation of other crest cell-derived structures in Ph/Ph mutants to assess which crest cell populations are adversely affected by this mutation. Defects were found in many structures populated by non-neuronal derivatives of cranial crest cells including the thymus, the outflow tract of the heart, cornea, and teeth. In contrast, crest-derived neurons in both the head and trunk appeared normal. The expression pattern of PDGFR alpha mRNA was determined in normal embryos and was compared with the defects present in Ph/Ph embryos. PDGFR alpha mRNA was expressed at high levels in the non-neuronal derivatives of the cranial neural crest but was not detected in the crest cell neuronal derivatives. These results suggest that functional PDGF alpha is required for the normal development of many non-neuronal crest-derived structures but not for the development of crest-derived neuronal structures. Abnormal development of the non-neuronal crest cells in Ph/Ph embryos was also correlated with an increase in the diameter of the proteoglycan-containing granules within the crest cell migratory spaces. This change in matrix structure was observed both before and after crest cells had entered these spaces. Taken together, these observations suggest that functional PDGFR alpha can affect crest development both directly, by acting as a cell growth and/or survival stimulus for populations of non-neurogenic crest cells, and indirectly, by affecting the structure of the matrix environment through which such cells move.  相似文献   

18.
The neural crest is a uniquely vertebrate cell type present in the most basal vertebrates, but not in cephalochordates. We have studied differences in regulation of the neural crest marker AP-2 across two evolutionary transitions: invertebrate to vertebrate, and agnathan to gnathostome. Isolation and comparison of amphioxus, lamprey and axolotl AP-2 reveals its extensive expansion in the vertebrate dorsal neural tube and pharyngeal arches, implying co-option of AP-2 genes by neural crest cells early in vertebrate evolution. Expression in non-neural ectoderm is a conserved feature in amphioxus and vertebrates, suggesting an ancient role for AP-2 genes in this tissue. There is also common expression in subsets of ventrolateral neurons in the anterior neural tube, consistent with a primitive role in brain development. Comparison of AP-2 expression in axolotl and lamprey suggests an elaboration of cranial neural crest patterning in gnathostomes. However, migration of AP-2-expressing neural crest cells medial to the pharyngeal arch mesoderm appears to be a primitive feature retained in all vertebrates. Because AP-2 has essential roles in cranial neural crest differentiation and proliferation, the co-option of AP-2 by neural crest cells in the vertebrate lineage was a potentially crucial event in vertebrate evolution.  相似文献   

19.
Previously we have shown that all SELH/Bc mouse embryos close their anterior neural tubes by an abnormal mechanism and that 10-20% of SELH/Bc embryos are exencephalic. The purposes of these studies were (1) to observe the effects of retinoic acid on the frequency of exencephaly in SELH/Bc embryos; (2) to compare the SELH/Bc response with those of normal strains and of other neural tube mutants; and (3) to compare, between SELH/Bc and a normal strain (SWV/Bc), the effects of retinoic acid on morphology of the closing anterior neural tube. SELH/Bc was more liable to retinoic acid-induced exencephaly than were normal strains. After maternal treatment with 5 mg/kg retinoic acid on day 8.5 of gestation, 53% of SELH/Bc embryos had exencephaly, compared with 22% in ICR/Bc and 14% in SWV/Bc. When these results were transformed according to the assumptions of the developmental threshold model, the effects of genotype and retinoic acid appeared to be additive. Similar treatment on day 9 or 10 of gestation had little or no effect on the frequency of exencephaly in SELH/Bc mice. These results are similar to the reported responses of the curly-tail and Splotch mutants, where frequencies of spina bifida but not exencephaly were decreased. This pattern suggests that studies of effects of periconceptional vitamin treatment on risk of human neural tube defects should consider anencephaly and spina bifida separately. The study comparing the morphology of anterior neural tube closure in SELH/Bc and normal SWV/Bc embryos showed that retinoic acid delays the elevation of the mesencephalic neural folds. This results in a "stalling" of many embryos in the first steps of neural tube closure, with their neural folds remaining convex and splayed wide apart. The delay in fold elevation was superimposed on the different closure patterns of the two strains. The overall conclusion is that there is no nonadditive interaction in the parameters studied between retinoic acid treatment and the SELH/Bc genotype.  相似文献   

20.
We have examined the distribution and function of the defined cell adhesion molecules, N-cadherin and N-CAM, in the emigration of cranial neural crest cells from the neural tube in vivo. By immunocytochemical analysis, both N-cadherin and N-CAM were detected on the cranial neural folds prior to neural tube closure. After closure of the neural tube, presumptive cranial neural crest cells within the dorsal aspect of the neural tube had bright N-CAM and weak N-cadherin immunoreactivity. By the 10- to 11-somite stage, N-cadherin was prominent on all neural tube cells with the exception of the dorsal-most cells, which had little or no detectable immunoreactivity. N-CAM, but not N-cadherin, was observed on some migrating neural crest cells after their departure from the cranial neural tube. To examine the functional significance of these molecules, perturbation experiments were performed by injecting antibodies against N-CAM or N-cadherin into the cranial mesenchyme adjacent to the midbrain. Fab' fragments or whole IgGs of monoclonal and polyclonal antibodies against N-CAM caused abnormalities in the cranial neural tube and neural crest. Predominantly observed defects included neural crest cells in ectopic locations, both within and external to the neural tube, and mildly deformed neural tubes containing some dissociating cells. A monoclonal antibody against N-cadherin also disrupted cranial development, with the major defect being grossly distorted neural tubes and some ectopic neural crest cells outside of the neural tube. In contrast, nonblocking N-CAM antibodies and control IgGs had few effects. Embryos appeared to be sensitive to the N-CAM and N-cadherin antibodies for a limited developmental period from the neural fold to the 9-somite stage, with older embryos no longer displaying defects after antibody injection. These results suggest that the cell adhesion molecules N-CAM and N-cadherin are important for the normal integrity of the cranial neural tube and for the emigration of neural crest cells. Because cell-matrix interactions also are required for proper emigration of cranial neural crest cells, the results suggest that the balance between cell-cell and cell-matrix adhesion may be critical for this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号