首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Formation of dimer molecules of a recombinant plasmid, pTIR10, which carries a pyrimidine/purine-biased stretch occurs about 6-fold more efficiently than for the control plasmid pUC19 inEscherichia coli strain JM107. Since pyrimidine/purine-biased sequences have a potential to form unusual DNA structures, this observation suggests that the inserted sequence affects the replication process of plasmid DNA, probably by forming a triple helix under physiological conditions.  相似文献   

2.
We report here the direct evidence for the formation of alternative DNA structures in a plasmid DNA, termed pTIR10, containing a 0.23-kb pyrimidine/purine-biased (Pyr/Pur) stretch isolated from the rat genome. Long Pyr/Pur sequences are abundant in eukaryotic genomes, and they may modulate the biological activity of genes and genomes via formation of various types of triplex-related structures. The plasmid DNA in sodium acetate buffer (pH 4.35) was deposited on APS-modified mica, and after drying it was imaged with an atomic force microscope in air. Various types of thick protrusions have been observed on pTIR10 DNA. Structural parameters (width and height) of DNA molecules suggest that the alternative structures observed here are variations on the theme of an intramolecular triplex. The biological relevance of the structural features within Pyr/Pur stretches is discussed.  相似文献   

3.
4.
5.
The chromosomal beta-lactamase (penicillinase, penP) gene from Bacillus licheniformis 749/C has been cloned in Escherichia coli. The locations of the target sites for various restriction enzymes on the 4.2-kilobase EcoRI fragment were determined. By matching the restriction mapping data with the potential nucleotide sequences of the penP gene deduced from known protein sequence, we established the exact position of the penP gene on the fragment. A bifunctional plasmid vector carrying the penP gene, plasmid pOG2165, was constructed which directs the synthesis of the heterologous beta-lactamase in both E. coli and Bacillus subtilis hosts. The protein synthesized in E. coli and B. subtilis is similar in size to the processed beta-lactamase made in B. licheniformis. Furthermore, the beta-lactamase made in B. subtilis is efficiently secreted by the host into the culture medium, indicating that B. subtilis is capable of carrying out the post-translational proteolytic cleavage(s) to convert the membrane-bound precursor enzyme into the soluble extracellular form.  相似文献   

6.
Site-directed mutagenesis of the T4 endonuclease V gene: role of lysine-130   总被引:3,自引:0,他引:3  
A Recinos  R S Lloyd 《Biochemistry》1988,27(6):1832-1838
The DNA sequence of the bacteriophage T4 denV gene which encodes the DNA repair enzyme endonuclease V was previously constructed behind the hybrid lambda promoter OLPR in a plasmid vector. The OLPR-denV sequence was subcloned in M13mp18 and used as template to construct site-specific mutations in the denV structural gene in order to investigate structure/function relationships between the primary structure of the protein and its various DNA binding and catalytic activities. The Lys-130 residue of the wild-type endonuclease V has been postulated to be associated with its apurinic endonuclease (AP-endonuclease) activity. The codon for Lys-130 was changed to His-130 or Gly-130, and each denV sequence was subcloned into a pEMBL expression vector. These plasmids were transformed into repair-deficient Escherichia coli (uvrA recA), and the following parameters were examined for cells or cell extracts: expression and accumulation of endonuclease V protein (K-130, H-130, or G-130); survival after UV irradiation; dimer-specific DNA binding; and kinetics of phosphodiester bond scission at pyrimidine dimer sites, dimer-specific N-glycosylase activity, and AP-endonuclease activity. The enzyme's intracellular accumulation was significantly decreased for G-130 and slightly decreased for H-130 despite normal levels of denV-specific mRNA for each mutant. On a molar basis, the endonuclease V gene products generally gave parallel levels of each of the catalytic and binding functions with K-130 greater than H-130 greater than G-130 much greater than control denV-.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Triple helix-forming oligonucleotides may be useful as gene-targeting reagents in vivo, for applications such as gene knockout. One important property of these complexes is their often remarkable stability, as demonstrated in solution and in cells following transfection. Although encouraging, these measurements do not necessarily report triplex stability in cellular compartments that support DNA functions such as replication and mutagenesis. We have devised a shuttle vector plasmid assay that reports the stability of triplexes on DNA that undergoes replication and mutagenesis. The assay is based on plasmids with novel variant supF tRNA genes containing embedded sequences for triplex formation and psoralen cross-linking. Triple helix-forming oligonucleotides were linked to psoralen and used to form triplexes on the plasmids. At various times after introduction into cells, the psoralen was activated by exposure to long wave ultraviolet light (UVA). After time for replication and mutagenesis, progeny plasmids were recovered and the frequency of plasmids with mutations in the supF gene determined. Site-specific mutagenesis by psoralen cross-links was dependent on precise placement of the psoralen by the triple helix-forming oligonucleotide at the time of UVA treatment. The results indicated that both pyrimidine and purine motif triplexes were much less stable on replicated DNA than on DNA in vitro or in total transfected DNA. Incubation of cells with amidoanthraquinone-based triplex stabilizing compounds enhanced the stability of the pyrimidine triplex.  相似文献   

8.
A DNA third strand with a 3'-psoralen substituent was designed to form a triplex with the sequence downstream of the T.A mutant base pair of the human sickle cell beta-globin gene. Triplex-mediated psoralen modification of the mutant T residue was sought as an approach to gene repair. The 24-nucleotide purine-rich target sequence switches from one strand to the other and has four pyrimidine interruptions. Therefore, a third strand sequence favorable to two triplex motifs was used, one parallel and the other antiparallel to it. To cope with the pyrimidine interruptions, which weaken third strand binding, 5-methylcytosine and 5-propynyluracil were used in the third strand. Further, a six residue "hook" complementary to an overhang of a linear duplex target was added to the 5'-end of the third strand via a T(4) linker. In binding to the overhang by Watson-Crick pairing, the hook facilitates triplex formation. This third strand also binds specifically to the target within a supercoiled plasmid. The psoralen moiety at the 3'-end of the third strand forms photoadducts to the targeted T with high efficiency. Such monoadducts are known to preferentially trigger reversion of the mutation by DNA repair enzymes.  相似文献   

9.
Triplex DNA is an unusual conformation of DNA formed when two pyrimidine nucleotide strands share a common purine strand. A monoclonal antibody, demonstrated by numerous criteria to be specific for triplex DNA, was used to investigate the presence and distribution of this unique DNA configuration in nuclei and chromosomes of mouse LM cells and human lymphocytes. Indirect immunofluorescence microscopy revealed that constitutive heterochromatin in acetic-methanol fixed mouse nuclei was usually, but not always immunofluorescent, suggesting possible cell cycle related variations in the amount of triplex DNA or its accessibility in this condensed chromatin. In fixed mouse and human chromosomes, there was a positive correlation between immunofluorescent staining patterns, Hoechst 33258 banding, and G- and/or C-banding patterns. Unfixed, isolated mouse chromosomes also reacted positively with the antibody, particularly when they were gently decondensed by exposure to low ionic conditions at neutral pH. This result indicates that fixation is not mandatory for antibody staining, suggesting that some mammalian chromosomal DNA may be naturally organized in a triplex configuration. However, there is a possibility that fixation may facilitate the formation of additional triplex DNA complexes in potential sequences or expose previously inaccessible triplex DNA. The precise correspondence between the immunofluorescent patterns produced by anti-triplex DNA antibodies and G- and C-bands known to represent regions of chromatin condensation, suggests a potential role of triplex DNA in chromosome structure and regional chromatin condensation.  相似文献   

10.
Triplex DNA in plasmids and chromosomes   总被引:2,自引:0,他引:2  
Circular plasmids containing pyrimidine purine tracts can form both inter-and intramolecular triplexes. Addition of poly(dTC) to plasmid pTC45, which contains a (TC)45.(GA)45 insert, results in intermolecular triplex formation. Agarose-gel electrophoresis gives rise to many well-resolved bands, which correspond to 1, 2, 3, 4... plasmid molecules attached to the added pyrimidine strand. In the electron microscope these complexes appear as a rosette of petals. The mobility of these triplex-containing complexes can be retarded by the addition of a triplex-specific monoclonal antibody, Jel318. Intramolecular triplex formation can be demonstrated at pH 5 in pTC45 and also in pT463-I, a plasmid containing a segment of a crab satellite DNA with both (G)n.(C)n and (TCC)n.(GGA)n inserts. However, although the intermolecular triplex remains stable for some time at pH 8, intramolecular triplex formation only occurs at low pH. Triplexes can also be detected by an immunoblotting procedure with Jel318. This unfamiliar structure is readily demonstrated in eukaryotic extracts, but not in cell extracts from Escherichia coli. Triplexes may thus be an inherent feature of eukaryotic chromosome structure.  相似文献   

11.
R Levesque  P H Roy 《Gene》1982,18(1):69-75
We have constructed a physical map of the plasmid pLQ3 which was originally isolated from Achromobacter and which codes for a beta-lactamase. The enzyme specified by pLQ3 is expressed in Escherichia coli and is unusual in that it is a cephalosporinase, an enzyme usually coded for by chromosome. Plasmid pLQ3 is 12.4 kb in length and has a unique Bam HI site and two BglII sites. From a BamHI + BglII double digest of pLQ3, we have constructed a "shortened" plasmid, pLQ10, in which a 2.96-kb fragment is deleted. We have constructed a clone, pLQ22, in which a 3.27-kb fragment of pLQ3, carrying the beta-lactamase gene, is inserted into the BamHI site of pACYC184. By "comparative mapping" of single and multiple digests of each of these plasmids, we have been able to locate the cleavage sites for PstI, which makes seven cuts in pLQ3.  相似文献   

12.
The structural gene for beta-lactamase II (EC 3.5.2.6), a metallothioenzyme, from Bacillus cereus 569/H (constitutive for high production of the enzyme) was cloned in Escherichia coli, and the nucleotide sequence was determined. This is the first class B beta-lactamase whose primary structure has been reported. The amino acid sequence of the exoenzyme form, deduced from the DNA, indicates that beta-lactamase II, like other secreted proteins, is synthesized as a precursor with a 30-amino acid N-terminal signal peptide. The pre-beta-lactamase II (Mr, 28,060) is processed in E. coli and in B. cereus to a single mature protein (Mr, 24,932) which is totally secreted by B. cereus but in E. coli remains intracellular, probably in the periplasm. The expression of the gene in E. coli RR1 on the multicopy plasmid pRWHO12 was comparable to that in B. cereus, where it is presumably present as a single copy. The three histidine residues that are involved (along with the sole cysteine of the mature protein) in Zn(II) binding and hence in enzymatic activity against beta-lactams were identified. These findings will help to define the secondary structure, mechanism of action, and evolutionary lineage of B. cereus beta-lactamase II and other class B beta-lactamases.  相似文献   

13.
We have cloned genes encoding three enzymes of the de novo pyrimidine pathway using genomic DNA from Plasmodium falciparum and sequence information from the Malarial Genome Project. Genes encoding dihydroorotase (reaction 3), orotate phosphoribosyltransferase (reaction 5), and OMP decarboxylase (reaction 6) have been cloned into the plasmid pET 3a or 3d with a thrombin cleavable 9xHis tag at the C-terminus and the enzymes were expressed in Escherichia coli. To overcome the toxicity of malarial OMP decarboxylase when expressed in E. coli, and the unusual codon usage of the malarial gene, a hybrid plasmid, pMICO, was constructed which expresses low levels of T7 lysozyme to inhibit T7 RNA polymerase used for recombinant expression, and extra copies of rare tRNAs. Catalytically-active OMP decarboxylase has been purified in tens of milligrams by chromatography on Ni-NTA. The gene encoding orotate phosphoribosyltransferase includes an extension of 66 amino acids from the N-terminus when compared with sequences for this enzyme from other organisms. We have found that other pyrimidine enzymes also contain unusual protein inserts. Milligram quantities of pure recombinant malarial enzymes from the pyrimidine pathway will provide targets for development of novel antimalarial drugs.  相似文献   

14.
15.
Plasmid pEJ4, which is a derivative of pUC19 containing an insert with 60-bp-long homopurine.homopyrimidine tract from sea urchin P. miliaris histone gene spacer, was studied by chemical probes of the DNA structure osmium tetroxide and glyoxal. The former probe reacts with pyrimidine bases, while the latter forms a stable product only with guanine residues. These probes can thus be applied as specific probes for the homopyrimidine and homopurine strands, respectively. At pH 6.0 the site-specific modification of the homopurine.homopyrimidine tract by both probes was observed at native superhelical density of the plasmid. In the linear plasmid under the same conditions this modification was absent; it appeared, however, at more acid pH values. In supercoiled DNA the hypersensitivity of the homopurine.homopyrimidine tract to osmium tetroxide did not substantially change when pH was decreased from 6.0 to 4.0. Changes in NaCl concentration at pH 4.5 did not influence the hypersensitivity to osmium tetroxide; at pH 6.0 this hypersensitivity decreased with increasing NaCl concentration. These results thus show that the chemical probes recognize an unusual protonated structure containing unpaired bases or non-Watson-Crick base pairs. At pH 5.6 the site-specific modification occurred at or near to the middle of the homopurine.homopyrimidine tract, suggesting that a hairpin may be involved in the unusual structure under the given conditions. From the models suggested so far for the unusual structure of homopurine.homopyrimidine tracts our results fit best the protonated triplex H form suggest by V.I. Lyamichev, S.M. Mirkin and M.D. Frank-Kamenetskii, J. Biomol. Struct. Dyn. 3,667 (1986).  相似文献   

16.
Base-specific hydrogen bonding between an oligonucleotide and the purines in the major groove of a DNA duplex provide an approach to selective inhibition of gene expression. Oligonucleotide-mediated triplex formation in vivo may be enhanced by a number of different chemical modifications. We have previously described an in vitro analysis of triplex formation using oligonucleotides containing internucleoside phosphate linkages modified with the cation N , N -diethyl-ethylenediamine (DEED). When compared with unmodified oligonucleotides of identical base composition, DEED-modified oligonucleotides were better able to form DNA triplexes under conditions that approximate the pH, magnesium and potassium levels found in vivo . Here we report the ability of DEED-modified oligonucleotides to inhibit the expression of plasmid DNA injected into Xenopus oocytes. Inhibition is specific to plasmids containing a triplex formation target and sensitive to sequence alteration in the triplex forming target site. Inhibition of gene expression was nearly complete when oligonucleotide and plasmid were mixed together prior to injection. Inhibition was partial when oligonucleotide was injected first and not evident when plasmid was injected and allowed to form chromatin prior to oligonucleotide injection. Thus, access to DNA is a determining factor in effective triplex inhibition of gene expression.  相似文献   

17.
A novel TEM-derived plasmid-encoded beta-lactamase, resistant to inhibition by clavulanic acid, has been identified in a clinical strain of Escherichia coli found in Scotland. The beta-lactamase gene was carried on an 81-kb plasmid that conferred no other resistances. The novel enzyme conferred resistance to the amoxycillin/clavulanic acid combination on the host bacterium. The beta-lactamase has a pI of 5.25 and lies between the PSE-4 and SAR-1 beta-lactamases on an isoelectric focusing gel. This beta-lactamase has a Mr value of 25,000, similar to the TEM-1 enzyme and a comparable substrate profile. Its most significant difference is that it is inhibited by clavulanic acid 100-fold less efficiently than the TEM-1 enzyme. The enzyme was confirmed to be derived from the TEM enzymes by probing the plasmid DNA with an intragenic gene probe for TEM-1. This is the first report of a clinical bacterium carrying a TEM-enzyme that confers resistance to clavulanic acid combinations and we have designated the beta-lactamase as TRC-1.  相似文献   

18.
Extreme instability of pyrimidine motif triplex DNA at physiological pH severely limits its use for artificial control of gene expression in vivo. Stabilization of the pyrimidine motif triplex at physiological pH is therefore of great importance in improving its therapeutic potential. To this end, isothermal titration calorimetry interaction analysis system and electrophoretic mobility shift assay have been used to explore the thermodynamic and kinetic effects of our previously reported triplex stabilizer, poly (L-lysine)-graft-dextran (PLL-g-Dex) copolymer, on pyrimidine motif triplex formation at physiological pH. Both the thermodynamic and kinetic analyses have clearly indicated that in the presence of the PLL-g-Dex copolymer, the binding constant of the pyrimidine motif triplex formation at physiological pH was about 100 times higher than that observed without any triplex stabilizer. Of importance, the triplex-promoting efficiency of the copolymer was more than 20 times higher than that of physiological concentrations of spermine, a putative intracellular triplex stabilizer. Kinetic data have also demonstrated that the observed copolymer-mediated promotion of the triplex formation at physiological pH resulted from the considerable increase in the association rate constant rather than the decrease in the dissociation rate constant. Our results certainly support the idea that the PLL-g-Dex copolymer could be a key material and may eventually lead to progress in therapeutic applications of the antigene strategy in vivo.  相似文献   

19.
20.
The host-vector system for efficient expression of the cloned genes under the control of transactivated promoter p'R of bacteriophage lambda has been elaborated. The Q protein activating p'R promoter is coded by the defective prophage constructed in vitro by means of excision of the late phage genes between the distant sites of the restriction endonuclease MluI and change of the central SalI fragment carrying the kill gene for the kanamycin resistance gene. The general recombination system is impaired during the change, thus the bacteriophage DNA can be obtained from the induced RecA cells as a plasmid DNA. The induction of the prophage results in a sharp increase of beta-lactamase synthesis (30% of soluble cell protein) under the control of p'R promoter in a plasmid derived of pBR322.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号