共查询到20条相似文献,搜索用时 0 毫秒
1.
Pak Hoo Chan Robert A. Fishman Sylvia Chen Susan Chew 《Journal of neurochemistry》1983,41(6):1550-1557
The effects of temperature on arachidonic acid-induced cellular edema in the first cortical brain slices of rats were studied. Incubation of the cortical slice in arachidonic acid at 37 degrees C induced cellular swelling, and increased intracellular Na+ and lactic acid contents concomitant with decreased intracellular K+. When the incubation temperature was reduced these changes were reduced in severity. The uptake of [3H]arachidonic acid in cortical slices was temperature-dependent. The incorporation of [3H]arachidonic acid into various lipid fractions was further studied by HPLC. The majority of [3H]arachidonic acid was incorporated into triacylglycerol and phosphatidylinositol (PI), but the incorporation of [3H]arachidonic acid into PI was temperature-dependent, unlike that into other phospholipids and neutrolipids. Further, cortical (Na+ + K+)-ATPase activity was inhibited whereas its subunit K+-activated p-nitrophenyl-phosphatase was activated by arachidonic acid at various incubation temperatures. The effects of arachidonic acid on these enzymes is similar to that of thimerosal, a lipid removal agent. These data suggest that both temperature and arachidonic acid play an important role in the development of cellular edema associated with membrane perturbation and inactivation of (Na+ + K+)-ATPase activity. 相似文献
2.
Abstract A strontium capture method, using p-nitrophenyl phosphate as substrate, was used to determine the subcellular localization of (Na+ + K+)-ATPase activity in Malpighian tubules of Locusta migratoria L. Ultrastructural studies revealed that (Na+ + K+)-ATPase activity was restricted to the basolateral plasma membranes with little evidence of activity associated with the apical microvilli. In contrast, alkaline phosphatase activity was specifically associated with the apical cell membrane. Biochemical assays of fixed and non-fixed tubule homogenates were used to evaluate the p-nitrophenyl phosphate-strontium procedure for localization of the phosphatase component of (Na+ + K+)-ATPase. No significant potassium-dependent, ouabain-sensitive p-nitrophenyl phosphatase activity was demonstrated in homogenates under conditions necessary for the cytochemical procedure, viz fixation, pH 9.0 and the presence of strontium. The significance of the biochemical results are discussed in relation to the validity of such cytochemical techniques for (Na+ + K+)-ATPase localization. 相似文献
3.
Homogenates of rat anterior lobe (AL) and neurointermediate lobe (NIL) pituitary and rat hypothalamus were subjected to subcellular fractionation and density gradient centrifugation. The subcellular distribution of immunoreactive dynorophin A (ir-Dyn A) in NIL was found to be similar to that of ir-arginine vasopressin (ir-AVP). ir-Dyn A migrated as a discrete band on sucrose density gradients, which corresponded in sedimentation rate to that of ir-AVP, suggesting that these two peptides are stored within organelles of similar size and density. Two other products of prodynorphin, ir-alpha-neoendorphin (ir-alpha-nEND) and ir-Dyn A-(1-8) also comigrated with ir-AVP. ir-[Leu5]-enkephalin (ir-LE), which may be a product of prodynorphin or proenkephalin, was also found to migrate in this region of the gradient. When a homogenate of rat hypothalamus was prepared using a method that has been developed for synaptosome isolation, ir-Dyn A was found to comigrate with Na+/K+-activated adenosine triphosphatase (Na/K-ATPase), a synaptosomal marker enzyme. Using a more concentrated homogenate ir-Dyn A was found to migrate to a less dense region where peptide-containing synaptic vesicles have previously been localized. When a synaptosomal preparation was lysed in hypotonic solution a shift was seen in the migration rate of ir-Dyn A to this region of the gradient (containing putative synaptic vesicles). Thus the bulk of hypothalamic dynorphin appears to be present within synaptosome-like structures which, upon lysis, release a less dense, smaller subcellular organelle corresponding in sedimentation characteristics to other types of peptide-containing synaptic vesicles.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
4.
Synaptic plasma membrane (SPM) and mitochondrial fractions were prepared from 3-50-day rat cerebral cortex and their purity assessed. The fractions were subjected to electrophoresis on slab gels, stained for protein, and overlaid with 125I-concanavalin A (ConA). ConA binding glycoproteins (CABGs) were revealed by autoradiography. In the SPM fraction CABGs of MW 25,000, 63,000, 80,000, 115,000, 174,000, and 239,000 increased while those of MW 47,000, 75,000, and 190,000 decreased developmentally. In the mitochondrial fraction, CABGs of MW 25,000, 44,000, 115,000 and 174,000 increased while those of 34,000, 43,000, 47,000, 51,000, 80,000, 107,000, and 195,000 decreased developmentally. CABGs of MW 32,000, 63,000, 88,000, 153,000, 190,000, and 239,000 appear to be unique to the SPM fraction and those of MW 34,000, 107,000, and 195,000 are unique to the mitochondrial fraction. 相似文献
5.
To assess the functions of Cl- -dependent glutamate binding (Cl- -dependent glutamate uptake) in synaptic membranes, possible effects of depolarization on the uptake were examined. When rat cerebral cortical slices were preincubated with depolarizing agents such as veratrine (7 micrograms/ml), 10 microM aconitine, 56 mM K+, and 50 microM monensin, [3H]glutamate uptake by the crude synaptic membranes, which were subsequently prepared from the pretreated slices, was increased by 60-85%. Stimulation of the glutamate uptake by predepolarization was dependent on Na+ but not on Ca2+. The bindings of gamma-[3H]aminobutyric acid and 5-[3H]hydroxytryptamine were not significantly affected by the predepolarization. Veratrine pretreatment increased the maximal density of the glutamate uptake sites without affecting the affinity for glutamate. Several characteristics of the uptake sites increased by the veratrine pretreatment coincided with those of Cl- -dependent glutamate uptake sites. Na+-dependent glutamate binding (Na+-dependent glutamate uptake) to the membranes was not affected by pretreatment with veratrine. The content of endogenous glutamate and the noninulin space in the membrane fractions were not changed by the predepolarization. The increase in the glutamate uptake induced by pretreatment with high K+ was reversible: it returned to the control level after a second incubation of the slices in control medium. These results suggest that the Cl- -dependent glutamate sequestration system in synaptic membranes is regulated by the membrane potential. 相似文献
6.
In order to investigate the specificity of noradrenergic effects on Na+, K+-ATPase, we infused noradrenergic agonists into the cerebral ventricles of rats, with or without depletion of forebrain norepinephrine. Infusion of norepinephrine, isoproterenol, or phenylephrine increased ouabain binding in intact rats, whereas clonidine infusion decreased binding. Depletion of forebrain norepinephrine by destruction of the dorsal noradrenergic bundle reduced ouabain binding. Norepinephrine infusion reversed the effect of dorsal bundle lesion; isoproterenol and phenylephrine increased ouabain binding in lesioned rats, but did not restore the effect of the lesions. Clonidine had no effect in lesioned rats. Effects on Na+, K+-ATPase activity were similar, but smaller. These results suggest that stimulation of both alpha 1- and beta-noradrenergic receptors may be necessary for optimal Na+, K+-ATPase, and that clonidine reduces Na+, K+-ATPase indirectly through decreased norepinephrine release. 相似文献
7.
Georgina Rodríguez de Lores Arnaiz Amanda Pellegrino de Iraldi 《Neurochemical research》1997,22(3):293-296
Neuronal ATPases comprise a wide variety of enzymes which are not uniformly distributed in different membrane preparations. Since purified vesicle fractions have Mg2+/Ca2+-ATPase, the purpose of the present study was to know whether such enzyme activities have a preferential concentration in a synaptic vesicle fraction in order to be used as markers for these organelles. Resorting to a procedure developed in this Institute, we fractionated the rat cerebral cortex by differential centrifugation following osmotic shock of a crude mitochondrial fraction and separated a purified synaptic vesicle fraction over discontinuous sucrose gradients. Mg2+/Ca2+-ATPase activities and ultrastructural studies of isolated fractions were carried out. It was observed that similar specific activities for Mg2+/Ca2+-ATPases were found in all fractions studied which contain synaptic vesicles and/or membranes. Although the present results confirm the presence of Mg2+ and Ca2+-ATPase activities in synaptic vesicles preparations, they do not favor the contention that Mg2+/Ca2+-ATPase is a good marker for synaptic vesicles. 相似文献
8.
Abstract: The contents of five synaptic membrane antigens (56K, 58K, 62K, 63K, and 64K) were determined in rat cerebral cortex and cerebellum at eight developmental time points: E9, E14, P < 1, P5, P14, P28, P60, and P180 (E, embryonic; P, postnatal). In cerebral cortex, the five antigens showed five different developmental patterns with respect both to specific content (i.e., quantity per unit of membrane) and total content (i.e., quantity per cortex). The 56K, 58K, and 62K polypeptides were first detected at E14, increased slightly to P5, then increased rapidly from P5 to P28 by 14-, 11-, and 18-fold, respectively. From P28 to PI80, the patterns of these antigens showed very large differences. The 63K and 64K antigens were first detected at P14 and P28, respectively. The specific content of 63K antigen continued to increase steadily throughout adult life; in contrast, the specific content of the 64K antigen did not change appreciably. In cerebellum only three antigens (56K, 58K, and 62K) were detected. These three antigens showed different developmental patterns. The 56K polypeptide was first detected at E14; its specific content increased very rapidly to a maximum at P < 1; it then decreased, first slowly, and then more rapidly, disappearing at P60. The 58K polypeptide also was detectable at E14 and increased very rapidly to a maximum at P < 1. It then decreased markedly to P5, followed by an increase, returning almost to its maximum level at P14. It then slowly decreased disappearing at P180. The 62K antigen was first detected at P14 and then it slowly decreased with disappearance at P60. The patterns with respect to total contents per cerebellum were similar for the three antigens, with a maximum at P28. We conclude that the highest increase in the contents of these antigens roughly corresponds to the period of maximal synaptogenesis (P9 to P28) in both regions. Differences among developmental patterns probably reflect changing molecular machinery required for development and functional differentiation of synapses in different brain regions. The fine structure of these patterns suggests that the quantitative measurement of synaptic membrane antigens will be useful for delineating complex processes occurring during synaptogenesis. 相似文献
9.
The effects of short- and long-chain fatty acids on the cerebromicrovascular (Na+ + K+)-ATPase were investigated using specific [3H]ouabain binding to the enzyme. Specific binding increased linearly with total microvessel protein (37-110 micrograms) and was time-dependent with maximum binding obtained by 10 min. Arachidonic acid, but not palmitic acid, stimulated [3H]ouabain binding in a dose-dependent manner, with a 105% increase over basal levels at 100 microM arachidonic acid. Preincubation of the microvessels with arachidonic acid did not alter the stimulation observed. 4-Pentenoic acid stimulated [3H]ouabain binding only at high concentrations (10 mM). Scatchard analysis of [3H]ouabain binding to untreated microvessels yielded a single class of "high-affinity" binding sites with an apparent binding affinity (KD) of 64.7 +/- 2.0 nM and a binding capacity (Bmax) of 10.1 +/- 1.5 pmol/mg protein. In the presence of 100 microM arachidonic acid, a monophasic Scatchard plot also was obtained, but the KD significantly decreased to 51.9 +/- 2.7 nM (p less than 0.01), whereas the Bmax remained virtually unchanged (12.5 +/- 1.2 pmol/mg protein). The stimulation of [3H]ouabain binding in the presence of arachidonic acid was potentiated by 4-pentenoic acid, but not by indomethacin or eicosatetraynoic acid. These data suggest that long-chain polyunsaturated fatty acids may be involved in the regulation of blood-brain barrier (Na+ + K+)-ATPase and may play a role in the cerebral dysfunction associated with diseases in which plasma levels of nonesterified fatty acids are elevated. 相似文献
10.
J S Addis W D Merrit J E Mazurkiewicz R J Barrnett 《Cell biochemistry and function》1987,5(2):135-141
Subcellular membrane fractions were prepared from the salt glands of osmotically-stressed ducklings. Two fractions were characterized biochemically with respect to (Na+ + K+)-ATPase, alkaline phosphodiesterase I, succinate dehydrogenase, esterase, and galactosyltransferase activities and immunochemically with respect to (Na+ + K+)-ATPase. The ratios of the estimates of the (Na+ + K+)-ATPase contents obtained biochemically and immunochemically from the two fractions differed by more than 2 X. The results are consistent with the presence of at least two molecular species of (Na+ + K+)-ATPase, unevenly distributed between the two fractions. 相似文献
11.
Daniel Guillaume Thierry Grisar† Antonio V. Delgado-Escueta 《Journal of neurochemistry》1986,47(3):904-911
The effects of phenytoin, a potent antiepileptic drug, on the active transport of cations within membranes remain controversial. To assess the direct effects of phenytoin on the Na+,K+ pump, we studied the drug's influence on the phosphorylation of partially purified (Na+,K+)-ATPase from mouse brain. (Na+,K+)-ATPase subunits were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Phenytoin, in vitro, decreased net phosphorylation of the (Na+,K+)-ATPase catalytic subunit in a dose-dependent manner (approximately 50% at 10(-4) M). When the conversion of E1-P to E2-P, e.g., the two major phosphorylated conformational states of (Na+,K+)-ATPase, was blocked by oligomycin or N-ethylmaleimide, phenytoin had no effect. The results suggest that phenytoin acts on the phosphatasic component of the reaction cycle, decreasing the phosphorylation level of the enzyme. 相似文献
12.
Effects of Calyculin A and Okadaic Acid on Acetylcholine Release and
Subcellular Distribution in Rat Hippocampal Formation 总被引:1,自引:2,他引:1
Abstract : The mechanisms regulating the compartmentation of acetylcholine (ACh) and the relationship between transmitter release and ACh stores are not fully understood. In the present experiments, we investigated whether the inhibitors of serine/threonine phosphatases 1 and 2A, calyculin A and okadaic acid, alter subcellular distribution and the release of ACh in rat hippocampal slices. Calyculin A and okadaic acid significantly (p < 0.05) depleted the occluded ACh of the vesicular P3 fraction, but cytoplasmic ACh contained in the S3 fraction was not significantly affected. The P3 fraction is known to be heterogeneous ; calyculin A and okadaic acid reduced significantly (p < 0.05) the amount of ACh recovered with a monodispersed fraction (D) of synaptic vesicles, but the other nerve terminal bound pools (E-F and G-H) were not so affected. K+-evoked ACh release decreased significantly (p < 0.01) in the presence of calyculin A and okadaic acid, suggesting that fraction D's vesicular store of ACh contributes to transmitter release. The loss of ACh from synaptic vesicle fractions prepared from tissue exposed to phosphatase inhibitors appeared not to result from a reduced ability to take up ACh. Thus, when tissue was allowed to synthesize [3H]ACh from [3H]choline, the ratio of [3H]ACh in the S3 to P3 fractions was not much changed by exposure of tissue to calyculin A or okadaic acid ; furthermore, the specific activity of ACh recovered from the D fraction was not reduced disproportionately to that of cytosolic ACh. The changes are considered to reflect reduced synthesis of ACh by tissue treated with the phosphatase inhibitors, rather than an effect on vesicle uptake mechanisms. Thus, exposure of tissue to calyculin A or okadaic acid appears to produce selective depletion of tissue ACh content in a subpopulation of synaptic vesicles, suggesting that phosphatases play a role in ACh compartmentation. 相似文献
13.
Characterization of Calcium-Activated and Magnesium-Activated ATPases of Brain Nerve Endings 总被引:1,自引:2,他引:1
The properties of Ca2+-activated and Mg2+-activated ATPases of nerve endings from mouse brain were investigated. Ca2+ and Mg2+ each can activate ATP hydrolysis in synaptosomes and its subfractions. Both Ca2+-ATPase and Mg2+-ATPase exhibit high and low affinity for their respective cations. At millimolar concentrations of Ca2+ or Mg2+, several nucleoside triphosphates could serve as substrate for the two enzymes and their specific activities were about three to four times higher in synaptic vesicles than in synaptosomal plasma membranes (SPM). Both in SPM and in synaptic vesicles the relative activity in the presence of Ca2+ was in the order of CTP greater than UTP greater than GTP = ATP, but with Mg2+ the activity was higher with ATP than with the other three triphosphates. Mg2+-ATPase was more active than Ca2+-ATPase in SPM, but in synaptic vesicles the two enzymes exhibited similar activity. Kinetic studies revealed that Mg2+-ATPase was inhibited by excess ATP and not by excess Mg2+. The simultaneous presence of Na+ + K+ stimulated Mg2+-ATPase and inhibited Ca2+-ATPase activity in intact synaptosomes and SPM. The stimulation of Mg2+-ATPase by Na+ + K+ was further increased by increasing Mg2+ concentration and was inhibited by Ca2+ and by ouabain. When Ca2+ and Mg2+ are present together in SPM or synaptic vesicles, the total Pi liberated by the two cations may either increase or decrease, depending on their relative concentrations. Kinetic analyses indicate that Ca2+ and Mg2+ bind independently to the enzyme alone or together at different sites. The results suggest that Ca2+-ATPase and Mg2+-ATPase in SPM or synaptic vesicles may be separate and distinct systems. 相似文献
14.
Thomas Andersen Schmidt Jim Stenfatt Larsen Keld Kjeldsen 《Journal of neurochemistry》1992,59(6):2094-2104
Na+,K(+)-ATPase concentration in rat cerebral cortex was studied by vanadate-facilitated [3H]ouabain binding to intact samples and by K(+)-dependent 3-O-methylfluorescein phosphatase activity determinations in crude homogenates. Methodological errors of both methods were evaluated. [3H]Ouabain binding to cerebral cortex obtained from 12-week-old rats measured incubating samples in buffer containing [3H]ouabain, and ouabain at a final concentration of 1 x 10(-6) mol/L gave a value of 11,351 +/- 177 (n = 5) pmol/g wet weight (mean +/- SEM) without any significant variation between the lobes. Evaluation of affinity for ouabain was in agreement with a heterogeneous population of [3H]ouabain binding sites. K(+)-dependent 3-O-methylfluorescein phosphatase activity in crude cerebral homogenates of age-matched rats was 7.24 +/- 0.14 (n = 5) mumol/min/g wet weight, corresponding to a Na+,K(+)-ATPase concentration of 12,209 +/- 236 pmol/g wet weight. It was concluded that the present methods were suitable for quantitative studies of cerebral cortex Na+,K(+)-ATPase. The concentration of rat cerebral cortex Na+,K(+)-ATPase showed approximately 10-fold increase within the first 4 weeks of life to reach a plateau of approximately 11,000-12,000 pmol/g wet weight, indicating a larger synthesis of Na+,K+ pumps than tissue mass in rat cerebral cortex during the first 4 weeks of development. K+ depletion induced by K(+)-deficient fodder for 2 weeks resulted in a slight tendency toward a reduction in K+ content (6%, p > 0.5) and Na+,K(+)-ATPase concentration (3%, p > 0.4) in cerebral cortex, whereas soleus muscle K+ content and Na+,K(+)-ATPase concentration were decreased by 30 (p < 0.02) and 32% (p < 0.001), respectively. Hence, during K+ depletion, cerebral cortex can maintain almost normal K+ homeostasis, whereas K+ as well as Na+,K+ pumps are lost from skeletal muscles. 相似文献
15.
Caruso-Neves C Silva IV Morales MM Lopes AG 《Archives of insect biochemistry and physiology》2001,48(2):81-88
In a previous paper, we observed that the specific activity of (Na++K+)ATPase of the isolated Malpighian tubules from Rhodnius prolixus is inhibited by protein kinase C (PKC) during hyperosmotic shock [Arenstein et al., J Membr Biol 146:47-57 [1995]; Caruso-Neves et al., Z Naturforsch 53c:911-917 [1998]). In the present paper, we study the involvement of the cytoskeleton in this process using isolated Malpighian tubules of Rhodnius prolixus. We observed that pre-incubation of the Malpighian tubule cells in hyperosmotic media decreases the specific activity of (Na++K+)ATPase by 90%. This effect was completely reversed when colchicine, which disrupts microtubules, or cytochalasin B, an inhibitor of actin microfilament polymerization, were added to the media in a dose-dependent manner. The maximal reversion was obtained with colchicine 7.0 microM or cytochalasin B 5.0 microM. The simultaneous addition of sphingosine 50 ng/mL, an inhibitor of PKC, to 10 microM colchicine or 5 microM cytochalasin B, in hyperosmotic media, did not change the stimulatory effect of these drugs on the specific activity of (Na++K+)ATPase. On the other hand, the co-incubation of TPA 20 ng/mL, an activator of PKC, to colchicine or cytochalasin B within hyperosmotic media, abolished the stimulatory effect of these drugs on the specific activity of (Na++K+)ATPase to a similar extent as hyperosmotic shock. These results suggest that inhibition of the (Na++K+)ATPase of the isolated Malpighian tubules from Rhodnius prolixus by PKC during hyperosmotic shock is mediated by cytoskeletal elements. 相似文献
16.
Michal Schwartz George J. Siegel Nelson Chen Bernard W. Agranoff 《Journal of neurochemistry》1980,34(6):1745-1752
Abstract: The denatured catalytic polypeptide of (Na+ , K+ )-ATPase of goldfish brain was purified and identified as the 32 P-labeled phosphoprotein. The protein served as immunogen for the preparation of rabbit antisera for immunohistochemical application to goldfish tissue sections, using the peroxidase-antiperoxidase indirect method. Labeling in brain cross-sections appears primarily in fibers of the optic nerve layer of the tectum. In optic nerve cross sections, labeling is restricted to fiber bundles. 相似文献
17.
Effects of Sodium and Bicarbonate Ions on γ-Aminobutyric Acid Receptor Binding in Synaptic Membranes of Rat Brain 总被引:1,自引:2,他引:1
Crude synaptic membranes treated with Triton X-100 (TX) bound gamma-aminobutyric acid (GABA) to two classes of receptor site in Na+-free 10 mM-Tris-sulfate buffer (pH 7.4), but to only a single class of receptor site in 10 mM Tris-sulfate buffer (pH 7.4), containing 150 mM-NaCl. The high-affinity receptor site in TX membranes was specifically masked in the presence of Na+. However, TX membranes incubated in Krebs-Ringer bicarbonate solution (pH 7.4) bound GABA to two classes of receptor site despite the presence of Na+. It was found that addition of bicarbonate ions to the Na+-containing 10 mM-Tris-sulfate buffer (pH 7.4) could restore that high-affinity class of GABA receptors, rendering both classes detectable. This finding suggests that both Na+ and HCO-3 may have a regulatory function on GABA binding to the receptor. 相似文献
18.
Marta C. Antonelli† Denis G. Baskin‡§ Miriam Garland† William L. Stahl†§ 《Journal of neurochemistry》1989,52(1):193-200
[3H]Ouabain binding was studied in sections of rabbit somatosensory cortex by quantitative autoradiography and in rabbit brain microsomal membranes using a conventional filtration assay. KD values of 8-12 nM for specific high-affinity binding of [3H]ouabain were found by both methods. High-affinity binding was not uniformly distributed in somatosensory cortex and was localized predominantly to laminae 1, 3, and 4. [3H]Ouabain binding in tissue sections was stimulated by the ligands Mg2+/Pi or Mg2+/ATP/Na+ and was inhibited by K+ (IC50 = 0.7-0.9 mM), N-ethylmaleimide, 5,5'-dithiobis(2-nitrobenzoic acid), and erythrosin B. We conclude that [3H]ouabain is reversibly and specifically bound with high affinity in rabbit brain tissue sections under conditions that favor phosphorylation of Na+,K+-ATPase. Quantitative autoradiography is a powerful tool for assessing the affinity and number of specific ouabain binding sites in brain tissue. 相似文献
19.
Reductions of Γ-Aminobutyric Acid and Glutamate Uptake and (Na+ + K+ )-ATPase Activity in Brain Slices and Synaptosomes by Arachidonic Acid 总被引:3,自引:0,他引:3
Arachidonic acid, a major polyunsaturated fatty acid of membrane phospholipids in the CNS, reduced the high-affinity uptake of glutamate and gamma-aminobutyric acid (GABA) in both rat brain cortical slices and synaptosomes. alpha-Aminoisobutyric acid uptake was not affected. Intrasynaptosomal sodium was increased concomitant with decreased (Na+ + K+)-ATPase activity in synaptosomal membranes. The reduction of GABA uptake in synaptosomes could be partially reversed by alpha-tocopherol. The inhibition of membrane-bound (Na+ + K+)-ATPase by arachidonic acid was not due to a simple detergent-like action on membranes, since sodium dodecyl sulfate stimulated the sodium pump activity in synaptosomes. These data indicate that arachidonic acid selectively modifies membrane stability and integrity associated with reductions of GABA and glutamate uptake and of (Na+ + K+)-ATPase activity. 相似文献
20.
A particulate (Na + K)-ATPase preparation from dog kidney bound [48V]-ortho-vanadate rapidly at 37°C through a divalent cation-dependent process. In the presence of 3 mM MgCl2 theK
d was 96 nM; substituting MnCl2 decreased theK
d to 12 nM but the maximal binding remained the same, 2.8 nmol per mg protein, consistent with 1 mol vanadate per functional enzyme complex. Adding KCl in the presence of MgCl2 increased binding, with aK
0.5 for KCl near 0.5 mM; the increased binding was associated with a drop inK
d for vanadate to 11 nM but with no change in maximal binding. Adding NaCl in the presence of MgCl2 decreased binding markedly, with anI
50 for NaCl of 7 mM. However, in the presence of MnCl2 neither KCl nor NaCl affected vanadate binding appreciably. Both the nonhydrolyzable, ,-imido analog of ATP and nitrophenyl phosphate, a substrate for the K-phosphatase reaction that this enzyme also catalyzes, decreased vanadate binding at concentrations consistent with their acting at the low-affinity substrate site of the enzyme; the presence of KCl increased the concentration of each required to decrease vanadate binding. Oligomycin decreased vanadate binding in the presence of MgCl2, whereas dimethyl sulfoxide and ouabain increased it. With inside-out membrane vesicles from red blood cells vanadate inhibited both the K-phosphatase and (Na + K)-ATPase reactions; however, with the K-phosphatase reaction extravesicular K+ (corresponding to intracellular K+) both stimulated catalysis and augmented vanadate inhibition, whereas with the (Na + K)-ATPase reaction intravesicular K+ (corresponding to extracellular K+) both stimulated catalysis and augmented vanadate binding. 相似文献