首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Isolated type II pneumocytes grown in serum on tissue culture-treated polycarbonate filters form monolayers with characteristic bioelectric properties, and change morphologically with time in culture to resemble type I cells. Concurrently, the cells express type I cell surface epitopes, making this a potentially useful in vitro model with which to study regulation of alveolar epithelial cell function and differentiation. To define specific soluble growth factors and matrix substances that may regulate these processes, it would be preferable to culture isolated pneumocytes de novo under completely defined, serum-free conditions. In this study, we developed a completely defined serum-free medium that is capable of supporting alveolar epithelial cells in primary culture, allowing the formation of monolayers with characteristic bioelectric and phenotypic properties. Freshly isolated rat type II cells were resuspended in completely defined serum-free medium and plated de novo on polycarbonate filters. Plating efficiency, bioelectric properties, morphology, and binding of a type I cell-specific monoclonal antibody were determined as functions of time. Plating efficiency plateaus at about 14% by Day 3 in culture. Transepithelial resistance rises to high levels, peaking at 1.76±0.14 KΩ-cm2 by Day 5 in culture. Short-circuit current peaks on Day 3 in culture at 2.71±0.35 μA/cm2. With time, the cells gradually become flattened with protuberant nuclei and long cytoplasmic extensions, more closely resembling type I cells, and begin to express a type I cell surface epitope. These observations indicate that it is feasible to culture alveolar epithelial cell monolayers under completely defined serum-free conditions de novo. This culture system should prove useful for identifying soluble growth factors and matrix substances that modulate alveolar epithelial cell biological properties.  相似文献   

2.
Several physiological and pathophysiological events involving vascular endothelium occur at the microvascular level. Studies on human microvasculature require homogenous primary cultures of microvascular endothelial cells. However, procedures available for isolating and culturing human dermal microvascular cells (HDMEC) result in significant contamination with fibroblasts. To eliminate contamination with fibroblasts or other cells, we developed a procedure to isolate HDMEC from neonatal human foreskin by panning the cells using EN4, an anti-endothelial cell monoclonal antibody. Panned cells uniformly expressed von Willebrand factor and CD36, confirming their microvascular endothelial characteristics, whereas cells cultured without panning showed a significant degree of contamination with fibroblasts. In the presence of vascular endothelial growth factor (VEGF), HDMEC could be cultured under serum-free conditions. VEGF stimulated the growth of HDMEC in a dose-dependent manner in serum-free medium or in media supplemented with either human serum or newborn calf serum. Since differences exist between large vessel endothelial cells and microvascular endothelial cells, we compared the response to VEGF stimulation of HDMEC with human umbilical vein endothelial cells (HUVEC). The dose response of the two cell types to VEGF was different. This effect of VEGF on endothelial cells may be mediated by the VEGF receptorkdr,since mRNA forkdrwas detected using RT–PCR in both HDMEC and HUVEC. The procedure described in this study will make possible the culture of highly enriched HDMEC without contamination with fibroblasts and facilitate studies with these cells under defined assay conditions in a serum-free environment.  相似文献   

3.
Summary We have developed a culture system for early bovine embryos in serum-free media conditioned by oviduct cell monolayers. A gentle mechanical procedure for oviduct cell isolation has been applied for this purpose avoiding the use of proteolytic enzymes. The aim of the present study was to identify the cell types present in the monolayers and to examine their fate in primary culture in serum-free or in serum-containing media by means of electronmicroscopical, immunocytochemical, and biochemical analyses. The cell dissociation procedure yielded two cell populations: ciliary cells and secretory cells that gradually dedifferentiate during culture. These cells formed a confluent monolayer after 6 d of culture in Tissue Culture Medium 199 medium supplemented with 10% fetal calf serum. Confluent cells displayed a typical epithelial cell morphology as assessed by phase contrast and electron microscopy and all the cells contained cytokeratin filaments as determined by immunocytochemistry. The overall histoarchitecture of the monolayer was preserved after washing and further culture for 7 d in serum-free medium. However, some degenerative signs indicate that the serum-free culture should not be extended for more than 7 d. Confluent oviduct cells also maintained their metabolic and protein secretory activity when deprived of serum. Total protein content in the culture supernatant linearly increased as a function of time and numerous peaks were detected after separation of proteins by high performance ion exchange chromatography. Protein elution patterns were reproducible and most of the proteins present in the culture medium were neosynthesized as determined by the incorporation of radiolabeled amino acids into nondialyzable proteins.  相似文献   

4.
Summary Human umbilical vein endothelial cells (HUV-EC) grew rapidly in vitro in medium supplemented with epidermal growth factor, fetal bovine serum (FBS) and human diploid fibroblast-conditioned medium. The effect of FBS could be replaced partially by bovine serum albumin, cholesterol, and vitamin E, and completely by further addition of serum dialysate or refeeding every other day. Among these components, fibroblast-conditioned medium is essential for HUV-EC growth. The HUV-EC were cultured serially for over 50 population doublings in the 10% FBS containing fibroblast-conditioned medium and for over 40 population doublings in the serum-free medium. Mitogenic factor(s) present in the medium conditioned by fibroblasts may be related to endothelial cell growth factor and play an important role angiogenesis and regeneration of vascular endothelium in vitro.  相似文献   

5.
6.
Background aimsEx vivo propagation of sparse populations of human mesenchymal stromal cells (hMSC) is critical for generating numbers sufficient for therapeutic applications. hMSC culture media have typically been supplemented with animal serum and, recently, human-sourced materials. However, these supplements are ill-defined and, thus, undesirable for clinical and research applications. Previously reported efforts to develop defined media for hMSC culture only resulted in slow or limited proliferation, and were unsuccessful in expanding these cells from primary cultures. Therefore a major step forward would be the identification of defined, serum-free culture conditions capable of supporting both the isolation and rapid expansion of hMSC.MethodsUsing classical approaches of medium development, we were able to identify a set of growth and attachment factors that allowed the serum-free isolation and expansion of hMSC from bone marrow.ResultsHeparin, selenium and platelet-derived growth factor (PDGF)-BB were found to be inhibitory for the growth of hMSC, whereas basic fibroblast growth factor (bFGF) was critical and worked synergistically with transforming growth factor (TGF)-β1 to allow significant cell expansion. Ascorbic acid, hydrocortisone and fetuin were also found to be important growth and attachment factors that, in conjunction with substrate-coating proteins, allowed the isolation of hMSC from primary culture and their subsequent expansion.ConclusionsWe report a defined medium formulation (PPRF-msc6), consisting of key recombinant and serum-derived components, for the rapid isolation and expansion of hMSC in the absence of serum. This work represents an important step forward for achieving an ideal, completely defined synthetic medium composition for the safe use of hMSC in clinical settings.  相似文献   

7.
We have demonstrated in this study that we could eliminate the requirement of a serum preincubation for proliferation of B104 neuroblastoma cells in defined medium. When cells were plated directly into serum-free defined medium after trypsin or EGTA detachment, they had no difficulty in adhering or remaining attached to the plastic substratum but were incapable of cell division. However, the addition of human plasma fibronectin to serum-free defined medium and precoating the tissue culture dishes with polylysine at each subculture permitted cell division to occur. Fibronectin was only required at the time of subculture and did not need to be replenished at each medium change. In addition, we have shown that clonal growth and serial subculture are possible in serum-free defined medium provided that the cell inoculum encounters the appropriate substratum. These findings are consistent with a role for fibronectin and a positively charged substratum in the growth regulation of B104 neuroblastoma cells. This completely defined culture system will be of great benefit in studying the growth regulation and differentiation of these neuronal cells.  相似文献   

8.
Mesothelial cells are the putative progenitors of mesotheliomas and cell lines have been used as tools to study the responses of these cells to various stimuli, including growth factors. The present study was undertaken to develop a rat mesothelial cell line capable of sustained growth under serum-free conditions with the object of avoiding the possible confounding effects of undefined serum components. Responses of mesothelial cells to epidermal growth factor were shown to differ under serum-free versus low-serum culture conditions. In contrast, a cell line, SFM1, adapted to growth in serum-free medium was characterized and found to exhibit responses to growth factors similar to the responses reported for human cell lines. This new line should prove to be a useful model for the study of these cells in vitro .  相似文献   

9.
A serum-free defined culture system has been developed that maintains follicle-stimulating hormone (FSH)-dependent differentiation of porcine granulosa cells from small follicles for up to six days in culture. Confluent monolayers of epithelioid cells were established after culture on fibronectin-coated culture dishes (FBN, 2 micrograms/cm2) in nutrient medium supplemented with human low-density lipoprotein (LDL, 10 micrograms/ml), insulin (I, 1 microgram/ml), and thrombin (TH, 1 NIH U/ml). Each of these factors was necessary to maintain the epithelioid morphology of the monolayers that attained 70% of the protein content and 71% of the cell number of replicate cultures maintained in nutrient medium supplemented with 10% fetal calf serum and insulin. Addition of FSH to the FBN/LDL/I/TH-supplemented cultures resulted in dose-dependent increases in progesterone secretion and [125I]-iodo-human chorionic gonadotropin (hCG) binding comparable to those obtained in the cultures containing serum. These results indicate that the attachment, epithelioid morphology, and differentiated function of porcine granulosa cells (GCs) can be maintained in defined culture conditions. This culture system will facilitate study of the effects of growth promoters and differentiative agents on GC function in the absence of poorly defined serum supplements.  相似文献   

10.
Experimental conditions have been defined that allow bovine corneal endothelial (BCE) cells to grow in the complete absence of serum. Low density BCE cell cultures maintained on extracellular matrix (ECM)-coated dishes and plated in the total absence of serum proliferate actively when exposed to a synthetic medium supplemented with high density lipoprotein (HDL 500 μg protein/ml), transferrin (10 μg/ml), insulin (5 μg/ml), and fibroblast (FGP) or epidermal growth factor (EGF) added at concentrations of 100 or 50 ng/ml, respectively. Omission of any of these components results in a lower growth rate and/or final cell density of the cultures. BCE cell cultures plated on plastic dishes and exposed to the same synthetic medium grow very poorly. The longevity of BCE cultures maintained on plastic versus ECM and exposed to serum-free versus serum-containing medium has been studied. The use of ECM-coated dishes extended the life span of BCE cultures maintained in serum-supplemented medium to over 120 generations, as compared to less than 20 generations for cultures maintained on plastic. Likewise, BCE cells maintained on ECM and exposed to a synthetic medium supplemented with optimal concentrations of HDL, transferrin, insulin, and FGF underwent 85 generations, whereas control cultures maintained on plastic could not be passaged. The enhancing effect of ECM on BCE cell growth and culture longevity clearly illustrates the importance of the cell substrate in the control of proliferation of these cells.  相似文献   

11.
In this study, we demonstrate that an IL-2-dependent T-cell clone (HT-2) can be grown in a serum-free medium (HB101) with defined additives at rates comparable to those which can be obtained in serum-containing medium. Further, we show that cells cultured in the serum-free medium in the absence of IL-2 arrest growth in the G1 portion of the cell cycle, and that these arrested cells can be stimulated to reenter the cell cycle upon the addition of IL-2 to the culture medium. Growth of these cells in the absence of serum requires the presence of IL-2 as well as other hormones and growth factors and 2-mercaptoethanol. HT-2 cells have been grown continuously in the serum-free medium for periods of up to 1 month.  相似文献   

12.
Summary The requirement of serum in cell culture is a major limitation for studies on secreted ribonucleases (RNases) because serum contains a high amount of ribonucleolytic activity. Defined culture condition is thus of interest to improve our knowledge of the RNase biology. We report here that cells from three different types and origins, Chinese hamster lung fibroblasts, bovine smooth muscle cells, and human endothelium-derived EA.hy926 cells, proliferate consistently in the presence of a basal medium supplemented with bovine serum albumin, high-density lipoproteins, basic fibroblast growth factor, insulin, and transferrin. Using a new quantitative radio-RNase inhibitor assay, two distinct ribonucleolytic assays, and a radioimmunoassay against angiogenin, it is shown that RNases became apparent in media conditioned by cell monolayers. Both the hamster lung fibroblast and the EA.hy926 cell lines secreted larger amounts of RNase inhibitor-interacting factors and RNase activity than normal smooth muscle cells. The serum-free medium represents an alternative way to grow these cells and allows investigation of biosynthesis and functions of RNases in culture. It should be useful to identify and quantitate unambiguously specific members of the RNase family secreted by normal versus tumor cells in culture.  相似文献   

13.
Summary CEM-C7, a human leukemic CD4+ T-lymphocyte cell line and three of its subclones, CEM-4R4, CEM-3R43, and ICR-27, previously cultured in a medium supplemented with 5 to 10% fetal bovine serum, have been adapted to serum-free media. The best medium of those tested was RPMI 1640 supplemented with 5 μg/ml each transferrin and insulin + 5 ng/ml sodium selinite ± 0.1% bovine serum albumin. While growing either with or without albumin, the several clonal lines of CEM cells displayed growth similar to serum-supplemented cultures. Cell proliferation of CEM-C7 cells cultured in both serum-free media has been sustained for 3 mo, with culture doubling times of about 25 h for both serum-supplemented and serum-free cultures (viability ≥ 90%). Cell morphology remained essentially the same in serum-free or serum containing media. The expression of CD4, a marker for T-derived lymphoid cells, was not significantly different in serum-free medium. When grown in serum-free medium, CEM-C7 cells exhibited increased steroid responsiveness as evidenced by increased glucocorticoid receptor binding sites, increased induction of glutamine synthetase, and cell lysis at lower concentrations of steroid. Receptor mutant subclones of CEM-C7, which are proven to be completely unresponsive to micromolar concentrations of dexamethasone when grown in serum-supplemented medium, become partially sensitive to the hormone after growth in defined medium. The increased sensitivity of CEM-C7 cells and its subclones to dexamethasone in serum-free medium returned to previous levels when these cells were recultured in serum-containing medium. Our results suggest that substances in serum influence steroid effects on these cells and that the molecular details of glucocorticoid hormone action may be pursued more precisely in a clearly defined culture medium. This work was conducted in conjunction with the Walls Medical Research Foundation.  相似文献   

14.
The effects of ionizing irradiation (0, 600, 1,500, or 3,000 rads) on the permeability of pulmonary endothelial monolayers to albumin were studied. Pulmonary endothelial cells were grown to confluence on gelatin-coated polycarbonate filters, placed in serum-free medium, and exposed to a 60Co source. The monolayers were placed in modified flux chambers 24 hours after irradiation; 125I-albumin was added to the upper well, and both the upper and lower wells were serially sampled over 4 hours. The amount of albumin transferred from the upper well/hour over the period of steady-state clearance (90-240 min after addition of 125I-albumin) was 2.8 +/- 0.2% in control monolayers and was increased in monolayers exposed to 1,500 or 3,000 rads (increase of 63 +/- 10% and 61 +/- 10%, respectively, P less than 0.01). No increase was found in monolayers exposed to 600 rads. The increases in endothelial albumin transfer rates were associated with morphologic evidence of monolayer disruption and endothelial injury which paralleled the changes in albumin permeability. Dose-dependent alterations in endothelial actin filament organization were also found. Incubation of the monolayers exposed to 3,000 rads with medium supplemented with 10% fetal calf serum for 24 hours resulted in normalization of albumin permeability, improvement in morphologic appearance of the monolayers, and reorganization of the actin filament structure. These studies demonstrate that ionizing radiation is an active principle in the reversible disorganization of cultured pulmonary endothelial cell monolayers without the need of other cell types or serum components.  相似文献   

15.
16.
Summary Proliferation and differentiation of opossum kidney cells in a serum-free defined medium was investigated and compared to that under conditions in which fetal bovine serum FBS (10%) was employed. Monolayers were grown in Dulbecco's modified Eagle's medium-Ham's F12 nutrient mixture containing insulin (10 μg/ml), bovine serum albumin fraction V (1 mg/ml) and fetuin (1 mg/ml). Cells in serum-free medium seeded at 1×104 per cm2 grew to confluency within 6 to 8 d and formed hemicysts or domes at a frequency equivalent to those in serum-containing medium. Electron microscopy of cultures grown in serum-free medium revealed polarized monolayers with the presence of microvilli and tight junctions. The differentiated characteristics, including sodium-dependent phosphate transport, the inhibition of this transport by parathyroid hormone (PTH), and the generation of cyclic AMP in response to PTH, were preserved in opossum kidney cells grown in serum-free medium.  相似文献   

17.
In an effort to obtain defined culture conditions for ex vivo expansion of hematopoietic stem and progenitor cells which avoid the supplementation of serum, we cultured human CD34(+) hematopoietic progenitor cells in a chemically defined, serum-free medium in the presence of hematopoietic growth factors (HGFs), stem cell factor (SCF), interleukin (IL)-1beta, IL-3, IL-6, and erythropoietin (EPO). A medium, SFM-1, was prepared according to a protocol previously optimized for semisolid progenitor cell assays containing Iscove's Modified Dulbecco's Medium (IMDM) plus cholesterol, bovine serum albumin, transferrin, nucleotides and nucleosides, insulin, and beta-mercaptoethanol. In static cultures seeded with CD34(+)-enriched progenitor cells isolated from human peripheral blood, a mean 76.6-fold expansion of total nucleated cells and a mean 4.6-fold expansion of colony-forming cells (CFC) was recorded after 14 days. Morphological analysis of the expanded cells revealed formation of myeloid, erythroid, and megakaryocytic cells. Flow cytometric analysis indicated that CD34(+) antigen expressing cells were maintained to a limited degree only, and cell populations expressing surface markers for myeloid (CD33, CD14, and CD15) and megakaryocytic (CD41a) lineages predominated. Within SFM-1, bovine serum albumin (BSA), cholesterin, and transferrin represented the most critical components needed for efficient total cell and CFC expansion. Addition of autologous patient plasma (APP) or fetal calf serum (FCS) to SFM-1 resulted in inferior cell amplification and CFC formation compared to controls in SFM-1, indicating that the components used in SFM-1 could replace exogenous serum. Four commercially available serum-free media resulted in either comparable or lower total cell and CFC yields as SFM-1. The transplantation potential of CD34(+) cells after culture in SFM-1 was assayed using limiting dilution analysis on preformed irradiated bone marrow stroma and revealed maintenance of long-term bone marrow culture initiating cell (LTCIC) levels during the culture period. These data indicate that HGF-supported multilineage ex vivo expansion of human CD34(+) hematopoietic progenitor cells is feasible using an IMDM-based culture medium which contains a restricted number of additives, resulting in analogous or improved yields of both primitive and differentiated cells compared to previously established protocols. We suggest that this culture protocol is of advantage when working with pharmaceutical-grade preparations under serum-free conditions.  相似文献   

18.
Summary The estrogen-responsive Leghorn strain M chicken hepatoma (LMH) cell line provides a model system for studying the estrogen-dependent, liver-specific expression of avian genes. Serum-free culture conditions have been established that allow expression of apolipoprotein B, very low density apolipoprotein II (apoVLDLII), serum albumin, and transferrin at levels detectable by Northern blot analysis. Regulation of apoVLDLII mRNA by estrogen occurred in an appropriate time-and dose-dependent manner in serum-free cultures of the LMH cells. The expression of apoVLDLII mRNA in serum-free culture was at least 100-fold higher than that expressed in cultures containing 10% serum. The level of estrogen receptors in LMH cells cultured with 10% serum was approximately 2000 receptors per cell, and in serum-free culture approximately 1000 receptors per cell. When these cells were transfected with estrogen receptor DNA and cultured in serum-free medium, apoVLDLII mRNA was decreased relative to that expressed in cells transfected with a control plasmid. These results indicate that when the LMH cells are cultured without serum, estrogen receptors are not the limiting factor for the expression of the apoVLDLII gene.  相似文献   

19.
Active proteinase inhibitors associated with human breast epithelial cells   总被引:1,自引:0,他引:1  
The major glycoproteins synthesized by human breast epithelial cells have been characterized [6,8]. The most consistently observed and prominent component in supernatants of organ cultures of breast surgical specimens and of MCF-7 cells was gp 68 which has been immunologically identified as alpha-1-antichymotrypsin (Achy). In the present study we demonstrate that this glycoprotein can form an irreversible complex with chymotrypsin, which indicates that it is a functional inhibitor. The 14C-glucosamine-labeled gp 68 forms a stable, 88,000-dalton, enzyme-inhibitor complex with chymotrypsin. The molecule is secreted continuously for 9 days into a chemically defined, serum-free medium. In addition to the de novo synthesized inhibitor, another component is absorbed from fetal bovine serum and subsequently released into serum-free medium. This component also forms an irreversible, 88,000-dalton complex with enzyme. The observations establish that two types of inhibitors are associated with human breast epithelial cells, one actively synthesized and the other derived from serum. Both of these molecules may have significant roles in stabilizing cell surface components and in protecting extracellular matrices from untimely degradation.  相似文献   

20.
A novel protein has been purified from fetal calf serum and from serum-free bovine aortic endothelial cell conditioned culture medium. This protein consists of a single polypeptide chain of reduced Mr 70,000 (70K protein) and was separated from bovine serum albumin and other proteins by ion-exchange chromatography and immunoabsorption on Sepharose-coupled anti-70K protein antiserum. The 70K protein was shown to be structurally and immunologically distinct from bovine serum albumin, alpha-fetoprotein, and vitronectin by one- and two-dimensional peptide mapping, amino acid analysis, and enzyme-linked immunosorbent assay and/or immunoblotting. The 70K protein was located in endothelial cell cytoplasmic granules of irregular size and distribution. Metabolic radiolabeling studies showed that the 70K protein was not a biosynthetic product of these cells; its cytoplasmic location was due to a selective uptake from the fetal calf serum in which the cells were initially grown. After subconfluent cultures of endothelial cells were shifted to serum-free medium, nearly 80% of the total 70K protein that was measurable in the medium was released between 0 and 20 min. Moreover, sparse, rapidly proliferating cells released approximately 18-fold more 70K protein within 2 min as compared to dense, nonproliferating cultures. The concentration of 70K protein in fetal calf serum was estimated to be 400-600 micrograms/ml. Proliferating bovine aortic endothelial cells, 24 h after plating at an intermediate density, released approximately 250 pg of 70K protein/cell within the first 20 min after exposure to serum-free conditions. The data provide evidence for a novel protein in serum which is selectively internalized by endothelial cells in vitro and which in turn is released rapidly under conditions such as osmotic imbalance due to serum removal, or during periods of cellular proliferation, conditions which we term "culture shock."  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号