首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hyperinsulinemic hypoglycemia is a recently described complication of Roux‐en‐Y gastric bypass (RYGB). We hypothesized that glucagon administration would help maintain normal postprandial plasma glucose concentrations by stimulating hepatic glucose output, and if so, represent a new therapeutic option for postbypass hypoglycemia. In this study, we compared the insulin and glycemic response to a mixed meal with and without concomitant glucagon infusion in a patient with severe recurrent hypoglycemia after RYGB. Although effective in transiently raising postprandial plasma glucose values, glucagon infusion was also associated with higher insulin concentrations, and failed to prevent symptomatic hypoglycemia. This case demonstrates that glucagon may have limited clinical utility in the treatment of post‐RYGB hyperinsulinemic hypoglycemia.  相似文献   

2.
《Endocrine practice》2023,29(4):286-294
ObjectiveTo review the clinical presentation, causes, and diagnostic approach to spontaneous hypoglycemia in adults without diabetes mellitus.MethodsA literature review was performed using the PubMed and Google Scholar databases.ResultsHypoglycemia is uncommon in people who are not on glucose-lowering medications. Under normal physiologic conditions, multiple neural and hormonal counterregulatory mechanisms prevent the development of abnormally low levels of plasma glucose. If spontaneous hypoglycemia is suspected, the Whipple triad should be used to confirm hypoglycemia before pursuing further diagnostic workup. The Whipple criteria include the following: (1) low levels of plasma glucose, (2) signs or symptoms that would be expected with low levels of plasma glucose, and (3) improvement in those signs or symptoms when the level of plasma glucose increases. Spontaneous hypoglycemia can be caused by conditions that cause endogenous hyperinsulinism, including insulinoma, postbariatric hypoglycemia, and noninsulinoma pancreatogenous hypoglycemia. Spontaneous hypoglycemia can also be seen with critical illness, hepatic or renal dysfunction, hormonal deficiency, non–diabetes-related medications, and non–islet cell tumors. The initial diagnostic approach should begin by obtaining a detailed history of the nature and timing of the patient’s symptoms, medications, underlying comorbid conditions, and any acute illness. A laboratory evaluation should be conducted at the time of the spontaneous symptomatic episode. Supervised tests such as a 72-hour fast or mixed-meal test may be needed to recreate the situation under which the patient is likely to experience symptoms.ConclusionWe provide an overview of the physiology of counterregulatory response to hypoglycemia, its causes, and diagnostic approaches to spontaneous hypoglycemia in adults.  相似文献   

3.
Pham LL  Garot C  Brue T  Brauner R 《PloS one》2011,6(10):e26516

Background

Congenital isolated adrenocorticotrophic hormone (ACTH) deficiency may be rare, but it could be an underestimated cause of neonatal death. Our objective was to shorten the time between first symptoms and diagnosis.

Methods

This single-centre retrospective case-cohort study was carried out on eight consecutive patients.

Results

Two had the neonatal form and 6 the late onset form. Six were admitted to an intensive care unit at least once for seizures with hypoglycemia, major hypothermia, fever, and/or collapsus. The 2 neonatal cases presented with hypoglycemia and in a state of “apparent death” at birth or hypothermia (29°C) at 6 days. All 6 late onset cases had also been admitted to an emergency department 1–3 times, but had left hospital incorrectly diagnosed. Their first symptoms were noted at 3–12.3 years, and they were diagnosed at 3.3–14.4 years. All had hypoglycemia, and 4 had had seizures. The presenting symptoms were vomiting and/or abdominal pain, asthenia, irritability, difficulty with physical activities, and anorexia. The school performance of 4 deteriorated. Two underwent psychotherapy and treatment for depression, which was stopped when Hydrocortisone® replacement therapy began.The plasma concentrations in spontaneous hypoglycemia were: ACTH<5 to 17.1 pg/mL, with concomitant cortisol <3.5 to 37 ng/mL. The plasma dehydroepiandrosterone sulfate (DHAS) concentrations were low in the 7 evaluated. The coding sequence of TPIT was normal in all.

Conclusion

Several unexplained symptoms in a child, mainly gastro-intestinal symptoms and seizures due to hypoglycemia, may indicate ACTH deficiency. A low or normal basal plasma ACTH despite concomitant low cortisol at 8 a.m. and/or in spontaneous hypoglycemia, associated with low DHAS, in a patient not given corticosteroids is highly suggestive of ACTH deficiency. The isolated character of ACTH deficiency must be confirmed by determining the other hypothalamic-pituitary functions, and Hydrocortisone® replacement therapy initiated in emergency.  相似文献   

4.
A case of sulfonylureainduced factitious hypoglycemia occurring in a nondiabetic medical nurse is reported. The patient presented with symptoms of hypoglycemia, consistently low fasting plasma glucose values and a reversal of symptoms with glucose administration. An intravenous tolbutamide provocative test on two occasions showed little increase in plasma glucose values. The case is presented to illustrate that sulfonylureainduced hypoglycemia should be considered in the differential diagnosis of fasting adult hypoglycemia, especially in paramedical personnel, and particularly in those with a poor response to the intravenous tolbutamide test.  相似文献   

5.
The changes in plasma glucose concentration and in interstitial glucose concentration, determined with a miniaturized subcutaneous glucose sensor, were investigated in anesthetized nondiabetic rats. Interstitial glucose was estimated through two different calibration procedures. First, after a glucose load, the magnitude of the increase in interstitial glucose, estimated through a one-point calibration procedure, was 70% of that in plasma glucose. We propose that this is due to the effect of endogenous insulin on peripheral glucose uptake. Second, during the spontaneous secondary decrease in plasma glucose after the glucose load, interstitial glucose decreased faster than plasma glucose, which may also be due to the effect of insulin on peripheral glucose uptake. Third, during insulin-induced hypoglycemia, the decrease in interstitial glucose was less marked than that of plasma glucose, suggesting that hypoglycemia suppressed transfer of glucose into the interstitial tissue; subsequently, interstitial glucose remained lower than plasma glucose during its return to basal value, suggesting that the stimulatory effect of insulin on peripheral glucose uptake was protracted. If these observations obtained in rats are relevant to human physiology, such discrepancies between plasma and interstitial glucose concentration may have major implications for the use of a subcutaneous glucose sensor in continuous blood glucose monitoring in diabetic patients.  相似文献   

6.
《Endocrine practice》2008,14(7):880-883
ObjectiveTo describe the successful use of a continuous glucose monitor in the management of a patient with inoperable metastatic insulinoma.MethodsWe present a case of inoperable recurrent metastatic insulinoma in which medical therapy failed to relieve symptoms of dangerous hypoglycemia. We describe how the use of a continuous glucose monitor has assisted in avoiding hypoglycemia and improving her quality of life.ResultsA 70-year-old woman with a history of recurrent surgically treated insulinoma presented with recurrent hypoglycemia secondary to multiple metastases in the liver. Diazoxide therapy decreased the frequency of symptoms, but she continued to have hypoglycemic episodes resulting in frequent visits to the emergency department. Since starting to use a continuous glucose monitor, she has been able to avoid hypoglycemia with associated neuroglycopenic symptoms. While the accuracy of the device was poor when compared with conventional fingerstick monitors, the sensor tended to read higher than the meter in the hypoglycemic range. Although this led to more frequent false-positive hypoglycemic alarms, true episodes of severe hypoglycemia were rare.ConclusionsMalignant insulinomas are rare tumors. Many affected patients have disease that is unresectable, and medical therapy is limited in its ability to prevent hypoglycemic episodes. We have demonstrated that a continuous glucose monitor can be a useful adjunct to therapy to reduce hypoglycemic episodes by alerting the patient to low glucose concentrations before the development of neuroglycopenic symptoms. (Endocr Pract. 2008;14:880-883)  相似文献   

7.
The NPY secretory pattern after an insulin tolerance test (ITT) (0.15 IU/kg body weight) was evaluated in 8 normal men. They were infused with normal saline (control test), glucose or fructose. Insulin-induced hypoglycemia produced a significant increment in serum NPY in the control test. The infusion of fructose was unable to change the NPY secretory pattern during insulin-induced hypoglycemia. In contrast, the NPY increase during ITT was completely abolished when the concomitant infusion of glucose prevented insulin-induced hypoglycemia. These results exclude a direct role of hyperinsulinemia in the mechanism underlying the stimulation of NPY secretion during ITT. Furthermore, since glucose but not fructose crosses the blood-brain-barrier (BBB), the NPY increase during ITT appears to be generated by low glucose concentrations at the level of glucosensitive areas located inside the brain.  相似文献   

8.
Insulin-induced hypoglycemia in normothermic rats caused progressive neurological depression and differentially altered regional cerebral acetylcholine metabolism. Reductions of plasma glucose from 7.7 mM (control) to 2.5-1.7 mM (moderate hypoglycemia associated with decreased motor activity) or 1.5 mM (severe hypoglycemia with lethargy progressing to stupor) decreased glucose concentrations in the cerebral cortex, striatum, and hippocampus to less than 10% of control. Moderate hypoglycemia diminished acetylcholine concentrations in cortex and striatum (21% and 45%, respectively) and reduced [1-2H2, 2-2H2]choline incorporation into acetylcholine (62% and 41%, respectively). Severe hypoglycemia did not reduce the acetylcholine concentration or synthesis in cortex and striatum further. The concentrations of choline rose in the cortex (+53%) and striatum (+130%) of animals that became stuporous but a similar rise in [1-2H2, 2-2H2]choline left the specific activities of choline in these structures unchanged. Even severe hypoglycemia did not alter the hippocampal cholinergic system. In rats that developed hypoglycemic stupor and were then treated with glucose, the animals recovered apparently normal behavior, and the concentrations of acetylcholine and the incorporation of [1-2H2, 2-2H2]-choline into acetylcholine returned to control values in the striatum but not in the cerebral cortex. Thus, impaired acetylcholine metabolism in selected regions of the brain may contribute to the early symptoms of neurological dysfunction in hypoglycemia.  相似文献   

9.
Noradrenergic activity in the ventromedial hypothalamus (VMH) is increased and activates a sympathoadrenal response during hypoglycemia. How the rate at which hypoglycemia develops affects local glucose concentrations and norepinephrine (NE) release was evaluated by placing microdialysis probes into the VMH of male Sprague-Dawley rats receiving insulin (20 mU·kg(-1)·min(-1)) and variable glucose infusions. During a first episode of hypoglycemia, interstitial glucose concentrations in the VMH generally declined at the same rate as plasma glucose; however, the faster hypoglycemia developed, the greater the magnitude of the initial NE release in the VMH (r(2) = 0.72, P < 0.001). Following recurrent episodes of hypoglycemia, VMH glucose decreased at a slower rate than plasma glucose, and the initial NE release was attenuated at the same rates of blood glucose decline. The plasma glucose threshold for the initial NE release in VMH was similar for all groups (~3.23 mM); however, the VMH glucose threshold was stimulated and was lower when blood glucose declined more slowly (0.86 ± 0.06 vs. 1.06 ± 0.04 mmol/l, P < 0.01). The timing of the initial increase in NE release in VMH corresponded with an increase in plasma epinephrine during the first episode of hypoglycemia but not following recurrent hypoglycemia. Although a decrease in VMH glucose concentration is required for noradrenergic activation in VMH, there does not appear to be a set glucose threshold within the VMH for activation of this response.  相似文献   

10.
The effect of a single large dose of ethanol (5 mg/kg body weight) on plasma glucagon (IRG) and insulin (IRI) concentrations was studied in rats fasting for 24 hr. Hepatic cAMP concentration and blood glucose were also estimated and correlated with hormonal changes. Plasma IRG concentrations had doubled by the first sampling time (2 hr) and remained at this level up to 16 hr after ethanol administration. Plasma IRI concentrations were not affected by ethanol. Hepatic cAMP concentrations reflected changes in the plasma insulin/glucagon ratio, which seems to be the major determining factor for hepatic cAMP even during ethanol oxidation. Hypoglycemia was not found in the ethanol group during the experimental period of 24 hr, and it was therefore concluded that ethanol may stimulate glucagon secretion in rats even without concurrent hypoglycemia. Possible mechanisms for the action of ethanol on the endocrine pancrease are discussed.  相似文献   

11.
Human glucokinase (GK) is a principal regulating sensor of plasma glucose levels. Mutations that inactivate GK are linked to diabetes, and mutations that activate it are associated with hypoglycemia. Unique kinetic properties equip GK for its regulatory role: although it has weak basal affinity for glucose, positive cooperativity in its binding of glucose causes a rapid increase in catalytic activity when plasma glucose concentrations rise above euglycemic levels. In clinical trials, small molecule GK activators (GKAs) have been efficacious in lowering plasma glucose and enhancing glucose-stimulated insulin secretion, but they carry a risk of overly activating GK and causing hypoglycemia. The theoretical models proposed to date attribute the positive cooperativity of GK to the existence of distinct protein conformations that interconvert slowly and exhibit different affinities for glucose. Here we report the respective crystal structures of the catalytic complex of GK and of a GK-glucose complex in a wide open conformation. To assess conformations of GK in solution, we also carried out small angle x-ray scattering experiments. The results showed that glucose dose-dependently converts GK from an apo conformation to an active open conformation. Compared with wild type GK, activating mutants required notably lower concentrations of glucose to be converted to the active open conformation. GKAs decreased the level of glucose required for GK activation, and different compounds demonstrated distinct activation profiles. These results lead us to propose a modified mnemonic model to explain cooperativity in GK. Our findings may offer new approaches for designing GKAs with reduced hypoglycemic risk.  相似文献   

12.
M. Langlois  G. Robert  T. Nawar  C. Caron 《CMAJ》1978,118(9):1083-1086
Although glucose intolerance occurs as a consequence of chronic renal failure, improvement of a diabetic state by deterioration of renal function is a well known phenomenon. Recently occasional cases of spontaneous hypoglycemia in patients with chronic renal failure have been reported; two such cases and the results of metabolic studies are described in this paper. Pituitary, thyroid and adrenal function appeared to be normal. The results of an oral glucose tolerance test were normal; an appropriate insulin response was demonstrated in one patient, and a slightly elevated basal insulin value with a delayed insulin response to oral administration of glucose was demonstrated in the other. An insulin tolerance test did not support the hypothesis of increased insulin sensitivity as a factor, and the growth hormone response to hypoglycemia was normal. An intravenous glucagon test caused a subnormal increase in plasma glucose concentration, and the intravenous administration of tolbutamide produced hypoglycemia without an increase insulin sensitivity as a factor, and the growth hormone response to hypoglycemia was normal. An intravenous glucagon test caused a subnormal increase in plasma glucose concnetration, and the intravenous administration of tolbutamide produced hypoglycemia without an increase in insulin values. The plasma alanine concentration was low and the proinsulin/insulin ratio was increased. The origin of this hypoglycemia is not clear but is probably multifactorial. However, low hepatic glycogen stores and inadequate gluconeogenesis due to substrate deficiency seem to be involved.  相似文献   

13.
There is an ongoing debate about the possible disadvantages of human insulin use with respect to a possibly lower awareness of hypoglycemia than is associated with animal insulin usage. Participants in this debate have not, however, discussed a major contributory factor to this life-threatening acute complication of diabetes, the pressure on patients to achieve normal levels of blood glucose. This pressure stems from the view that hyperglycemia is the major causative factor in the long-term diabetic complications. However, the evidence that supranormal levels of tissue and plasma glucose contribute to the diabetic tissue damage is not as strong as the arguments on behalf of this position. Indeed, elevated glycemia may be no more than a crude index of other, unknown metabolic derangements which may be causative agents in diabetes-associated tissue damage. Intensive efforts to "normalize" glycemia lack experimental and clinical justification, distract attention from other possible mechanisms, and may impose an unnecessary risk on the insulin-dependent diabetic population since intensive "normalization" of glycemia lowers hypoglycemia awareness, and thus increases risk of hypoglycemia, irrespective of the type of insulin used.  相似文献   

14.
Vascular endothelial growth factor (VEGF) is known to be upregulated by hypoxia in vitro. However, in vivo data about VEGF regulation in chronic hypoxic diseases are conflicting. We investigated the effects of hypoxia on plasma VEGF concentration in healthy subjects. To control known confounders, such as insulin, glucose concentrations, or exercise, hypoxic effects on VEGF were studied during experimentally clamping glucose concentrations at rest. In a double-blind crossover study design, we induced hypoxia for 30 min by decreasing oxygen saturation to 75% (vs. normoxic control) in 14 healthy men. Plasma VEGF concentration was determined at baseline, immediately after hypoxia had ended, and after a further 150 min. Levels of its soluble (s)Flt-1 receptor were assessed at baseline and at the end of the clamp. In parallel, catecholamine and cortisol levels were monitored. To investigate potential effects of glucose administration on the release of VEGF, we performed a third session, reducing glucose infusion for 30 min while serum insulin was held stable thereby inducing hypoglycemia. Hypoxia decreased VEGF levels compared with the normoxic control (P<0.05). VEGF concentrations increased during hypoglycemia (P<0.02) but were comparable to the normoglycemic control at the end of the clamp (P>0.80). sFlt-1 receptor concentration remained unchanged during hypoxia and hypoglycemia compared with control (both P>0.4). Epinephrine concentration (P<0.01) increased upon hypoxia, whereas norepinephrine and cortisol did not change. Contrary to in vitro studies, in healthy humans hypoxia decreases plasma VEGF concentration, suggesting that systemic VEGF concentration may be differently regulated than the expression on cellular basis.  相似文献   

15.
Hyperglycemia resulting from type 2 diabetes mellitus (T2DM) is the main cause of diabetic complications such as retinopathy and neuropathy. A reduction in hyperglycemia has been shown to prevent these associated complications supporting the importance of glucose control. Glucokinase converts glucose to glucose-6-phosphate and determines glucose flux into the β-cells and hepatocytes. Since activation of glucokinase in β-cells is associated with increased risk of hypoglycemia, we hypothesized that selectively activating hepatic glucokinase would reduce fasting and postprandial glucose with minimal risk of hypoglycemia. Previous studies have shown that hepatic glucokinase overexpression is able to restore glucose homeostasis in diabetic models; however, these overexpression experiments have also revealed that excessive increases in hepatic glucokinase activity may also cause hepatosteatosis. Herein we sought to evaluate whether liver specific pharmacological activation of hepatic glucokinase is an effective strategy to reduce hyperglycemia without causing adverse hepatic lipids changes. To test this hypothesis, we evaluated a hepatoselective glucokinase activator, PF-04991532, in Goto-Kakizaki rats. In these studies, PF-04991532 reduced plasma glucose concentrations independent of changes in insulin concentrations in a dose-dependent manner both acutely and after 28 days of sub-chronic treatment. During a hyperglycemic clamp in Goto-Kakizaki rats, the glucose infusion rate was increased approximately 5-fold with PF-04991532. This increase in glucose infusion can be partially attributed to the 60% reduction in endogenous glucose production. While PF-04991532 induced dose-dependent increases in plasma triglyceride concentrations it had no effect on hepatic triglyceride concentrations in Goto-Kakizaki rats. Interestingly, PF-04991532 decreased intracellular AMP concentrations and increased hepatic futile cycling. These data suggest that hepatoselective glucokinase activation may offer glycemic control without inducing hepatic steatosis supporting the evaluation of tissue specific activators in clinical trials.  相似文献   

16.
P. Kallas  E. M. Sellers 《CMAJ》1975,112(5):590-592
Chronic alcoholics may present with hyperglycemia or hypoglycemia. Because alcohol induces glycogenolysis, chronic alcoholics usually have higher blood glucose values than do nonalcoholic subjects. In a prospective study of blood glucose concentration in 201 chronic alcoholics, blood alcohol concentration, sex, weight, type of beverage consumed and time since last eating were not generally associated with lower blood glucose values. The infrequency of hypoglycemia in ambulatory chronic alcoholics may reflect the relatively ready availability of hostels, detoxification centres and hospitals in large cities. It is, however, important to be aware of the possible occurrence of hypoglycemia in chronic alcoholics, particularly when community facilities for the chronic alcoholic are not available.  相似文献   

17.
Exercise, insulin-induced hypoglycemia and oral glucose loads (50 g and 100 g) were used to compare the production of malondialdehyde and the activity of antioxidant enzymes in healthy subjects. Twenty male volunteers participated in the study. Exercise consisted of three consecutive work loads on a bicycle ergometer of graded intensity (1.5, 2.0, and 2.5 W/kg, 6 min each). Hypoglycemia was induced by insulin (Actrapid MC Novo, 0.1 IU/kg, i.v.). Oral administration of 50 g and 100 g of glucose was given to elevate plasma glucose. The activity of superoxide dismutase (SOD) was determined in red blood cells, whereas glutathione peroxidase (GSH-Px) activity was measured in whole blood. The concentration of malondialdehyde (MDA) was determined by HPLC, catecholamines were assessed radioenzymatically and glucose was measured by the glucose-oxidase method. Exercise increased MDA concentrations, GSH-Px and SOD activities as well as plasma noradrenaline and adrenaline levels. Insulin hypoglycemia increased plasma adrenaline levels, but the concentrations of MDA and the activities of GSH-Px and SOD were decreased. Hyperglycemia increased plasma MDA concentrations, but the activities of GSH-Px and SOD were significantly higher after a larger dose of glucose only. Plasma catecholamines were unchanged. These results indicate that the transient increase of plasma catecholamine and insulin concentrations did not induce oxidative damage, while glucose already in the low dose was an important triggering factor for oxidative stress.  相似文献   

18.
Sex steroid hormones in both males and females have been closely related to the regulation of adiposity, either through direct or indirect physiological mechanisms. Evidence also suggests a direct relationship between sex hormones and risk factors for cardiovascular disease. In the present review article, we will discuss recent studies that have examined the complex interrelationships between sex hormones, SHBG, obesity and risk factors for cardiovascular disease. Male obesity and excess abdominal adipose tissue accumulation is associated with reductions in gonadal androgen and low adrenal C19 steroid concentrations. Reduced C19 steroids are also related to an altered metabolic risk factor profile including glucose intolerance and an atherogenic dyslipidemic state. However, the concomitant visceral obese state appears as a major correlate in these associations. In women, menopause-induced estrogen deficiency and increased androgenicity are associated with increased abdominal obesity and with the concomitant alterations in the metabolic risk profile. The accelerated accretion of adipose tissue in the intra-abdominal region coincident with the onset of menopause may explain part of the increased risk of cardiovascular disease in postmenopausal women. In both men and women, plasma levels of sex hormone-binding globulin are strong correlates of obesity and risk factors for cardiovascular disease, and more importantly, the relationships between low SHBG and altered plasma lipid levels appear to be independent from the concomitant increased levels of visceral adipose tissue. SHBG concentration may, therefore, represent the most important and reliable marker of the sex hormone profile in the examination of the complex interrelation of sex steroid hormones, obesity, and cardiovascular disease risk.  相似文献   

19.
《Endocrine practice》2008,14(6):750-756
ObjectiveTo review the prevalence of, risk factors for, and prevention of hypoglycemia from the perspective of the pathophysiologic aspects of glucose counterregulation in diabetes.MethodsThis review is based on personal experience and research and the relevant literature.ResultsAlthough it can result from insulin excess alone, iatrogenic hypoglycemia is generally the result of the interplay of therapeutic insulin excess and compromised defenses against declining plasma glucose concentrations. Failure of β-cells of the pancreas—early in patients with type 1 diabetes mellitus but later in those with type 2 diabetes mellitus (T2DM)—causes loss of the first 2 physiologic defenses: a decrease in insulin and an increase in glucagon. Such patients are critically dependent on epinephrine, the third physiologic defense, and neurogenic symptoms that prompt the behavioral defense (carbohydrate ingestion). An attenuated sympathoadrenal response to declining glucose levels—caused by recent antecedent hypoglycemia, prior exercise, or sleep—causes hypoglycemia-associated autonomic failure (HAAF) and thus a vicious cycle of recurrent hypoglycemia. Accordingly, hypoglycemia is infrequent early in T2DM but becomes increasingly more frequent in advanced (absolutely endogenous insulin-deficient) T2DM, and risk factors for HAAF include absolute endogenous insulin deficiency; a history of severe hypoglycemia, hypoglycemia unawareness, or both; and aggressive glycemic therapy per se.ConclusionBy practicing hypoglycemia risk reduction— addressing the issue, applying the principles of aggressive glycemic therapy, and considering both the conventional risk factors and those indicative of HAAF— it is possible both to improve glycemic control and to minimize the risk of hypoglycemia in many patients. (Endocr Pract. 2008;14:750-756)  相似文献   

20.
The glucagon response to hypoglycemia, which fulfills a primary role toward restoring the plasma glucose level, is blunted or absent in most patients with type I diabetes. To identify predictive factors for this abnormality and for the capability of glycemic counterregulation, we investigated the relationship between the duration of diabetes and glucagon and glucose responses to insulin-induced hypoglycemia. In 18 type I diabetic patients with 1 through 28 years of disease who had no detectable autonomic neuropathy, individual glucagon increments after insulin hypoglycemia were inversely correlated with the duration of disease (r = -.53, P < .025). Patients with disease for ten or fewer years showed a glucagon rise that was lower than in controls but significantly higher than in patients with a duration of more than ten years. The plasma glucose rise after the nadir correlated with peak glucagon increments (r = .60, P < .01); eight of the nine patients with glycemic increments comparable to normals had had diabetes for ten years or less. Thus, having diabetes for more than ten years implied that not only were glucagon responses to insulin hypoglycemia severely compromised but also that the abrupt restoration of plasma glucose levels was impaired. These findings should be taken into account when establishing goals and modalities for tight metabolic control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号