首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The Information Capacity of Nerve Cells Using a Frequency Code   总被引:4,自引:0,他引:4  
Approximate equations are derived for the amount of information a nerve cell or group of nerve cells can transmit about a stimulus of a given duration using a frequency code (i.e., assuming the mean frequency of nerve impulses measures the intensity of a maintained stimulus). The equations take into account the variability of successive interspike intervals, and any serial correlations between successive intervals, but do not require detailed assumptions about the mechanism of impulse initiation. The errors involved in using these approximations are evaluated for neurons which discharge either completely regularly, completely at random (Poisson process) or show a particular type of intermediate variability (gamma distribution model). The errors become negligibly small as the stimulus duration or the number of functionally similar nerve cells increases. The conditions for applying these equations to experimental data are discussed. The application of these equations should help considerably in eliminating the enormous discrepancies between some earlier estimates for the information processing capabilities of single nerve cells and systems of nerve cells.  相似文献   

2.
We interact with the world through the assessment of available, but sometimes imperfect, sensory information. However, little is known about how variance in the quality of sensory information affects the regulation of controlled actions. In a series of three experiments, comprising a total of seven behavioral studies, we examined how different types of spatial frequency information affect underlying processes of response inhibition and selection. Participants underwent a stop-signal task, a two choice speed/accuracy balance experiment, and a variant of both these tasks where prior information was given about the nature of stimuli. In all experiments, stimuli were either intact, or contained only high-, or low- spatial frequencies. Overall, drift diffusion model analysis showed a decreased rate of information processing when spatial frequencies were removed, whereas the criterion for information accumulation was lowered. When spatial frequency information was intact, the cost of response inhibition increased (longer SSRT), while a correct response was produced faster (shorter reaction times) and with more certainty (decreased errors). When we manipulated the motivation to respond with a deadline (i.e., be fast or accurate), removal of spatial frequency information slowed response times only when instructions emphasized accuracy. However, the slowing of response times did not improve error rates, when compared to fast instruction trials. These behavioral studies suggest that the removal of spatial frequency information differentially affects the speed of response initiation, inhibition, and the efficiency to balance fast or accurate responses. More generally, the present results indicate a task-independent influence of basic sensory information on strategic adjustments in action control.  相似文献   

3.
Some Models of Neuronal Variability   总被引:8,自引:0,他引:8       下载免费PDF全文
The pattern of nerve action potentials produced by unit permeability changes (quantal inputs) occurring at random is considered analytically and by computer simulation methods. The important parameters of a quantal input are size and duration. Varying both the mean and the probability density function of these parameters has calculable effects on the distribution of interspike intervals. Particular attention is paid to the relation between the mean rate of excitatory inputs and the mean frequency of nerve action potentials (input-output curve) and the relation between the coefficient of variation for the interval distribution and the mean interval (variability curve). In the absence of action potentials one can determine the parameters of the voltage distribution including the autocorrelation function and the power spectrum. These parameters can sometimes be used to approximate the variability of interspike intervals as a function of the threshold voltage. Different neuronal models are considered including one containing the Hodgkin-Huxley membrane equations. The negative feedback inherent in the Hodgkin-Huxley equations tends to produce a small negative serial correlation between successive intervals. The results are discussed in relation to the interpretation of experimental results.  相似文献   

4.
Two estimators, one additive the other multiplicative, are considered for mean frequencies in a complete three-way table. Using the mean square error criterion it is shown that preference for the additive estimator can be as high 7/8 in tables with row-column independence and in homogeneous tables. Extension to other estimators are discussed.  相似文献   

5.
岩溶植物光合-光响应曲线的两种拟合模型比较   总被引:6,自引:0,他引:6  
用直角双曲线和非直角双曲线两种模型,对桂林岩溶区石山植物红背山麻杆(Alchornea trewioides)、九龙藤(Bauhinia championii)、青檀(Pteroceltis tatarinowii)和圆叶乌桕(Sapium rotundifolium)光合作用的光响应曲线进行拟合。结果表明,直角双曲线拟合的表观量子效率(α)、最大净光合速率(Pmax)、暗呼吸速率(Rd)、光补偿点(Lcp)和光饱和点(Lφ)数值均高于相应的非直角双曲线拟合结果;直角双曲线模型拟合的参数值大小和曲线变化趋势不符合实际情况;非直角双曲线模型拟合结果更符合生理意义。红背山麻杆和九龙藤具有较高的表观量子效率和较低的光补偿点,对光能的利用效率和耐荫性均强于圆叶乌桕和青檀。  相似文献   

6.
This paper is focused on quantification (morphometry) and modeling of neuronal morphological complexity. First, computer-aided methods for reconstruction, processing, and analysis of raw morphological data are reviewed. Then, topological and metrical measures are touched upon. Fractal measures (together with the extension of multiscale fractal dimension) are presented more explicitly. Models of neuronal arborizations are differentiated between reconstruction models and growth models (stochastic or mechanistic). The growth model approach is discussed in more detail. The methods presented are applied to several types of neurons and shown to have considerable discriminative power. Recent developments stress the importance of these methods for optimizing virtual neuronal trees in view of functional characteristics of the neurons. Neirofiziologiya/Neurophysiology, Vol. 40, No. 4, pp. 366–372, July–August, 2008.  相似文献   

7.
为了正确检测和研究高频电刺激(high frequencystimulation,HFS)期间神经元的动作电位发放活动,进而深入揭示深部脑刺激治疗神经系统疾病的机制,本课题研究HFS期间锋电位波形的变化.在麻醉大鼠海马CA1区的输入神经通路Schaffer侧支上,施加1~2 min时长的100或者200 Hz顺向高频刺激(orthodromic-HFS,O-HFS),利用微电极阵列采集刺激下游神经元的多通道锋电位信号,并获得由O-HFS经过单突触传导激活的中间神经元的单元锋电位波形及其特征参数.结果表明,O-HFS使得锋电位的幅值明显减小而半高宽明显增加,以基线记录为基准计算百分比值,O-HFS期间锋电位的降支幅值和升支幅值分别可减小20%和40%左右,半高宽则增加10%以上.并且,在大量神经元同时产生动作电位期间,或者在比200 Hz具有更大兴奋作用的100 Hz刺激期间,锋电位波形的改变更多,幅值的减小可达50%,宽度的增加可达20%.可以推测,高频电刺激对于神经元的兴奋作用可能升高细胞膜电位,从而改变细胞膜离子通道的活动特性,导致动作电位波形的改变.这些结果支持深部脑刺激具有兴奋性调节作用的假说,对于正确分析高频电刺激期间神经元锋电位活动具有指导意义,也为进一步研究深部脑刺激(DBS)治疗脑神经系统疾病的机制提供了重要线索.  相似文献   

8.
9.
Mature olfactory neurons are continually replaced from a population of progenitor cells. Olfactory nerve section, bulbectomy, or treatment with certain chemicals induces degeneration of olfactory neurons followed in some cases by regeneration. Ornithine decarboxylase (ODC) activity was measured in mouse olfactory tissues as an indicator of cellular regeneration. ODC activity in olfactory tissue (0.2–0.4 nmol/mg protein/h) is 10-30 times higher than in a variety of other cerebral tissues. Within 3 h after unilateral olfactory nerve section, ODC activity in the epithelium declines to 50% of control followed by a slow return to basal activity by 6 days. In the same animals, ODC activity increases severalfold in bulb (1 day) with a gradual decline to normal (9 days). Except for an early transient increase, the effects of unilateral bulbectomy on epithelial ODC activity are similar to those seen after nerve section. The changes in ODC activity following intranasal irrigation with 10 mm -colchicine also closely mimic those seen after nerve section. The effects of intranasal irrigation on ODC activity with 0.5% Triton X-100 or 0.17 m -ZnSO4 are more complex. Thus, when the mature neuronal population is degenerating after surgery or chemical treatments, ODC activity decreases in the epithelium. The subsequent increase of ODC activity prior to reconstitution of the mature neuronal population probably reflects the regeneration mechanism of the olfactory epithelium. The increase of ODC activity in the olfactory bulb after nerve section is best interpreted as a cellular injury response. These alterations in ODC activity in olfactory tissues after chemical and surgical treatments constitute the earliest biochemical events observed in these tissues in response to cellular damage.  相似文献   

10.
A new application of LEHMACHER'S (1980) marginal homogeneity sign tests is given by analysis of bivariate response curves (or response surfaces) in two unpaired samples of hypertensive versus normotensive patients. Rationale and computations are illustrated by empirical data from sympathomedullary stress research.  相似文献   

11.
Optical coherence tomography (OCT) has revolutionises the diagnosis of retinal disease based on the detection of microscopic rather than subcellular changes in retinal anatomy. However, currently the technique is limited to the detection of microscopic rather than subcellular changes in retinal anatomy. However, coherence based imaging is extremely sensitive to both changes in optical contrast and cellular events at the micrometer scale, and can generate subtle changes in the spectral content of the OCT image. Here we test the hypothesis that OCT image speckle (image texture) contains information regarding otherwise unresolvable features such as organelle changes arising in the early stages of neuronal degeneration. Using ultrahigh resolution (UHR) OCT imaging at 800 nm (spectral width 140 nm) we developed a robust method of OCT image analyses, based on spatial wavelet and texture-based parameterisation of the image speckle pattern. For the first time we show that this approach allows the non-invasive detection and quantification of early apoptotic changes in neurons within 30 min of neuronal trauma sufficient to result in apoptosis. We show a positive correlation between immunofluorescent labelling of mitochondria (a potential source of changes in cellular optical contrast) with changes in the texture of the OCT images of cultured neurons. Moreover, similar changes in optical contrast were also seen in the retinal ganglion cell- inner plexiform layer in retinal explants following optic nerve transection. The optical clarity of the explants was maintained throughout in the absence of histologically detectable change. Our data suggest that UHR OCT can be used for the non-invasive quantitative assessment of neuronal health, with a particular application to the assessment of early retinal disease.  相似文献   

12.
Biochemistry (Moscow) - Neurodegeneration involves progressive pathological loss of a specific population of neurons, glial activation, and dysfunction of myelinating oligodendrocytes leading to...  相似文献   

13.
The cross-over design for clinical trials when responses are binary is discussed. Three tests which have been proposed for the analysis of this problem are compared by an assessment of their assumptions. A simple test to establish whether it is appropriate to include observations from the second period is presented.  相似文献   

14.
Investigation of mechanisms of information handling in neural assemblies involved in computational and cognitive tasks is a challenging problem. Synergetic cooperation of neurons in time domain, through synchronization of firing of multiple spatially distant neurons, has been widely spread as the main paradigm. Complementary, the brain may also employ information coding and processing in spatial dimension. Then, the result of computation depends also on the spatial distribution of long-scale information. The latter bi-dimensional alternative is notably less explored in the literature. Here, we propose and theoretically illustrate a concept of spatiotemporal representation and processing of long-scale information in laminar neural structures. We argue that relevant information may be hidden in self-sustained traveling waves of neuronal activity and then their nonlinear interaction yields efficient wave-processing of spatiotemporal information. Using as a testbed a chain of FitzHugh-Nagumo neurons, we show that the wave-processing can be achieved by incorporating into the single-neuron dynamics an additional voltage-gated membrane current. This local mechanism provides a chain of such neurons with new emergent network properties. In particular, nonlinear waves as a carrier of long-scale information exhibit a variety of functionally different regimes of interaction: from complete or asymmetric annihilation to transparent crossing. Thus neuronal chains can work as computational units performing different operations over spatiotemporal information. Exploiting complexity resonance these composite units can discard stimuli of too high or too low frequencies, while selectively compress those in the natural frequency range. We also show how neuronal chains can contextually interpret raw wave information. The same stimulus can be processed differently or identically according to the context set by a periodic wave train injected at the opposite end of the chain.  相似文献   

15.
Two simple models of the ecology of population growth are described: "exponential" growth with "r -selection," and "logistic" growth, with "K- selection." Various methods for estimating the parameters of these models are presented in detail, along with statistical methods of evaluation and comparison. Also briefly discussed are more complex models of population growth sometimes used by demographers and ecologists. The two simpler models of population growth are then applied, by way of illustration, to two episodes of population growth in protohistoric southwest Iran, dating from 4000–2350 B. C. Interpretation of the results and the implications for future research are then discussed . [population growth, statistical models, exponential growth, logistic growth, early Iran]  相似文献   

16.
17.
神经元凋亡的离体模型及其检测技术   总被引:1,自引:0,他引:1  
近年来,随着细胞凋亡研究的深入,神经元凋亡与神经退变病的关系愈发引人注目,已建立多种神经元凋亡的离体模型.多种因素如营养剥夺、自由基、谷氨酸、低钙及β-淀粉样蛋白等均可诱发神经元凋亡.凋亡的检测,可先从酶或蛋白质的变化判断神经元的损伤情况,再结合形态学观察,最后通过DNA电泳等确证.  相似文献   

18.
The result of computational operations performed at the single cell level are coded into sequences of action potentials (APs). In the cerebral cortex, due to its columnar organization, large number of neurons are involved in any individual processing task. It is therefore important to understand how the properties of coding at the level of neuronal populations are determined by the dynamics of single neuron AP generation. Here, we analyze how the AP generating mechanism determines the speed with which an ensemble of neurons can represent transient stochastic input signals. We analyze a generalization of the -neuron, the normal form of the dynamics of Type-I excitable membranes. Using a novel sparse matrix representation of the Fokker-Planck equation, which describes the ensemble dynamics, we calculate the transmission functions for small modulations of the mean current and noise noise amplitude. In the high-frequency limit the transmission function decays as , where surprisingly depends on the phase s at which APs are emitted. If at s the dynamics is insensitive to external inputs, the transmission function decays as (i) –3 for the case of a modulation of a white noise input and as (ii) –2 for a modulation of the mean input current in the presence of a correlated and uncorrelated noise as well as (iii) in the case of a modulated amplitude of a correlated noise input. If the insensitivity condition is lifted, the transmission function always decays as –1, as in conductance based neuron models. In a physiologically plausible regime up to 1 kHz the typical response speed is, however, independent of the high-frequency limit and is set by the rapidness of the AP onset, as revealed by the full transmission function. In this regime modulations of the noise amplitude can be transmitted faithfully up to much higher frequencies than modulations in the mean input current. We finally show that the linear response approach used is valid for a large regime of stimulus amplitudes.  相似文献   

19.
The study of sphingolipids has undergone a renaissance over the past decade due to the realization that these lipids are involved in a variety a biological processes, such as differentiation, apoptosis, cell growth, and cell migration. In the nervous system, sphingolipids, particularly gangliosides, have attracted particular attention as they occur at high levels and their levels change in a developmentally regulated program. Despite the fact that a large body of data has accumulated on the expression and metabolism of individual gangliosides within specific brain regions, the role of individual gangliosides in neuronal development is still poorly understood, and their specific functions are only now beginning to be elucidated. In the present article, we discuss various aspects of our current knowledge concerning the involvement of sphingolipids and gangliosides in neuronal development, and then discuss some recent findings that shed light on the role of sphingolipids and gangliosides obtained with animal models of sphingolipid and other lysosomal storage diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号