首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In late summer through early winter of 1998, there were several outbreaks of respiratory disease in the swine herds of North Carolina, Texas, Minnesota, and Iowa. Four viral isolates from outbreaks in different states were analyzed genetically. Genotyping and phylogenetic analyses demonstrated that the four swine viruses had emerged through two different pathways. The North Carolina isolate is the product of genetic reassortment between H3N2 human and classic swine H1N1 influenza viruses, while the others arose from reassortment of human H3N2, classic swine H1N1, and avian viral genes. The hemagglutinin genes of the four isolates were all derived from the human H3N2 virus circulating in 1995. It remains to be determined if either of these recently emerged viruses will become established in the pigs in North America and whether they will become an economic burden.  相似文献   

2.
Phylogenetic profiles of the genes coding for the hemagglutinin (HA) protein, nucleoprotein (NP), matrix (M) protein, and nonstructural (NS) proteins of influenza B viruses isolated from 1940 to 1998 were analyzed in a parallel manner in order to understand the evolutionary mechanisms of these viruses. Unlike human influenza A (H3N2) viruses, the evolutionary pathways of all four genes of recent influenza B viruses revealed similar patterns of genetic divergence into two major lineages. Although evolutionary rates of the HA, NP, M, and NS genes of influenza B viruses were estimated to be generally lower than those of human influenza A viruses, genes of influenza B viruses demonstrated complex phylogenetic patterns, indicating alternative mechanisms for generation of virus variability. Topologies of the evolutionary trees of each gene were determined to be quite distinct from one another, showing that these genes were evolving in an independent manner. Furthermore, variable topologies were apparently the result of frequent genetic exchange among cocirculating epidemic viruses. Evolutionary analysis done in the present study provided further evidence for cocirculation of multiple lineages as well as sequestering and reemergence of phylogenetic lineages of the internal genes. In addition, comparison of deduced amino acid sequences revealed a novel amino acid deletion in the HA1 domain of the HA protein of recent isolates from 1998 belonging to the B/Yamagata/16/88-like lineage. It thus became apparent that, despite lower evolutionary rates, influenza B viruses were able to generate genetic diversity among circulating viruses through a combination of evolutionary mechanisms involving cocirculating lineages and genetic reassortment by which new variants with distinct gene constellations emerged.  相似文献   

3.
The evolution and population dynamics of human influenza in Taiwan is a microcosm of the viruses circulating worldwide, which has not yet been studied in detail. We collected 343 representative full genome sequences of human influenza A viruses isolated in Taiwan between 1979 and 2009. Phylogenetic and antigenic data analysis revealed that H1N1 and H3N2 viruses consistently co-circulated in Taiwan, although they were characterized by different temporal dynamics and degrees of genetic diversity. Moreover, influenza A viruses of both subtypes underwent internal gene reassortment involving all eight segments of the viral genome, some of which also occurred during non-epidemic periods. The patterns of gene reassortment were different in the two subtypes. The internal genes of H1N1 viruses moved as a unit, separately from the co-evolving HA and NA genes. On the other hand, the HA and NA genes of H3N2 viruses tended to segregate consistently with different sets of internal gene segments. In particular, as reassortment occurred, H3HA always segregated as a group with the PB1, PA and M genes, while N2NA consistently segregated with PB2 and NP. Finally, the analysis showed that new phylogenetic lineages and antigenic variants emerging in summer were likely to be the progenitors of the epidemic strains in the following season. The synchronized seasonal patterns and high genetic diversity of influenza A viruses observed in Taiwan make possible to capture the evolutionary dynamic and epidemiological rules governing antigenic drift and reassortment and may serve as a “warning” system that recapitulates the global epidemic.  相似文献   

4.
Influenza virus surveillance, poultry outbreak investigations and genomic sequencing were assessed to understand the ecology and evolution of low pathogenicity avian influenza (LPAI) A viruses in Bangladesh from 2007 to 2013. We analyzed 506 avian specimens collected from poultry in live bird markets and backyard flocks to identify influenza A viruses. Virus isolation-positive specimens (n = 50) were subtyped and their coding-complete genomes were sequenced. The most frequently identified subtypes among LPAI isolates were H9N2, H11N3, H4N6, and H1N1. Less frequently detected subtypes included H1N3, H2N4, H3N2, H3N6, H3N8, H4N2, H5N2, H6N1, H6N7, and H7N9. Gene sequences were compared to publicly available sequences using phylogenetic inference approaches. Among the 14 subtypes identified, the majority of viral gene segments were most closely related to poultry or wild bird viruses commonly found in Southeast Asia, Europe, and/or northern Africa. LPAI subtypes were distributed over several geographic locations in Bangladesh, and surface and internal protein gene segments clustered phylogenetically with a diverse number of viral subtypes suggesting extensive reassortment among these LPAI viruses. H9N2 subtype viruses differed from other LPAI subtypes because genes from these viruses consistently clustered together, indicating this subtype is enzootic in Bangladesh. The H9N2 strains identified in Bangladesh were phylogenetically and antigenically related to previous human-derived H9N2 viruses detected in Bangladesh representing a potential source for human infection. In contrast, the circulating LPAI H5N2 and H7N9 viruses were both phylogenetically and antigenically unrelated to H5 viruses identified previously in humans in Bangladesh and H7N9 strains isolated from humans in China. In Bangladesh, domestic poultry sold in live bird markets carried a wide range of LPAI virus subtypes and a high diversity of genotypes. These findings, combined with the seven year timeframe of sampling, indicate a continuous circulation of these viruses in the country.  相似文献   

5.
Rapid evolution of H5N1 influenza viruses in chickens in Hong Kong   总被引:12,自引:0,他引:12       下载免费PDF全文
The H5N1 avian influenza virus that killed 6 of 18 persons infected in Hong Kong in 1997 was transmitted directly from poultry to humans. Viral isolates from this outbreak may provide molecular clues to zoonotic transfer. Here we demonstrate that the H5N1 viruses circulating in poultry comprised two distinguishable phylogenetic lineages in all genes that were in very rapid evolution. When introduced into new hosts, influenza viruses usually undergo rapid alteration of their surface glycoproteins, especially in the hemagglutinin (HA). Surprisingly, these H5N1 isolates had a large proportion of amino acid changes in all gene products except in the HA. These viruses maybe reassortants each of whose HA gene is well adapted to domestic poultry while the rest of the genome arises from a different source. The consensus amino acid sequences of "internal" virion proteins reveal amino acids previously found in human strains. These human-specific amino acids may be important factors in zoonotic transmission.  相似文献   

6.
Genetic analysis of three H1N2 viruses indicated that only HA genes of H1N2 viruses were similar to that of A/Guangdong/6/91(H1N1) virus (PR8-like strain), while the other seven genes of them were similar to those of H3N2 virus circulating in man in 1995. Therefore, it could be considered that the H1N2 viruses were derived from reassortment between PR8-like strain and H3N2 virus circulating in man in 1995. However, the genomes of H1N2 viruses were very similar to each other. So the H1N2 viruses isolated in 1998 were not derived from new reassortment between PR8-like strain and H3N2 virus circulating in man in 1998, but derived from the evolution of H1N2 virus found in 1995.  相似文献   

7.
Genetic analysis of three H1N2 viruses indicated that only HA genes of H1N2 viruses were similar to that of A/Guangdong/6/91(H1N1) virus (PR8-like strain), while the other seven genes of them were similar to those of H3N2 virus circulating in man in 1995. Therefore, it could be considered that the H1N2 viruses were derived from reassortment between PR8-like strain and H3N2 virus circulating in man in 1995. However, the genomes of H1N2 viruses were very similar to each other. So the H1N2 viruses isolated in 1998 were not derived from new reassortment between PR8-like strain and H3N2 virus circulating in man in 1998, but derived from the evolution of H1N2 virus found in 1995.  相似文献   

8.
Understanding the evolution of influenza A viruses in humans is important for surveillance and vaccine strain selection. We performed a phylogenetic analysis of 156 complete genomes of human H3N2 influenza A viruses collected between 1999 and 2004 from New York State, United States, and observed multiple co-circulating clades with different population frequencies. Strikingly, phylogenies inferred for individual gene segments revealed that multiple reassortment events had occurred among these clades, such that one clade of H3N2 viruses present at least since 2000 had provided the hemagglutinin gene for all those H3N2 viruses sampled after the 2002–2003 influenza season. This reassortment event was the likely progenitor of the antigenically variant influenza strains that caused the A/Fujian/411/2002-like epidemic of the 2003–2004 influenza season. However, despite sharing the same hemagglutinin, these phylogenetically distinct lineages of viruses continue to co-circulate in the same population. These data, derived from the first large-scale analysis of H3N2 viruses, convincingly demonstrate that multiple lineages can co-circulate, persist, and reassort in epidemiologically significant ways, and underscore the importance of genomic analyses for future influenza surveillance.  相似文献   

9.
Three isolates of H9N2 Avian Influenza viruses (AIV) were isolated from chickens in Guangxi province. Eight pairs of specific primers were designed and synthesized according to the sequences of H9N2 at GenBank. phylogenetic analysis showed a high degree of homology between the Guangxi isolates and isolates from Guangdong and Jiangsu provinces, suggesting that the Guangxi isolates originated from the same source. However, the eight genes of the three isolates from Guangxi were not in the same sublineages in their respective phylogenetic trees, which suggests that they were products of natural reassortment between H9N2 avian influenza viruses from different sublineages. The 9 nucleotides ACAGAGATA which encode amino acids T, G, I were absent between nucleotide 205 and 214 in the open reading frame of the NA gene in the Guangxi isolates. AIV strains that infect human have, in their HA proteins, leucine at position 226. The analysis of deduced amino acid sequence of HA proteins showed that position 226 of these isolates contained glycine instead of leucine, suggesting that these three isolates differ from H9N2 AIV strains isolated from human infections.  相似文献   

10.
Evolution of swine H3N2 influenza viruses in the United States   总被引:22,自引:0,他引:22       下载免费PDF全文
During 1998, severe outbreaks of influenza were observed in four swine herds in the United States. This event was unique because the causative agents, H3N2 influenza viruses, are infrequently isolated from swine in North America. Two antigenically distinct reassortant viruses (H3N2) were isolated from infected animals: a double-reassortant virus containing genes similar to those of human and swine viruses, and a triple-reassortant virus containing genes similar to those of human, swine, and avian influenza viruses (N. N. Zhou, D. A. Senne, J. S. Landgraf, S. L. Swenson, G. Erickson, K. Rossow, L. Liu, K.-J. Yoon, S. Krauss, and R. G. Webster, J. Virol. 73:8851-8856, 1999). Because the U.S. pig population was essentially naive in regard to H3N2 viruses, it was important to determine the extent of viral spread. Hemagglutination inhibition (HI) assays of 4, 382 serum samples from swine in 23 states indicated that 28.3% of these animals had been exposed to classical swine-like H1N1 viruses and 20.5% had been exposed to the triple-reassortant-like H3N2 viruses. The HI data suggested that viruses antigenically related to the double-reassortant H3N2 virus have not become widespread in the U.S. swine population. The seroreactivity levels in swine serum samples and the nucleotide sequences of six additional 1999 isolates, all of which were of the triple-reassortant genotype, suggested that H3N2 viruses containing avian PA and PB2 genes had spread throughout much of the country. These avian-like genes cluster with genes from North American avian viruses. The worldwide predominance of swine viruses containing an avian-like internal gene component suggests that these genes may confer a selective advantage in pigs. Analysis of the 1999 swine H3N2 isolates showed that the internal gene complex of the triple-reassortant viruses was associated with three recent phylogenetically distinct human-like hemagglutinin (HA) molecules. Acquisition of HA genes from the human virus reservoir will significantly affect the efficacy of the current swine H3N2 vaccines. This finding supports continued surveillance of U.S. swine populations for influenza virus activity.  相似文献   

11.
Deng YM  Caldwell N  Barr IG 《PloS one》2011,6(8):e23400

Background

Given the continuing co-circulation of the 2009 H1N1 pandemic influenza A viruses with seasonal H3N2 viruses, rapid and reliable detection of newly emerging influenza reassortant viruses is important to enhance our influenza surveillance.

Methodology/Principal Findings

A novel pyrosequencing assay was developed for the rapid identification and subtyping of potential human influenza A virus reassortants based on all eight gene segments of the virus. Except for HA and NA genes, one universal set of primers was used to amplify and subtype each of the six internal genes. With this method, all eight gene segments of 57 laboratory isolates and 17 original specimens of seasonal H1N1, H3N2 and 2009 H1N1 pandemic viruses were correctly matched with their corresponding subtypes. In addition, this method was shown to be capable of detecting reassortant viruses by correctly identifying the source of all 8 gene segments from three vaccine production reassortant viruses and three H1N2 viruses.

Conclusions/Significance

In summary, this pyrosequencing assay is a sensitive and specific procedure for screening large numbers of viruses for reassortment events amongst the commonly circulating human influenza A viruses, which is more rapid and cheaper than using conventional sequencing approaches.  相似文献   

12.
Ma W  Gramer M  Rossow K  Yoon KJ 《Journal of virology》2006,80(10):5092-5096
Since the introduction of H3N2 swine influenza viruses (SIVs) into U.S. swine in 1998, H1N2 and H1N1 reassortant viruses have emerged from reassortment between classical H1N1 and H3N2 viruses. In 2004, a new reassortant H3N1 virus (A/Swine/Minnesota/00395/2004) was identified from coughing pigs. Phylogenetic analyses revealed a hemagglutinin segment similar to those of contemporary cluster III H3N2 SIVs and a neuraminidase sequence of contemporary H1N1 origin. The internal genes were of swine, human, and avian influenza virus origin, similar to those of contemporary U.S. cluster III H3N2 SIVs. The recovery of H3N1 is further evidence of reassortment among SIVs and justifies continuous surveillance.  相似文献   

13.
In 1997, an H5N1 influenza virus outbreak occurred in chickens in Hong Kong, and the virus was transmitted directly to humans. Because there is limited information about the avian influenza virus reservoir in that region, we genetically characterized virus strains isolated in Hong Kong during the 1997 outbreak. We sequenced the gene segments of a heterogeneous group of viruses of seven different serotypes (H3N8, H4N8, H6N1, H6N9, H11N1, H11N9, and H11N8) isolated from various bird species. The phylogenetic relationships divided these viruses into several subgroups. An H6N1 virus isolated from teal (A/teal/Hong Kong/W312/97 [H6N1]) showed very high (>98%) nucleotide homology to the human influenza virus A/Hong Kong/156/97 (H5N1) in the six internal genes. The N1 neuraminidase sequence showed 97% nucleotide homology to that of the human H5N1 virus, and the N1 protein of both viruses had the same 19-amino-acid deletion in the stalk region. The deduced hemagglutinin amino acid sequence of the H6N1 virus was most similar to that of A/shearwater/Australia/1/72 (H6N5). The H6N1 virus is the first known isolate with seven H5N1-like segments and may have been the donor of the neuraminidase and the internal genes of the H5N1 viruses. The high homology between the internal genes of H9N2, H6N1, and the H5N1 isolates indicates that these subtypes are able to exchange their internal genes and are therefore a potential source of new pathogenic influenza virus strains. Our analysis suggests that surveillance for influenza A viruses should be conducted for wild aquatic birds as well as for poultry, pigs, and humans and that H6 isolates should be further characterized.  相似文献   

14.
The presence of low-pathogenic H7 avian influenza virus (AIV), which is associated with live-bird markets (LBM) in the Northeast United States, was first detected in 1994 and, despite efforts to eradicate the virus, surveillance of these markets has resulted in numerous isolations of H7 AIVs from several states from 1994 through 1998. The hemagglutinin, nonstructural, and matrix genes from representative H7 isolates from the LBM and elsewhere were sequenced, and the sequences were compared phylogenetically. The hemagglutinin gene of most LBM isolates examined appeared to have been the result of a single introduction of the hemagglutinin gene. Evidence for evolutionary changes were observed with three definable steps. The first isolate from 1994 had the amino acid threonine at the -2 position of the hemagglutinin cleavage site, which is the most commonly observed amino acid at this site for North American H7 AIVs. In January 1995 a new genotype with a proline at the -2 position was detected, and this genotype eventually became the predominant virus isolate. A third viral genotype, detected in November 1996, had an eight-amino-acid deletion within the putative receptor binding site. This viral genotype appeared to be the predominant isolate, although isolates with proline at the -2 position without the deletion were still observed in viruses from the last sampling date. Evidence for reassortment of multiple viral genes was evident. The combination of possible adaptive evolution of the virus and reassortment with different influenza virus genes makes it difficult to determine the risk of pathogenesis of this group of H7 AIVs.  相似文献   

15.
Swine influenza virus (SIV) H3N2 with triple reassorted internal genes (TRIG) has been enzootic in Unites States since 1998. Transmission of the 2009 pandemic H1N1 (pH1N1) virus to pigs in the United States was followed by reassortment with endemic SIV, resulting in reassorted viruses that include novel H3N2 genotypes (rH3N2p). Between July and December 2011, 12 cases of human infections with swine-lineage H3N2 viruses containing the pandemic matrix (pM) gene [A(H3N2)v] were detected. Whole-genome analysis of H3N2 viruses isolated from pigs from 2009 to 2011 sequenced in this study and other available H3N2 sequences showed six different rH3N2p genotypes present in the U.S. swine population since 2009. The presence of the pM gene was a common feature among all rH3N2p genotypes, but no specific genotype appeared to predominate in the swine population. We compared the pathogenic, transmission, genetic, and antigenic properties of a human A(H3N2)v isolate and two swine H3N2 isolates, H3N2-TRIG and rH3N2p. Our in vivo study detected no increased virulence in A(H3N2)v or rH3N2p viruses compared to endemic H3N2-TRIG virus. Antibodies to cluster IV H3N2-TRIG and rH3N2p viruses had reduced cross-reactivity to A(H3N2)v compared to other cluster IV H3N2-TRIG and rH3N2p viruses. Genetic analysis of the hemagglutinin gene indicated that although rH3N2p and A(H3N2)v are related to cluster IV of H3N2-TRIG, some recent rH3N2p isolates appeared to be forming a separate cluster along with the human isolates of A(H3N2)v. Continued monitoring of these H3N2 viruses is necessary to evaluate the evolution and potential loss of population immunity in swine and humans.  相似文献   

16.
Since the outbreak in humans of an H5N1 avian influenza virus in Hong Kong in 1997, poultry entering the live-bird markets of Hong Kong have been closely monitored for infection with avian influenza. In March 1999, this monitoring system detected geese that were serologically positive for H5N1 avian influenza virus, but the birds were marketed before they could be sampled for virus. However, viral isolates were obtained by swabbing the cages that housed the geese. These samples, known collectively as A/Environment/Hong Kong/437/99 (A/Env/HK/437/99), contained four viral isolates, which were compared to the 1997 H5N1 Hong Kong isolates. Analysis of A/Env/HK/437/99 viruses revealed that the four isolates are nearly identical genetically and are most closely related to A/Goose/Guangdong/1/96. These isolates and the 1997 H5N1 Hong Kong viruses encode common hemagglutinin (H5) genes that have identical hemagglutinin cleavage sites. Thus, the pathogenicity of the A/Env/HK/437/99 viruses was compared in chickens and in mice to evaluate the potential for disease outbreaks in poultry and humans. The A/Env/HK/437/99 isolates were highly pathogenic in chickens but caused a longer mean death time and had altered cell tropism compared to A/Hong Kong/156/97 (A/HK/156/97). Like A/HK/156/97, the A/Env/HK/437/99 viruses replicated in mice and remained localized to the respiratory tract. However, the A/Env/HK/437/99 isolates caused only mild pathological lesions in these tissues and no clinical signs of disease or death. As a measure of the immune response to these viruses, transforming growth factor beta levels were determined in the serum of infected mice and showed elevated levels for the A/Env/HK/437/99 viruses compared to the A/HK/156/97 viruses. This study is the first to characterize the A/Env/HK/437/99 viruses in both avian and mammalian species, evaluating the H5 gene from the 1997 Hong Kong H5N1 isolates in a different genetic background. Our findings reveal that at least one of the avian influenza virus genes encoded by the 1997 H5N1 Hong Kong viruses continues to circulate in mainland China and that this gene is important for pathogenesis in chickens but is not the sole determinant of pathogenicity in mice. There is evidence that H9N2 viruses, which have internal genes in common with the 1997 H5N1 Hong Kong isolates, are still circulating in Hong Kong and China as well, providing a heterogeneous gene pool for viral reassortment. The implications of these findings for the potential for human disease are discussed.  相似文献   

17.
In this work, nineteen influenza A/H3N2 viruses isolated in Mexico between 2003 and 2012 were studied. Our findings show that different human A/H3N2 viral lineages co-circulate within a same season and can also persist locally in between different influenza seasons, increasing the chance for genetic reassortment events. A novel minor cluster was also identified, named here as Korea, that circulated worldwide during 2003. Frequently, phylogenetic characterization did not correlate with the determined antigenic identity, supporting the need for the use of molecular evolutionary tools additionally to antigenic data for the surveillance and characterization of viral diversity during each flu season. This work represents the first long-term molecular epidemiology study of influenza A/H3N2 viruses in Mexico based on the complete genomic sequences and contributes to the monitoring of evolutionary trends of A/H3N2 influenza viruses within North and Central America.  相似文献   

18.
【目的】分析季节性H3N2流感病毒PB1基因序列的变异情况,揭示H3N2流感病毒PB1基因的分子特征与进化趋势。【方法】对1968?2014年中国地区82株人H3N2毒株、2012?2014年江苏省分离的81株甲型H3N2流感病毒、6株SIV和4株AIV H3N2亚型PB1、PB1-F2基因进行分子进化分析。【结果】1968?2014年中国H3N2流感毒株PB1核苷酸和氨基酸相似性分别为90.91%?100%和96.91%?100%。系统进化树分析,1968?2014年共173株H3N2流感病毒总体上分为4个分支,2002?2014年分离毒株位于第IV分支上,1968?1994年分离毒株位于第II和III分支;猪源H3N2亚型分布于第I、II、IV分支上;分子特征显示PB1氨基酸52、113、179、216、576、586、619、621、709位在2002年以后发生适应性改变,替换了原来的氨基酸;PB1-F2基因编码截断型蛋白长度有52、34、25、24、11 aa (猪源),PB1-F2蛋白毒力关键位点上未出现高致病性特征突变。【结论】自1968年起H3N2亚型PB1基因变异逐步趋于稳定,且PB1-F2截断型毒株正逐渐成为一类新的进化特征,但PB1基因与其他亚型之间发生重配以及关键毒力位点的变异仍应是监测的重点。  相似文献   

19.
In 1997 and 1998, H9N2 influenza A viruses were isolated from the respiratory organs of Indian ring-necked parakeets (Psittacula Krameri manillensis) that had been imported from Pakistan to Japan. The two isolates were closely related to each other (>99% as determined by nucleotide analysis of eight RNA segments), indicating that H9N2 viruses of the same lineage were maintained in these birds for at least 1 year. The hemagglutinins and neuraminidases of both isolates showed >97% nucleotide identity with those of H9N2 viruses isolated from humans in Hong Kong in 1999, while the six genes encoding internal proteins were >99% identical to the corresponding genes of H5N1 viruses recovered during the 1997 outbreak in Hong Kong. These results suggest that the H9N2 parakeet viruses originating in Pakistan share an immediate ancestor with the H9N2 human viruses. Thus, influenza A viruses with the potential to be transmitted directly to humans may be circulating in captive birds worldwide.  相似文献   

20.
H9N2 avian influenza viruses (AIVs) are highly prevalent and of low pathogenicity in domestic poultry. These viruses show a high genetic compatibility with other subtypes of AIVs and have been involved in the genesis of H5N1, H7N9 and H10N8 viruses causing severe infection in humans. The first case of human infection with H9N2 viruses in Hunan province of China have been confirmed in November 2013 and identified that H9N2 viruses from live poultry markets (LPMs) near the patient’s house could be the source of infection. However, the prevalence, distribution and genetic characteristics of H9N2 viruses in LPMs all over the province are not clear. We collected and tested 3943 environmental samples from 380 LPMs covering all 122 counties/districts of Hunan province from February to April, 2014. A total of 618 (15.7%) samples were H9 subtype positive and 200 (52.6%) markets in 98 (80.3%) counties/districts were contaminated with H9 subtype AIVs. We sequenced the entire coding sequences of the genomes of eleven H9N2 isolates from environmental samples. Phylogenetic analysis showed that the gene sequences of the H9N2 AIVs exhibited high homology (94.3%-100%). All eleven viruses were in a same branch in the phylogenetic trees and belonged to a same genotype. No gene reassortment had been found. Molecular analysis demonstrated that all the viruses had typical molecular characteristics of contemporary avian H9N2 influenza viruses. Continued surveillance of AIVs in LPMs is warranted for identification of further viral evolution and novel reassortants with pandemic potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号