首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phagocyte NADPH oxidase (NOX2) is a key enzyme of the innate immune system generating superoxide anions (O2?-), precursors of reactive oxygen species. The NOX2 protein complex is composed of six subunits: two membrane proteins (gp91phox and p22phox) forming the catalytic core, three cytosolic proteins (p67phox, p47phox and p40phox) and a small GTPase Rac. The sophisticated activation mechanism of the NADPH oxidase relies on the assembly of cytosolic subunits with the membrane-bound components. A chimeric protein, called ‘Trimera’, composed of the essential domains of the cytosolic proteins p47phox (aa 1–286), p67phox (aa 1–212) and full-length Rac1Q61L, enables a constitutive and robust NOX2 activity in cells without the need of any stimulus. We employed Trimera as a single activating protein of the phagocyte NADPH oxidase in living cells and examined the consequences on the cell physiology of this continuous and long-term NOX activity. We showed that the sustained high level of NOX activity causes acidification of the intracellular pH, triggers apoptosis and leads to local peroxidation of lipids in the membrane. These local damages to the membrane correlate with the strong tendency of the Trimera to clusterize in the plasma membrane observed by FRET-FLIM microscopy.  相似文献   

2.
Assembly of the phagocyte NADPH oxidase   总被引:5,自引:5,他引:0  
Stimulated phagocytes undergo a burst in respiration whereby molecular oxygen is converted to superoxide anion through the action of an NADPH-dependent oxidase. The multicomponent phagocyte oxidase is unassembled and inactive in resting cells but assembles at the plasma or phagosomal membrane upon phagocyte activation. Oxidase components include flavocytochrome b558, an integral membrane heterodimer comprised of gp91phox and p22phox, and three cytosolic proteins, p47phox, p67phox, and Rac1 or Rac2, depending on the species and phagocytic cell. In a sense, the phagocyte oxidase is spatially regulated, with critical elements segregated in the membrane and cytosol but ready to undergo nearly immediate assembly and activation in response to stimulation. To achieve such spatial regulation, the individual components in the resting phagocyte adopt conformations that mask potentially interactive structural domains that might mediate productive intermolecular associations and oxidase assembly. In response to stimulation, post-translational modifications of the oxidase components release these constraints and thereby render potential interfaces accessible and interactive, resulting in translocation of the cytosolic elements to the membrane where the functional oxidase is assembled and active. This review summarizes data on the structural features of the phagocyte oxidase components and on the agonist-dependent conformational rearrangements that contribute to oxidase assembly and activation.  相似文献   

3.
In phagocytes, superoxide anion (O2), the precursor of reactive oxygen species, is produced by the NADPH oxidase complex to kill pathogens. Phagocyte NADPH oxidase consists of the transmembrane cytochrome b558 (cyt b558) and four cytosolic components: p40phox, p47phox, p67phox, and Rac1/2. The phagocyte activation by stimuli leads to activation of signal transduction pathways. This is followed by the translocation of cytosolic components to the membrane and their association with cyt b558 to form the active enzyme.To investigate the roles of membrane-interacting domains of the cytosolic proteins in the NADPH oxidase complex assembly and activity, we used giant unilamellar phospholipid vesicles (GUV). We also used the neutrophil-like cell line PLB-985 to investigate these roles under physiological conditions. We confirmed that the isolated proteins must be activated to bind to the membrane. We showed that their membrane binding was strengthened by the presence of the other cytosolic partners, with a key role for p47phox. We also used a fused chimera consisting of p47phox(aa 1–286), p67phox(aa 1–212) and Rac1Q61L, as well as mutated versions in the p47phox PX domain and the Rac polybasic region (PB). We showed that these two domains have a crucial role in the trimera membrane-binding and in the trimera assembly to cyt b558. They also have an impact on O2.- production in vitro and in cellulo: the PX domain strongly binding to GUV made of a mix of polar lipids; and the PB region strongly binding to the plasma membrane of neutrophils and resting PLB-985 cells.  相似文献   

4.
The leukocyte NADPH oxidase of neutrophils is a membrane-bound enzyme that catalyzes the reduction of oxygen to O 2 at the expense of NADPH. During activation, the cytosolic oxidase components p47phox and p67phox, each containing two Src homology 3 (SH3) domains, migrate to the plasma membrane. p47phox and p67phox associate with cytochrome b558, a membrane-integrated flavohemoprotein, to assemble the active oxidase. Oxidase activation can be mimicked in a cell-free system using an anionic amphiphile, such as sodium dodecyl sulfate or arachidonic acid, as an activating agent. Activators of the oxidase in vitro cause exposure of the SH3 domains of p47phox, which has probably been masked by the C-terminal region of this protein in a resting state. We show here that the fluorescence exhibited by the covalently labeled N,N-di-methyl-N(iodoacetyl)-N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) ethyleneamine (IANBD) was increased when N-terminal-truncated p47phox-(SH3)2-C was treated with anionic amphiphiles. This finding was similar to the results obtained with the full-length p47phox. However, the fluorescence of C-terminal-truncated p47phox-N-(SH3)2 and that of both C-terminal and N-terminal truncated p47phox-(SH3)2 were not altered by the activators. These results indicate that the C-terminal region of p47phox is a primary target of the conformational change during the activation of NADPH oxidase.  相似文献   

5.
Phosphatidic acid generated by the activation of phospholipase D (PLD) functions as a second messenger and plays a vital role in cell signaling. Here we demonstrate that PLD-dependent generation of phosphatidic acid is critical for Rac1/IQGAP1 signal transduction, translocation of p47phox to cell periphery, and ROS production. Exposure of [32P]orthophosphate-labeled human pulmonary artery endothelial cells (HPAECs) to hyperoxia (95% O2 and 5% CO2) in the presence of 0.05% 1-butanol, but not tertiary-butanol, stimulated PLD as evidenced by accumulation of [32P]phosphatidylbutanol. Infection of HPAECs with adenoviral constructs of PLD1 and PLD2 wild-type potentiated hyperoxia-induced PLD activation and accumulation of /reactive oxygen species (ROS). Conversely, overexpression of catalytically inactive mutants of PLD (hPLD1-K898R or mPLD2-K758R) or down-regulation of expression of PLD with PLD1 or PLD2 siRNA did not augment hyperoxia-induced [32P]phosphatidylbutanol accumulation and ROS generation. Hyperoxia caused rapid activation and redistribution of Rac1, and IQGAP1 to cell periphery, and down-regulation of Rac1, and IQGAP1 attenuated hyperoxia-induced tyrosine phosphorylation of Src and cortactin and ROS generation. Further, hyperoxia-mediated redistribution of Rac1, and IQGAP1 to membrane ruffles, was attenuated by PLD1 or PLD2 small interference RNA, suggesting that PLD is upstream of the Rac1/IQGAP1 signaling cascade. Finally, small interference RNA for PLD1 or PLD2 attenuated hyperoxia-induced cortactin tyrosine phosphorylation and abolished Src, cortactin, and p47phox redistribution to cell periphery. These results demonstrate a role of PLD in hyperoxia-mediated IQGAP1 activation through Rac1 in tyrosine phosphorylation of Src and cortactin, as well as in p47phox translocation and ROS formation in human lung endothelial cells.Phagocytic cells of the immune system (neutrophils, eosinophils, monocytes, and macrophages) generate superoxide ()2 instrumental in the killing of invading pathogens solely by NADPH oxidase (1-3). Deficiency of results in the genetically inherited disorder chronic granulomatous disease, a condition in which the affected individuals are susceptible to infection (4). Phagocytic NADPH oxidase is activated when cytosolic p47phox, p67phox, and Rac2 translocate to the phagosomes and plasma membrane and form a complex with integral membrane cytochrome b558, which, in turn, is a Nox2 (gp91phox)/p22phox heterodimer (5, 6). Assembly of phagocytic NADPH oxidase is initiated by two signals. The first is the phosphorylation of multiple serine and tyrosine residues in the p47phox domain, which leads to unmasking of p47phox SH3 domains that bind to a proline-rich target in the C terminus of p22phox (7-10). The interaction between p47phox and p22phox seems to be an essential requirement for the translocation of other cytosolic components of the oxidase. The second signal is the binding of GTP to Rac2, which leads to the dissociation of Rac from Rho-GDI and binding to p67phox, followed by translocation of p67phox/GTP-Rac2 to the membrane (11). Nonphagocytic cells express predominantly Rac1, Tiam1 (a GEF involved in Rac1 activation), Nox1-5, and most of the other cytosolic phagocytic oxidase components (12); however, the oxidative output of non-phagocytes is much smaller compared with the phagocytes. A recent study indicates that IQGAP1, an effector of Rac1, may link Nox2 to actin, thereby enhancing ROS production and contributing to cell motility in ECs (13). The one or more mechanisms responsible for differences in the oxidative burst between the phagocytic and non-phagocytic cells are yet to be defined.We have demonstrated previously that hyperoxia activates lung endothelial NADPH oxidase, which in part is mediated by ERK, p38 MAPK (14, 15), and Src (16), and hyperoxia-induced p47phox tyrosine phosphorylation and translocation to cell periphery is dependent on Src (16). Further, tyrosine phosphorylation of cortactin mediated by Src is essential for hyperoxia-induced p47phox translocation and /ROS generation in HPAECs (17). In addition to Src, phosphatidic acid (PA) or diacylglycerol also stimulated phosphorylation of p47phox and p22phox in neutrophils both in vivo and in vitro (18-20). PA is generated in mammalian cells via de novo biosynthesis or hydrolysis of membrane phospholipids catalyzed by phospholipase D (PLD) (21-25). Activation of polymorphonuclear leukocytes with formyl-Met-Leu-Phe enhanced the oxidative burst that correlated with PA accumulation, and inclusion of short-chain primary alcohols attenuated the NADPH oxidase mediated /ROS generation, suggesting a potential role for PLD in the regulation of NADPH oxidase (12, 26, 27). However, the downstream targets of PLD that signal NADPH oxidase activation have not been fully characterized.Here, we identify for the first time that activation of IQGAP1 by Rac1 is downstream of PLD in hyperoxia-induced ROS generation. In addition, we show that activation of Rac1/IQGAP1 by PLD also regulates Src-dependent tyrosine phosphorylation of cortactin and p47phox translocation to cell periphery. Thus, our results define a novel molecular mechanism for hyperoxia-induced NADPH oxidase activation by PLD/PA-mediated p47phox membrane translocation via Rac1/IQGAP1/Src/cortactin signaling cascade.  相似文献   

6.

Background

The phagocyte NADPH-oxidase is a multicomponent enzyme that generates superoxide anions. It comprises a membrane redox component flavocytochrome b558 and four cytosolic proteins (p67phox, p47phox, p40phox and Rac) that must assemble to produce an active system. In this work we focused on the spatio-temporal control of the activation process of phagocyte NADPH oxidase.

Methods

A wide range of techniques including fast kinetics with a stopped-flow apparatus and various combinations of the activating factors was used to test the order of assembly and the role of the p47phox–p67phox complex.

Results

The data presented here are consistent with the absence of a catalytic role of the p47phox–p67phox interacting state and support the idea of independent binding sites for the cytosolic proteins on the flavocytochrome b558 allowing random binding order. However, the formation of the active complex appears to involve a synergistic process of binding of the activated cytosolic subunits to cytochrome b558. All partners should be in the vicinity for optimal assembly, a delay or the absence of one of the partners in this process seems to lead to a decrease in the efficiency of the catalytic core.

Conclusion and general significance

The activation and assembly of the NADPH oxidase components have to be achieved simultaneously for the formation of an efficient and optimal enzyme complex. This mechanism appears to be incompatible with continuous fast exchanges of the cytosolic proteins during the production of superoxide ion in the phagosome.  相似文献   

7.
Reactive oxygen species produced by NADPH oxidase appear to play a role in the response of human lung fibroblast cells to rhinovirus infection. The purpose of the following studies was to characterize the NADPH oxidase components in these cells, to examine the effect of rhinovirus challenge on the expression of these proteins, and to confirm previous studies suggesting a role for p47-phox in the oxidant response to rhinovirus challenge. The results revealed that the NADPH oxidase components p47-phox, p67-phox, p22-phox, and NOX4 were expressed in lung fibroblast cells. In contrast, gp91-phox was not expressed in this cell line. Expression of p67-phox was upregulated by rhinovirus challenge. The functional role of NADPH oxidase in the rhinovirus-induced oxidant stress and elaboration of IL-8 was confirmed by detection of significant reductions in oxidant stress and IL-8 elaboration following transfection of the cells with antisense nucleotides to p47-phox. The lack of gp91-phox in cultured lung fibroblast cells, the induction of p67-phox by rhinovirus, and the confirmation of participation of p47-phox in rhinovirus-induced oxidant stress are significant findings of this study and form a basis for future investigations into understanding the mechanisms of the NADPH oxidase response to rhinovirus infection.  相似文献   

8.
The phagocyte NADPH oxidase Nox2, heterodimerized with p22phox in the membrane, is dormant in resting cells but becomes activated upon cell stimulation to produce superoxide, a precursor of microbicidal oxidants. Nox2 activation requires two switches to be turned on simultaneously: a conformational change of the cytosolic protein p47phox and GDP/GTP exchange on the small GTPase Rac. These proteins, in an active form, bind to their respective targets, p22phox and p67phox, leading to productive oxidase assembly at the membrane. Although arachidonic acid (AA) efficiently activates Nox2 both in vivo and in vitro, the mechanism has not been fully understood, except that AA induces p47phox conformational change. Here we show that AA elicits GDP-to-GTP exchange on Rac at the cellular level, consistent with its role as a potent Nox2 activator. However, even when constitutively active forms of p47phox and Rac1 are both expressed in HeLa cells, superoxide production by Nox2 is scarcely induced in the absence of AA. These active proteins also fail to effectively activate Nox2 in a cell-free reconstituted system without AA. Without affecting Rac-GTP binding to p67phox, AA induces the direct interaction of Rac-GTP-bound p67phox with the C-terminal cytosolic region of Nox2. p67phox-Rac-Nox2 assembly and superoxide production are both abrogated by alanine substitution for Tyr-198, Leu-199, and Val-204 in the p67phox activation domain that localizes the C-terminal to the Rac-binding domain. Thus the “third” switch (AA-inducible interaction of p67phox·Rac-GTP with Nox2) is required to be turned on at the same time for Nox2 activation.  相似文献   

9.
Superoxide is produced by a NADPH oxidase of phagocytic cells and contributes to their microbicidal activities. The oxidase is activated when receptors in the neutrophil plasma membrane bind to the target microbe. These receptors recognise antibodies and complement fragments which coat the target cell. The oxidase electron transport chain, located in the plasma membrane, comprises a low potential cytochrome b heterodimer (gp 91-phox and p22-phox) associated with FAD. It is non-functional until at least three proteins, p67-phox, p47-phox and p21rac (and possibly others), move from the cytosol to dock on the cytochrome b. The docking involves the interaction of SH3 domains may become exposed follwoing phosphorylation of p47-phox by protein kinase C or, in model systems, by addition of arachidonic acid to reconstitution mixtures. Following the docking process the electron-transporting component is able to transfer electrons from NADPH to oxygen. This electrogenic event is charge-compensated by the opening of a prton channel. Components of the oxidase are expressed in non-phagocytes, where their function is uncretain but could be related to some signal function of superoxide.  相似文献   

10.
The NADPH oxidase complex is involved in the destruction of phagocytosed pathogens through the production of reactive oxygen species. This activatable complex consists of a membranous heterodimeric flavocytochrome b, a small G-protein Rac1/Rac2 and cytosolic factors, p47phox, p67phox and p40phox. p67phox, due to its modular structure, is the NADPH oxidase component for which global structure information is most scarce despite its mandatory role in activation and its central position in the whole complex organization. Indeed, p67phox is the only factor establishing interaction with all others. In this study, we report the SAXS analysis of p67phox. Our data reveals that p67phox behaves as a multidomain protein with semi-flexible linkers. On the one hand, it appears to be a very elongated molecule with its various domains organized as beads on a string. Linkers are predicted to be partially or mainly unstructured and features of our experimental data do point towards inter-domain flexibility. On the other hand, our work also suggests that the protein is not as extended as unstructured linkers could allow, thereby implying the existence of intra-molecular interactions within p67phox. We suggest that the dual character of p67phox conformation in solution is central to ensure the numerous interactions to be accommodated.  相似文献   

11.
The superoxide-generating NADPH oxidase complex of resting phagocytes includes cytochrome b559, a membrane-associated heterodimer composed of two subunits (Nox2 and p22phox), and four cytosolic proteins (p47phox, p67phox, Rac, and p40phox). Upon stimulation, the cytosolic components translocate to the membrane, as the result of a series of interactions among the cytosolic components and among the cytosolic components and cytochrome b559 and its phospholipid environment. We described the construction of a tripartite chimera (trimera) consisting of strategic domains of p47phox, p67phox, and Rac1, in which interactions among cytosolic components were replaced by fusion (Berdichevsky, Y., Mizrahi, A., Ugolev, Y., Molshanski-Mor, S., and Pick, E. (2007) J. Biol. Chem. 282, 22122–22139). We now fused green fluorescent protein (GFP) to the N terminus of the trimera and found the following. 1) The GFP-p47phox-p67phox-Rac1 trimera activates the oxidase in amphiphile-dependent and -independent (anionic phospholipid-enriched membrane) cell-free systems. 2) Geranylgeranylation of the GFP-trimera makes it a potent oxidase activator in unmodified (native) membranes and in the absence of amphiphile. 3) Prenylated GFP-trimera binds spontaneously to native membranes (as assessed by gel filtration and in-line fluorometry), forming a tight complex capable of NADPH-dependent, activator-independent superoxide production at rates similar to those measured in canonical cell-free systems. 4) Prenylation of the GFP-trimera supersedes completely the dependence of oxidase activation on the p47phox phox homology domain and, partially, on the Rac1 polybasic domain, but the requirement for Trp193 in p47phox persists. Prenylated GFP-p47phox-p67phox-Rac1 trimera acts as a quintessential single molecule oxidase activator of potential use in high throughput screening of inhibitors.  相似文献   

12.
Summary The formation and location of glucose oxidase was studied in Aspergillus niger, which was pregrown under citric acid producing conditions. Glucose oxidase could be de novo induced by a shift in pH from 1.7 to 5.5. The induction required the intracellular presence of either glucose or glucose-6-phosphate. Glucose oxidase so produced was rapidly secreted into the medium, which was not due to autolysis.  相似文献   

13.
The assembly of cytosolic p47phox and p67phox with flavocytochrome b558 at the membrane is crucial for activating the leukocyte NADPH oxidase that generates superoxide for microbial killing. p47phox and p67phox are linked via a high-affinity, tail-to-tail interaction involving a proline-rich region (PRR) and a C-terminal SH3 domain (SH3b), respectively, in their C-termini. This interaction mediates p67phox translocation in neutrophils, but is not required for oxidase activity in model systems. Here we examined phagocytosis-induced NADPH oxidase assembly, showing the sequential recruitment of YFP-tagged p67phox to the phagosomal cup, and, after phagosome internalization, a probe for PI(3)P followed by a YFP-tagged fragment derived from the p47phox PRR. This fragment was recruited in a flavocytochrome b558-dependent, p67phox-specific, and PI(3)P-independent manner. These findings indicate that p47PRR fragment probes the status of the p67phox SH3b domain and suggest that the p47phox/p67phox tail-to-tail interaction is disrupted after oxidase assembly such that the p67phox-SH3b domain becomes accessible. Superoxide generation was sustained within phagosomes, indicating that this change does not correlate with loss of enzyme activity. This study defines a sequence of events during phagocytosis-induced NADPH oxidase assembly and provides experimental evidence that intermolecular interactions within this complex are dynamic and modulated after assembly on phagosomes.  相似文献   

14.
The phagocyte NADPH oxidase, dormant in resting cells, is activated during phagocytosis to produce superoxide, a precursor of microbicidal oxidants. The membrane-integrated protein gp91phox serves as the catalytic core, because it contains a complete electron-transporting apparatus from NADPH to molecular oxygen for superoxide production. Activation of gp91phox requires the cytosolic proteins p67phox, p47phox, and Rac (a small GTPase). p67phox, comprising 526 amino acids, moves upon cell stimulation to the membrane together with p47phox and there interacts with Rac; these processes are prerequisite for gp91phox activation. Here we show that a region of p67phox (amino acids 190–200) C-terminal to the Rac-binding domain is evolutionarily well conserved and participates in oxidase activation at a later stage in conjunction with an activation domain. Alanine substitution for Tyr-198, Leu-199, or Val-204 abrogates the ability of p67phox to support superoxide production by gp91phox-based oxidase as well as its related oxidases Nox1 and Nox3; the activation also involves other invariant residues such as Leu-193, Asp-197, and Gly-200. Intriguingly, replacement of Gln-192 by alanine or that of Tyr-198 by phenylalanine or tryptophan rather enhances superoxide production by gp91phox-based oxidase, suggesting a tuning role for these residues. Furthermore, the Y198A/V204A or L199A/V204A substitution leads to not only a complete loss of the activity of the reconstituted oxidase system but also a significant decrease in p67phox interaction with the gp91phox NADPH-binding domain, although these mutations affect neither the protein integrity nor the Rac binding activity. Thus the extended activation domain of p67phox (amino acids 190–210) containing the D(Y/F)LGK motif plays an essential role in oxidase activation probably by interacting with gp91phox.  相似文献   

15.
UDP-GlcNAc: Man1-6R (1-2)-N-acetylglucosaminyltransferase II (GlcNAc-T II; EC 2.4.1.143) is a key enzyme in the synthesis of complexN-glycans. We have tested a series of synthetic analogues of the substrate Man1-6(GlcNAc1-2Man1-3)Man-O-octyl as substrates and inhibitors for rat liver GlcNAc-T II. The enzyme attachesN-acetylglucosamine in 1-2 linkage to the 2-OH of the Man1-6 residue. The 2-deoxy analogue is a competitive inhibitor (K i=0.13mm). The 2-O-methyl compound does not bind to the enzyme presumably due to steric hindrance. The 3-, 4- and 6-OH groups are not essential for binding or catalysis since the 3-, 4- and 6-deoxy and -O-methyl derivatives are all good substrates. Increasing the size of the substituent at the 3-position to pentyl and substituted pentyl groups causes competitive inhibition (K i=1.0–2.5mm). We have taken advantage of this effect to synthesize two potentially irreversible GlcNAc-T II inhibitors containing a photolabile 3-O-(4,4-azo)pentyl group and a 3-O-(5-iodoacetamido)pentyl group respectively. The data indicate that none of the hydroxyls of the Man1-6 residue are essential for binding although the 2- and 3-OH face the catalytic site of the enzyme. The 4-OH group of the Man-O-octyl residue is not essential for binding or catalysis since the 4-deoxy derivative is a good substrate; the 4-O-methyl derivative does not bind. This contrasts with GlcNAc-T I which cannot bind to the 4-deoxy-Man- substrate analogue. The data are compatible with our previous observations that a bisectingN-acetylglucosamine at the 4-OH position prevents both GlcNAc-T I and GlcNAc-T II catalysis. However, in the case of GlcNAc-T II, the bisectingN-acetylglucosamine prevents binding due to steric hindrance rather than to removal of an essential OH group. The 3-OH of the Man1-3 is an essential group for GlcNAc-T II since the 3-deoxy derivative does not bind to the enzyme. The trisaccharide GlcNAc1-2Man1-3Man-O-octyl is a good inhibitor (K i=0.9mm). The above data together with previous studies indicate that binding of the GlcNAc1-2Man1-3Man- arm of the branched substrate to the enzyme is essential for catalysis. Abbreviations: GlcNAc-T I, UDP-GlcNAc:Man1-3R (1-2)-N-acetylglucosaminyltransferase I (EC 2.4.1.101); GlcNAc-T II, UDP-GlcNAc:Man1-6R (1-2)-N-acetylglucosaminyltransferase II (EC 2.4.1.143); MES, 2-(N-morpholino)ethane sulfonic acid monohydrate.  相似文献   

16.
Kurt Egger  Manfred Keil 《Planta》1969,88(2):154-156
Summary Three glycosides have been isolated fromPaeonia arborea: kaempferol-3--glucoside-7--glucoside (Paeonoside), apigenin-7--glucoside, and apigenin-7-rhamnoglucoside (Rhoifolin).Paeonia suffruticosa also contains these three compounds but its main glycoside is kaempferol-3--glucoside (astragalin), which is present inPaeonia arborea only in traces.  相似文献   

17.
The membrane-bound NADPH oxidase in phagocytes, gp91phox (a.k.a. Nox2), produces superoxide, a precursor of microbicidal oxidants, thereby playing a crucial role in host defense. Activation of gp91phox/Nox2 requires assembly with the cytosolic proteins p67phox and p47phox, each containing two SH3 domains. Although the C-terminal SH3 domain of p67phox is responsible for binding to p47phox, little is known about the role for the first (N-terminal) SH3 domain [SH3(N)]. Here we show that truncation of p67phox-SH3(N), but not substitution of arginine for the invariant residue Trp-277 in SH3(N), results in an impaired activation of gp91phox/Nox2. The impairment is overcome by higher expression of an SH3(N)-defective p67phox in cells, suggesting that SH3(N) primarily increases the affinity of p67phox for the oxidase complex. On the other hand, p67phox-SH3(N) is not involved in activation of Nox1 and Nox3, closely-related homologues of gp91phox/Nox2. Thus p67phox-SH3(N) specifically functions in gp91phox/Nox2 activation probably via facilitating oxidase assembly.  相似文献   

18.
Summary Four types of striated muscle fibers with distinctive ultrastructure were defined in the Atlantic hagfish (Myxine glutinosa, L.): white, intermediate, and red fibers of m. parietalis, and red fibers of m. craniovelaris.White fibers are thick, contain very few mitochondria and fat vacuoles, and possess distinct and separate myofibrils with thin Z-disks and distinct M-lines. Intermediate fibers are thinner, possess largely similar myofibrils that often are even better separated due to a higher content of fat vacuoles and especially mitochondria and glycogen granules. Red fibers of m. parietalis contain large amounts of mitochondria, fat vacuoles, and glycogen granules. Their myofibrils possess M-lines, and although branching more, the myofibrils of red fibers conform with a Fibrillenstruktur pattern like those of white and intermediate fibers. Red fibers of m. craniovelaris are very thin, possess many smaller fat vacuoles, and large amounts of mitochondria and glycogen granules. The myofibrils are significantly thinner than in m. parietalis fibers, run as quite independent well separated units, possess thicker Z-disks, and lack M-lines. Large amounts of myosatellite cells are associated with these red fibers.Triads are located near A/I-junctions in all four fiber types and occur irregularly, the density of triads being different in the various fiber types.We are indebted to Dr. Finn Walvig, Biological Station, University of Oslo, Drøbak, for supply of hagfishes, and we also wish to thank Dr. Jan K. S. Jansen, Institute of Physiology, University of Oslo, for valuable suggestions during this study.  相似文献   

19.
Summary Random inbred lines produced by doubled haploidy (DH) and single seed descent (SSD) have been used to investigate the genetics of -glucan (gum) content in barley (Hordeum vulgare). Genetical analyses indicated that gum content is controlled by a simple additive genetic system. Significant negative genetic correlations were observed between -glucan content, thousand grain weight and height in the DH samples. These correlations were much reduced in the SSD samples and would suggest linkage of the genes controlling these characters. The presence of repulsion linkages could be exploited in a barley breeding programme by producing F1 derived DH to generate recombinants with high thousand grain weight and low -glucan content. Genetical parameters estimated from DH and F3 samples have successfully been used to predict the number of inbred lines transgressing the parental range for -glucan content and bivariate combinations involving -glucan.  相似文献   

20.
4-O-Glycosylation of 2-azidoethyl 2,3,6-tri-O-benzoyl-4-O-(2,3,6-tri-O-benzoyl--D-galactopyranosyl)--D-glucopyranoside with ethyl 2,3,4,6-tetra-O-benzyl- and ethyl 3-O-acetyl-2,4,6-tri-O-benzyl-1-thio--D-galactopyranoside in the presence of methyl trifluoromethanesulfonate led to trisaccharide 2-azidoethyl (2,3,4,6-tetra-O-benzyl--D-galactopyranosyl)-(14)-(2,3,6-tri-O-benzoyl--D-galactopyranosyl)-(14)-2,3,6-tri-O-benzoyl--D-glucopyranoside and its 3"-O-acetylated analogue, 2-azidoethyl (3-O-acetyl-2,4,6-tri-O-benzyl--D-galactopyranosyl)-(14)-(2,3,6-tri-O-benzoyl--D-galactopyranosyl)-(14)-2,3,6-tri-O-benzoyl--D-glucopyranoside in yields of 85 and 83%, respectively. Deacetylation of the latter compound and subsequent glycosylation with 4-trichloroacetamidophenyl 3,4,6-tri-O-acetyl-2-deoxy-1-thio-2-trichloroacetamido--D-galactopyranoside and 4-trichloroacetamidophenyl 4,6-di-O-acetyl-2-deoxy-3-O-(2,3,4,6-tetra-O-acetyl--D-galactopyranosyl)-1-thio-2-trichloroacetamido--D-galactopyranoside in dichloromethane in the presence of N-iodosuccinimide and trifluoromethanesulfonic acid resulted in the corresponding selectively protected derivatives of the tetrasaccharide GalNAc(13)Gl(14)Gal(14)Glc-OH2CH2N3 and the pentasaccharide Gal(13)GalNAc(13)Gl(14)Gal(14)Glc-OH2CH2N3 in 88 and 73% yields, respectively. Removal of O-protecting groups, substitution of acetyl group for the N-trichloroacetyl group, and reduction of the aglycone azide group resulted in the target 2-aminoethyl globo-tri-, -tetra-, and -pentasaccharide, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号