首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP and cGMP-regulated chloride channel critical to the regulation of intestinal fluid, chloride, and bicarbonate secretion. In cystic fibrosis (CF), mutations in CFTR result in downregulation of CFTR function and small intestinal obstruction. Unlike the human CF intestine, severe gastrointestinal disease and lethal obstruction is common in transgenic mice deficient in CFTR. The relevance of the physiology of CFTR and pathophysiology of CF in genetically altered mice to that of human CF disease remains incompletely understood. We hypothesized that the expression and distribution of CFTR in mouse intestine may differ from that of human and may contribute to the variation in disease expression between the two species. Using immunocytochemical and immunoblot techniques and well-characterized anti-rodent anti-CFTR antibodies, we examined the cellular distribution of CFTR in the mouse intestinal tract. We identified significant differences in villus distribution for CFTR in the mouse proximal small intestine compared to those previously reported for human and rat. These observations are important to the understanding of CFTR pathophysiology in transgenic CF mouse model systems and bear relevance to the different phenotypic expression of disease in mice compared to human.  相似文献   

2.
Mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) cause cystic fibrosis, a hereditary lethal disease. CFTR is a chloride channel expressed in the apical membrane of epithelia. It is activated by cAMP dependent phosphorylation and gated by the binding of ATP. The impaired chloride transport of some types of cystic fibrosis mutations could be pharmacologically solved by the use of chemical compounds called potentiators. Here it is undertaken the construction of a model of the CFTR activation pathways, and the possible modification produced by a potentiator application. The model yields a novel mechanism for the potentiator action, describing the activatory and inhibitory activities on two different positions in the CFTR activation pathway.  相似文献   

3.
Moran O  Zegarra-Moran O 《FEBS letters》2005,579(18):3979-3983
The CFTR, encoded by the gene mutated in cystic fibrosis (CF) patients, is responsible for cAMP dependent chloride transport in epithelia. Substances that activate CFTR have been suggested as possible CF therapy. Most substances investigated so far exert a dual effect on the CFTR: low concentrations stimulate CFTR, whereas higher concentrations inhibit CFTR. Besides, the CFTR phosphorylation level determines the apparent affinity of the drug. We have studied the properties of genistein, the well known CFTR potentiator, by measuring apical membrane current on epithelia formed by cells stably transfected with CFTR and stimulated with different concentrations of CPTcAMP. We propose a quantitative model to describe the activatory and inhibitory effect of genistein, accounting also for the cAMP dependent activation.  相似文献   

4.
The cystic fibrosis (CF) phenotype is characterized by a regulatory defect in Cl- permeability in epithelia. A gene (250,000 base pairs) that is associated with this autosomal genetic disorder has been identified. To determine the cellular function of the recently cloned gene product, the cystic fibrosis transmembrane conductance regulator (CFTR), we have produced antibody against a synthetic peptide deduced from the CFTR cDNA sequence corresponding to positions 505-511. This site includes phenylalanine 508, the deletion of which is the most commonly expressed mutation in CF. We sought to determine whether the anti-CFTR505-511 peptide antibody could modulate the activation of the volume-sensitive, Ca(2+)-dependent, as well as the cAMP-dependent Cl- conductances present in the Cl(-)-secreting human colonic T84 cell line. Affinity-purified anti-CFTR505-511 antibody was introduced into the cytoplasm of individual T84 cells and its function studied using the whole-cell patch-clamp technique. Although cAMP-dependent Cl- current activation was inhibited in cells perfused with the anti-CFTR505-511 peptide antibody, Ca(2+)-dependent anion current activation remained unaffected. Chloride current activation, which accompanies cellular swelling, was partially attenuated in anti-CFTR505-511 antibody-loaded cells as compared with control cells perfused with either saline or irrelevant antibody. These results further support a role for CFTR in anion transport in epithelial cells and suggest its possible involvement in a number of anion transport pathways in chloride secretory epithelia.  相似文献   

5.
S-nitrosothiols (SNOs) are endogenous signaling molecules with a broad spectrum of beneficial airway effects. SNOs are normally present in the airway, but levels tend to be low in cystic fibrosis (CF) patients. We and others have demonstrated that S-nitrosoglutathione (GSNO) increases the expression, maturation, and function of wild-type and mutant F508del cystic fibrosis transmembrane conductance regulator (CFTR) in human bronchial airway epithelial (HBAE) cells. We hypothesized that membrane permeable SNOs, such as S-nitrosoglutathione diethyl ester (GNODE) and S-nitroso-N-acetyl cysteine (SNOAC) may be more efficient in increasing the maturation of CFTR. HBAE cells expressing F508del CFTR were exposed to GNODE and SNOAC. The effects of these SNOs on the expression and maturation of F508del CFTR were determined by cell surface biotinylation and Western blot analysis. We also found for the first time that GNODE and SNOAC were effective at increasing CFTR maturation at the cell surface. Furthermore, we found that cells maintained at low temperature increased cell surface stability of F508del CFTR whereas the combination of low temperature and SNO treatment significantly extended the half-life of CFTR. Finally, we showed that SNO decreased the internalization rate of F508del CFTR in HBAE cells. We anticipate identifying the novel mechanisms, optimal SNOs, and lowest effective doses which could benefit cystic fibrosis patients.  相似文献   

6.
The hypothesis that the cystic fibrosis transmembrane conductance regulator (CFTR) participates in plasma membrane recycling was tested experimentally. Using CHO cells, we determined the effects of CFTR expression and of elevated intracellular cAMP on exocytosis, measured as the incorporation into the plasma membrane of endosomes pre-labelled with biotinylated wheat-germ agglutinin (WGA). CFTR expression was without effect on the rate of exocytosis. Furthermore, cAMP did not affect endosomal recycling to the plasma membrane in either CFTR-expressing or control cells. These findings suggest that CFTR is not involved in regulating plasma membrane recycling in all cells.  相似文献   

7.
Cystic fibrosis (CF), the most common genetic disease among Caucasians, is caused by mutations in the gene encoding CFTR (cystic fibrosis transmembrane conductance regulator). The most frequent mutation, DeltaF508, results in protein misfolding and, as a consequence, prevents CFTR from reaching its final location at the cell surface. CFTR is expressed in various cell types including red blood cells. The functional role of CFTR in erythrocytes is still unclear. Since the number of CFTR copies in a single erythrocyte of healthy donors and CF patients with a homozygous DeltaF508 mutation is unknown, we counted CFTR, localized in erythrocyte plasma membrane, at the single molecule level. A novel experimental approach combining atomic force microscopy with quantum-dot-labeled anti-CFTR antibodies, used as topographic surface markers, was employed to detect individual CFTR molecules. Analysis of erythrocyte plasma membranes taken from healthy donors and CF patients with a homozygous DeltaF508 mutation reveals mean (SEM) values of 698 (12.8) (n=542) and 172 (3.8) (n=538) CFTR molecules per red blood cell, respectively. We conclude that erythrocytes reflect the CFTR status of the organism and that quantification of CFTR in a blood sample could be useful in the diagnosis of CFTR related diseases.  相似文献   

8.
Cationic liposomes are widely used as gene transfer agents in in vitro and in vivo studies of cystic fibrosis. In this study we report comparative results of cationic mediated transfection in several cell lines. We have tested epithelial cell lines expressing the wild-type cystic fibrosis transmembrane protein CFTR (bronchial epithelium-16HBE14o-, submucosal gland-Calu3) and their cystic fibrosis counterparts (CFBE41o-, CFSMEo-), as well as baby hamster kidney fibroblast cell lines (BHK) heterologously expressing human CFTR. The cells were transfected with a green fluorescent protein plasmid complexed with commercial cationic liposome (Geneporter2, GP) and 25 kDa polyethylenimine (PEI). At the end of the incubation (2 hours), low molecular weight heparin was added in order to reduce the toxicity of the lipoplexes. Transfection efficiency and cell viability were measured by flow cytometry. Determination of fatty acid composition of cellular phospholipids was performed by capillary gas chromatography. The short incubation time was sufficient to obtain satisfactory transfection in all cell lines studied. Cells treated with PEI-complexes had lower transfection efficiency and viability compared to GP in all tested cell lines. DeltaF508 CFTR carrying airway epithelial cells were easier to transfect but had lower viability compared to their healthy counterparts. This was, however not the case for the BHK cells. The fatty acid analysis showed characteristic polyunsaturated fatty acid patterns, which correlated with the viability of the transfected cells. Low molecular mass heparin added at the end of the lipoplex incubation time could help to maintain the viability of the cells, without interfering with the transfection efficiency.  相似文献   

9.
Abstract: The cystic fibrosis gene product, cystic fibrosis transmembrane conductance regulator (CFTR), functions as a CI channel that is regulated by cyclic AMP-dependent phosphorylation. We have investigated the expression of CFTR protein in the rodent brain by both western blotting of samples prepared by microdissection and immunohistochemistry. CFTR was found to be expressed in choroid plexus and ependyma. In tissue sections, CFTR-like immunoreactivity was concentrated in fine puncta localized about 1–2 µm from the CSF-contacting side of ependyma and choroid plexus. CFTR in choroid plexus may play a role in the regulation of the composition of CSF by cyclic AMP-elevating agents, but the role of this chloride transporter in ependymal function remains to be determined.  相似文献   

10.
Chloride channels in the small intestinal cell line IEC-18   总被引:1,自引:0,他引:1  
Small intestinal crypt cells play a critical role in modulating Cl- secretion during digestion. The types of Cl- channels mediating Cl- secretion in the small intestine was investigated using the intestinal epithelial cell line, IEC-18, which was derived from rat small intestine crypt cells. In initial radioisotope efflux studies, exposure to forskolin, ionomycin or a decrease in extracellular osmolarity significantly increased 36Cl efflux as compared to control cells. Whole cell patch clamp techniques were subsequently used to examine in more detail the swelling-, Ca2+-, and cAMP-activated Cl- conductance. Decreasing the extracellular osmolarity from 290 to 200 mOsm activated a large outwardly rectifying Cl- current that was voltage-independent and had an anion selectivity of I- > Cl-. Increasing cytosolic Ca2+ by ionomycin activated whole cell Cl- currents, which were also outwardly rectifying but were voltage-dependent. The increase in intracellular Ca2+ levels with ionomycin was confirmed with fura-2 loaded IEC-18 cells. A third type of whole cell Cl- current was observed after increases in intracellular cAMP induced by forskolin. These cAMP-activated Cl- currents have properties consistent with cystic fibrosis transmembrane regulator (CFTR) Cl- channels, as the currents were blocked by glibenclamide or NPPB but insensitive to DIDS. In addition, the current-voltage relationship was linear and had an anion selectivity of Cl- > I-. Confocal immunofluorescence studies and Western blots with two different anti-CFTR antibodies confirmed the expression of CFTR. These results suggest that small intestinal crypt cells express multiple types of Cl- channels, which may all contribute to net Cl- secretion.  相似文献   

11.
Cystic fibrosis is characterized by an impaired cyclic adenosine 3,5-monophosphate (cAMP) activated Cl conductance in parallel with an enhanced amiloride sensitive Na+ conductance (ENaC) of the respiratory epithelium. Very recently, acute downregulation of ENaC by the cystic fibrosis transmembrane conductance regulator (CFTR) was demonstrated in several studies. The mechanism, however, by which CFTR exerts its inhibitory effect on ENaC remains obscure. We demonstrate that cytosolic domains of human CFTR are sufficient to induce inhibition of rat epithelial Na+ currents (rENaC) when coexpressed in Xenopus oocytes and stimulated with 3-isobutyl-1-methylxanthine (IBMX). Moreover, mutations of CFTR, which occur in cystic fibrosis, abolish CFTR-dependent downregulation of rENaC. Yeast two hybrid analysis of CFTR domains and rENaC subunits suggest direct interaction between the proteins. Enhanced Na+ transport as found in the airways of cystic fibrosis patients is probably due to a lack of CFTR dependent downregulation of ENaC.  相似文献   

12.
Cystic fibrosis (CF), the most common genetic disease among Caucasians, is caused by mutations in the gene encoding CFTR (cystic fibrosis transmembrane conductance regulator). The most frequent mutation, ΔF508, results in protein misfolding and, as a consequence, prevents CFTR from reaching its final location at the cell surface. CFTR is expressed in various cell types including red blood cells. The functional role of CFTR in erythrocytes is still unclear. Since the number of CFTR copies in a single erythrocyte of healthy donors and CF patients with a homozygous ΔF508 mutation is unknown, we counted CFTR, localized in erythrocyte plasma membrane, at the single molecule level. A novel experimental approach combining atomic force microscopy with quantum-dot-labeled anti-CFTR antibodies, used as topographic surface markers, was employed to detect individual CFTR molecules. Analysis of erythrocyte plasma membranes taken from healthy donors and CF patients with a homozygous ΔF508 mutation reveals mean (SEM) values of 698 (12.8) (n=542) and 172 (3.8) (n=538) CFTR molecules per red blood cell, respectively. We conclude that erythrocytes reflect the CFTR status of the organism and that quantification of CFTR in a blood sample could be useful in the diagnosis of CFTR related diseases.  相似文献   

13.
The disease, cystic fibrosis, is caused by the malfunction of the cystic fibrosis transmembrane conductance regulator. Expression of functional CFTR may normally regulate extracellular pH via control of bicarbonate efflux. Reports also suggest that the CFTR may be a Cl-/HCO3- exchanger. If true, this could be very important for treatment of CF given the airway host defense system is quite sensitive to pH, and acidic pH been found to increase mucus viscosity. We compared evidentiary support of four possible models of CFTR's role in the transport of bicarbonate: 1) CFTR as a Cl-channel that permits bicarbonate conductance, 2) CFTR as an anion Cl-/HCO3- exchanger (AE), 3.) CFTR as both a Cl-channel and an AE, and 4.) CFTR as a Cl-channel that allows for transport of bicarbonate and regulates an independent AE. The effect of stimulators and inhibitors of CFTR and AEs were evaluated via iodide efflux and studies of extracellular pH. This data, as well as that published by others, suggest that while CFTR may support and regulate bicarbonate flux it is unlikely it directly performs Cl-/HCO3- anion exchange.  相似文献   

14.
Dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel causes cystic fibrosis, while inappropriate activity of this channel occurs in secretory diarrhea and polycystic kidney disease. Drugs that interact directly with CFTR are therefore of interest in the treatment of a number of disease states. This review focuses on one class of small molecules that interacts directly with CFTR, namely inhibitors that act by directly blocking chloride movement through the open channel pore. In theory such compounds could be of use in the treatment of diarrhea and polycystic kidney disease, however in practice all known substances acting by this mechanism to inhibit CFTR function lack either the potency or specificity for in vivo use. Nevertheless, this theoretical pharmacological usefulness set the scene for the development of more potent, specific CFTR inhibitors. Biophysically, open channel blockers have proven most useful as experimental probes of the structure and function of the CFTR chloride channel pore. Most importantly, the use of these blockers has been fundamental in developing a functional model of the pore that includes a wide inner vestibule that uses positively charged amino acid side chains to attract both permeant and blocking anions from the cell cytoplasm. CFTR channels are also subject to this kind of blocking action by endogenous anions present in the cell cytoplasm, and recently this blocking effect has been suggested to play a role in the physiological control of CFTR channel function, in particular as a novel mechanism linking CFTR function dynamically to the composition of epithelial cell secretions. It has also been suggested that future drugs could target this same pathway as a way of pharmacologically increasing CFTR activity in cystic fibrosis. Studying open channel blockers and their mechanisms of action has resulted in significant advances in our understanding of CFTR as a pharmacological target in disease states, of CFTR channel structure and function, and of how CFTR activity is controlled by its local environment.  相似文献   

15.
The cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-gated chloride channel. WNK kinases are widely expressed modulators of ion transport. WNK1 and WNK4, two WNK kinases that are mutated in familial hyperkalemic hypertension (FHHt), are co-expressed with CFTR in several organs, raising the possibility that WNK kinases might alter CFTR activity in vivo or that CFTR could be involved in the pathogenesis of FHHt. Here, we report that WNK1 co-localizes with CFTR protein in pulmonary epithelial cells. Co-expression of WNK1 or WNK4 with CFTR in Xenopus laevis oocytes suppresses chloride channel activity. The effect of WNK4 is dose dependent and occurs, at least in part, by reducing CFTR protein abundance at the plasma membrane. This effect is independent of WNK4 kinase activity. In contrast, the effect of WNK1 on CFTR activity requires intact WNK1 kinase activity. Moreover WNK1 and WNK4 exhibit additive CFTR inhibition. Previous reports suggest that patients with FHHt exhibit mild changes in nasal potential difference that resemble the more severe changes that occur in cystic fibrosis. We report that the FHHt-causing mutant WNK4 Q562E is a more potent inhibitor of CFTR activity than is the wild-type WNK4. Taken together, these results suggest that WNK1 and WNK4 may modulate CFTR activity; they further suggest that WNK kinases may be potential therapeutic targets for cystic fibrosis.  相似文献   

16.
Full genotypic characterization of subjects affected by cystic fibrosis (CF) is essential for the definition of the genotype-phenotype correlation as well as for the enhancement of the diagnostic and prognostic value of the genetic investigation. High-sensitivity diagnostic methods, capable of full scanning of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, are needed to enhance the significance of these genetic assays. A method for extensive sequencing of the CFTR gene was optimized. This method was applied to subjects clinically positive for CF and to controls from the general population of central Italy as well as to a single subject heterozygous for a mild mutation and with an uncertain diagnosis. Some points that are crucial for the optimization of the method emerged: a 96-well format, primer project and purification, and amplicon purification. The optimized method displayed a high degree of diagnostic sensitivity; we identified a subset of 13 CFTR mutations that greatly enhanced the diagnostic sensitivity of common methods of mutational analysis. A novel G1244R disease causing mutation, leading to a CF phenotype with pancreatic sufficiency but early onset of pulmonary involvement, was detected in the subject with an uncertain diagnosis. Some discrepancies between our results and previously published CFTR sequence were found.  相似文献   

17.
Dysfunction of the cystic fibrosis transmembrane con-ductance regulator(CFTR) chloride channel causes cys-tic fibrosis, while inappropriate activity of this channeloccurs in secretory diarrhea and polycystic kidney dis-ease. Drugs that interact directly with CFTR are there-fore of interest in the treatment of a number of diseasestates. This review focuses on one class of small mol-ecules that interacts directly with CFTR, namely inhibi-tors that act by directly blocking chloride movementthrough the open channel pore. In theory such com-pounds could be of use in the treatment of diarrheaand polycystic kidney disease, however in practice allknown substances acting by this mechanism to inhibitCFTR function lack either the potency or specificity forin vivo use. Nevertheless, this theoretical pharmaco-logical usefulness set the scene for the developmentof more potent, specific CFTR inhibitors. Biophysically,open channel blockers have proven most useful as ex-perimental probes of the structure and function of theCFTR chloride channel pore. Most importantly, the useof these blockers has been fundamental in developing afunctional model of the pore that includes a wide innervestibule that uses positively charged amino acid sidechains to attract both permeant and blocking anionsfrom the cell cytoplasm. CFTR channels are also subjectto this kind of blocking action by endogenous anionspresent in the cell cytoplasm, and recently this blocking effect has been suggested to play a role in the physio-logical control of CFTR channel function, in particular as a novel mechanism linking CFTR function dynamically to the composition of epithelial cell secretions. It has also been suggested that future drugs could target this same pathway as a way of pharmacologically increasing CFTR activity in cystic fibrosis. Studying open channel blockers and their mechanisms of action has resulted in significant advances in our understanding of CFTR as a pharmacological target in disease states, of CFTR chan-nel structure and function, and of how CFTR activity is controlled by its local environment.  相似文献   

18.
Cystic fibrosis (CF) is caused by mutations in the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR). The most common mutation responsible for CF is the deletion of amino acid residue Phe508, with an average allelic frequency of 70%. We have isolated an anti-CFTR monoclonal antibody which specifically recognizes recombinant normal and delta Phe508-CFTR produced by a vaccinia virus expression system. Immunocytochemical analysis of L cells expressing either normal or delta Phe508-CFTR showed a marked difference in subcellular distribution. Normal CFTR had a distinct localization in the perinuclear area and was also associated with the plasma membrane. delta Phe508-CFTR essentially lacked the membrane-associated distribution and was present throughout the cytoplasm. This heterologous expression system thus provides a model system for studying the subcellular localization of different mutant forms of CFTR.  相似文献   

19.
Cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel in the apical surface of epithelial cells in the airway and gastrointestinal tract, and mutation of CFTR is the underlying cause of cystic fibrosis. However, the precise molecular details of the structure and function of CFTR in native and disease states remains elusive and cystic fibrosis researchers are hindered by a lack of high specificity, high affinity binding reagents for use in structural and biological studies. Here, we describe a panel of synthetic antigen-binding fragments (Fabs) isolated from a phage-displayed library that are specific for intracellular domains of CFTR that include the nucleotide-binding domains (NBD1 and NBD2), the R-region, and the regulatory insertion loop of NBD1. Binding assays performed under conditions that promote the native fold of the protein demonstrated that all Fabs recognized full-length CFTR. However, only the NBD1-specific Fab recognized denatured CFTR by western blot, suggesting a conformational epitope requirement for the other Fabs. Surface plasmon resonance experiments showed that the R-region Fab binds with high affinity to both the phosphorylated and unphosphorylated R-region. In addition, NMR analysis of bound versus unbound R-region revealed a distinct conformational effect upon Fab binding. We further defined residues involved with antibody recognition using an overlapping peptide array. In summary, we describe methodology complementary to previous hybridoma-based efforts to develop antibody reagents to CFTR, and introduce a synthetic antibody panel to aid structural and biological studies.  相似文献   

20.
We recently discovered that hyaluronan was exported from fibroblasts by MRP5 and from epithelial cells by cystic fibrosis (CF) transmembrane conductance regulator (CFTR) that was known as a chloride channel. On this basis we developed membrane permeable analogs of hyaluronan disaccharide as new class of compounds to modify their efflux. We found substances that activated hyaluronan export from human breast cancer cells. The most active compound 2-(2-acetamido-3,5-dihydroxyphenoxy)-5-aminobenzoic acid (Hylout4) was tested for its influence on the activity of epithelial cells. It activated the ion efflux by normal and defective ΔF508-CFTR. It also enhanced the plasma membrane concentration of the ΔF508-CFTR protein and reduced the transepithelial resistance of epithelial cells. In human trials of healthy persons, it caused an opening of CFTR in the nasal epithelium. Thus compound Hylout4 is a corrector that recovered ΔF508-CFTR from intracellular degradation and activated its export function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号