首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 443 毫秒
1.
老年人心血管系统的老化是很明显的,动脉硬化改变了后负荷以及左心室的形状.尽管左心室的心脏收缩功能仍然能够维持,但是左心室的舒张功能则大大改变.运动时老年人的心血管功能产生明显的改变,老年人可以通过运动训练改善心血管功能.老化引起心血管结构和功能改变,从而降低心脏疾病出现的阈值.对老年人在运动或休息时心血管结构和功能的改变进行了综述.  相似文献   

2.
This study evaluated the effects of aging and endurance training on the metabolic responses of trained and sedentary young (age 20-32 yr) and older (age 60-70 yr) men to exercise at the same relative exercise stress (70% of maximal O2 consumption). Plasma growth hormone concentrations at rest were similar in all four groups, but both older groups had an attenuated response to exercise. The older trained men appeared to have avoided the age-associated changes that were evident in their sedentary peers with respect to resting plasma insulin, C-peptide, and norepinephrine concentrations. Plasma glucagon concentrations were lower in both older subject groups at rest. Both sedentary groups decreased their plasma glucose concentrations and increased their plasma glucagon concentrations during exercise, whereas the trained groups had increases in their plasma glucose concentrations but had no change in their glucagon concentrations. Thus, although the concentrations of some hormones at rest and during submaximal exercise are unaffected by aging or by training, others are markedly altered by aging, training, or the interaction of the two. However, it appears that older healthy sedentary men undergo less physiological stress than young untrained men during submaximal exercise at the same relative exercise intensity, and they have no responses that would contraindicate their participation in exercise of the duration and intensity usually prescribed in exercise-training programs.  相似文献   

3.
Physical activity, exercise training, and fitness are associated with decreased cardiovascular risk. In the context that a risk factor "gap" exists in the explanation for the beneficial effects of exercise on cardiovascular disease, it has recently been proposed that exercise generates hemodynamic stimuli which exert direct effects on the vasculature that are antiatherogenic. In this review we briefly introduce some of the in vitro and in vivo evidence relating exercise hemodynamic modulation and vascular adaptation. In vitro data clearly demonstrate the importance of shear stress as a potential mechanism underlying vascular adaptations associated with exercise. Supporting this is in vivo human data demonstrating that exercise-mediated shear stress induces localized impacts on arterial function and diameter. Emerging evidence suggests that exercise-related changes in hemodynamic stimuli other than shear stress may also be associated with arterial remodeling. Taken together, in vitro and in vivo data strongly imply that hemodynamic influences combine to orchestrate a response to exercise and training that regulates wall stress and peripheral vascular resistance and contributes to the antiatherogenic impacts of physical activity, fitness, and training.  相似文献   

4.
This investigation elucidated the underlying mechanisms of functional impairments in patients with heart failure (HF) by simultaneously comparing cardiac-cerebral-muscle hemodynamic and ventilatory responses to exercise among HF patients with various functional capacities. One hundred one patients with HF [New York Heart Association HF functional class II (HF-II, n = 53) and functional class III (HF-III, n = 48) patients] and 71 normal subjects [older control (O-C, n = 39) and younger control (Y-C, n = 32) adults] performed an incremental exercise test using a bicycle ergometer. A recently developed noninvasive bioreactance device was adopted to measure cardiac hemodynamics, and near-infrared spectroscopy was employed to assess perfusions in the frontal cerebral lobe (Δ[THb](FC)) and vastus lateralis muscle (Δ[THb](VL)). The results demonstrated that the Y-C group had higher levels of cardiac output, Δ[THb](FC), and Δ[THb](VL) during exercise than the O-C group. Moreover, these cardiac/peripheral hemodynamic responses to exercise in HF-III group were smaller than those in both HF-II and O-C groups. Although the change of cardiac output caused by exercise was normalized, the amounts of blood distributed to frontal cerebral lobe and vastus lateralis muscle in the HF-III group significantly declined during exercise. The HF-III patients had lower oxygen-uptake efficiency slopes (OUES) and greater Ve-Vo(2) slopes than the HF-II patients and age-matched controls. However, neither hemodynamic nor ventilatory response to exercise differed significantly between the HF-II and O-C groups. Cardiac output, Δ[THb](FC), and Δ[THb](VL) during exercise were directly related to the OUES and Vo(2peak) and inversely related to the Ve-Vco(2) slope. Moreover, cardiac output or Δ[THb](FC) was an effect modifier, which modulated the correlation status between Δ[THb](VL) and Ve-Vco(2) slope. We concluded that the suppression of cerebral/muscle hemodynamics during exercise is associated with ventilatory abnormality, which reduces functional capacity in patients with HF.  相似文献   

5.
Age-associated dysfunction in cardiac microvascular endothelial cells with impaired induction of cardioprotective platelet-derived growth factor (PDGF)-dependent pathways suggests that alterations in critical vascular receptor(s) may contribute to the increased severity of cardiovascular pathology in older persons. In vivo murine phage-display peptide library biopanning revealed a senescent decrease in cardiac microvascular binding of phage epitopes homologous to tumor necrosis factor-alpha (TNF-alpha), suggesting that its receptor(s) may be downregulated in older cardiac endothelial cells. Immunostaining demonstrated that TNF-receptor 1 (TNF-R1) density was significantly lower in the subendocardial endothelium of the aging murine heart. Functional studies confirmed the senescent dysregulation of TNF-alpha receptor pathways, demonstrating that TNF-alpha induced PDGF-B expression in cardiac microvascular endothelial cells of 4-mo-old, but not 24-mo-old, rats. Moreover, TNF-alpha mediated cardioprotective pathways were impaired in the aging heart. In young rat hearts, injection of TNF-alpha significantly reduced the extent of myocardial injury after coronary ligation: TNF-alpha, 7.9 +/- 1.9% left ventricular injury (n = 4) versus PBS, 16.2 +/- 7.9% (n = 10; P < 0.05). The addition of PDGF-AB did not augment the cardioprotective action of TNF-alpha. In myocardial infarctions of older hearts, however, TNF-alpha induced significant postcoronary occlusion mortality (TNF-alpha 80% vs. PBS 0%; n = 10 each, P < 0.05) that was reversed by the coadministration of PDGF-AB. Overall, these studies demonstrate that aging-associated alterations in TNF-alpha receptor cardiac microvascular pathways may contribute to the increased cardiovasular pathology of the aging heart. Strategies targeted at restoring TNF-alpha receptor-mediated expression of PDGF-B may improve cardiac microvascular function and provide novel approaches for treatment and possible prevention of cardiovascular disease in older individuals.  相似文献   

6.
Central hemodynamic responses during upright exercise were studied at 1 year in 40 orthotopic cardiac transplant recipients. Hemodynamic responses were characterized by slow rise in heart rate and blunted peak exercise heart rate response, a significant early increase in stroke index followed by a plateau phase, and a steady increase in ventricular filling pressures and pulmonary artery pressure. In spite of exclusive utilization of the Frank-Starling mechanism to augment cardiac output during early exercise, the pressure responses were comparable to those reported in normal subjects. Our observations also indicate that similarly to normal subjects, the heart rate response plays an important role in the cardiac output achieved at maximum exercise. Although patients with younger donor hearts achieved a more favorable maximum heart rate, the other hemodynamic parameters showed no correlation with the donor heart age. Thus, no hemodynamic disadvantage of older donor hearts could be demonstrated. These data provide further enlightenment regarding the mechanisms of the well-preserved functional capacity noted in these patients.  相似文献   

7.
The effects of aging on the cardiovascular response to continuous light isometric and aerobic exercise remains to be determined. Thus, the purpose of this study was to compare the cardiovascular response of young and older males during light handgrip and cycle ergometry exercise. Blood pressure, heart rate, rate pressure product, as well as pre-ejection period (derived from impedance cardiography) were obtained for 15 young [mean (SE) age: 21 (0.7) years] and 15 older males [59 (0.8) years] during and after light handgrip exercise and cycle ergometry. The parasympathetic influence on the heart was also assessed through a time-series analysis of heart period variability (HPVts). Both during and when recovering from the handgrip exercise and cycle ergometry, the older subjects exhibited a significantly higher absolute systolic and diastolic blood pressure, and rate pressure product, and a lower HRVts than the young subjects. Relative to baseline, the change in pre-ejection period was lower for the young subjects during the handgrip and cycle ergometry, tasks. These results indicate that although the sympathetic influence on both the myocardium and the vasculature was less pronounced in the older males, the aging cardiovasculature was under greater hemodynamic stress both during rest and during exposure to light isometric and aerobic challenge.  相似文献   

8.
To evaluate the effects of age and physical activity on cardiac structure and function, 45 ultra-endurance athletes were compared with 24 sedentary control subjects. Two-dimensionally guided M-mode echocardiograms and pulsed Doppler studies of left ventricular inflow velocity were obtained. Both older and younger athletes differed from age-similar sedentary control subjects in having lower heart rates (56 vs. 72 beats/min, younger; 53 vs. 74 beats/min, older), larger left ventricular cavities at end diastole (5.4 vs. 4.9 cm younger; 5.4 vs. 4.9 cm older), and higher ratios of early to atrial inflow velocities (2.14 vs. 1.37, younger; 1.32 vs. 0.83, older; all P less than 0.05). Older athletes differed from younger athletes in having higher systolic and diastolic blood pressures (131/79 vs. 122/71 mmHg), greater posterior wall thickness (1.1 vs. 0.9 cm), lower rapid filling velocity (52 vs. 70 cm/s), higher atrial systolic velocity (41 vs. 34 cm/s), and lower early-to-atrial inflow velocity ratios (1.32 vs. 2.14, all P less than 0.05). Thus the aging heart manifests structural and functional changes in response to physical activity that are similar but not identical to those seen in younger subjects. The expected pattern of cardiac alterations normally seen in response to age is modified in the older athlete, suggesting that exercise training, as well as aging, is an effective stimulus in shaping left ventricular structure and function in the older heart.  相似文献   

9.
The objective of this study was to determine the impact of a total cavopulmonary connection on the main hemodynamic quantities, both at rest and during exercise, when compared with normal biventricular circulation. The analysis was performed by means of a mathematical model of the cardiovascular system. The model incorporates the main parameters of systemic and pulmonary circulation, the pulsating heart, and the action of arterial and cardiopulmonary baroreflex mechanisms. Furthermore, the effect of changes in intrathoracic pressure on venous return is also incorporated. Finally, the response to moderate dynamic exercise is simulated, including the effect of a central command, local metabolic vasodilation, and the "muscle pump" mechanism. Simulations of resting conditions indicate that the action of baroreflex regulatory mechanisms alone can only partially compensate for the absence of the right heart. Cardiac output and mean systemic arterial pressure at rest show a large decrease compared with the normal subject. More acceptable hemodynamic quantity values are obtained by combining the action of regulatory mechanisms with a chronic change in parameters affecting mean filling pressure. With such changes assumed, simulations of the response to moderate exercise show that univentricular circulation exhibits a poor capacity to increase cardiac output and to sustain aerobic metabolism, especially when the oxygen consumption rate is increased above 1.2-1.3 l/min. The model ascribes the poor response to exercise in these patients to the incapacity to sustain venous return caused by the high resistance to venous return and/or to exhaustion of volume compensation reserve.  相似文献   

10.
Cardiovascular response to exercise in younger and older men   总被引:2,自引:0,他引:2  
Measurements of cardiac performance for humans at various ages is influenced by the variable examined, the population and techniques employed, and the factors that co-vary with age, including the presence of disease and physical conditioning. Interstudy differences in the extent to which occult coronary disease is present in older subjects and in the level of physical conditioning among subjects may underlie the variable perspectives contained in the literature of how aging affects cardiovascular function. In carefully screened, highly motivated but not athletically trained community-dwelling subjects, resting cardiovascular parameters are not age related except for systolic blood pressure, which increases with age. During vigorous exercise the mechanisms used to achieve a high level of cardiac output shift from a dependence on a catecholamine-mediated increase in heart rate and inotropy to a dependence on the Frank Starling mechanism. One reason for the age difference in cardiovascular response to exercise may be a diminished responsiveness to beta-adrenergic stimulation in these subjects. In other elderly subjects who cannot exercise to high work loads, a decline in stroke volume as well as heart rate at peak exercise has been observed. Whether the inability of these individuals to augment stroke volume is caused by a decrease in the ability of the heart to increase diastolic filling, by a decrease in systolic pump function caused by an increased afterload, by intrinsic myocardial contractile defects, or by a greater diminution of the cardiovascular response to beta-adrenergic stimuli is presently unknown.  相似文献   

11.
As people age, changes in muscle occur that are associated with a decrease in strength and endurance. These changes result in decreased functional capacity and quality of life. A substantial portion of this decrease is the result not of aging but of the sedentary life-style so frequently associated with aging. In "healthy old" persons and in older animals in experiments, an appropriate exercise program can result in increased strength and endurance. This is true both in longitudinal and short-term studies. As physical impairment increases, the exercise program must be individualized, and results are not as readily predictable. Much work remains before we may be certain how much exercise can be tolerated in these more impaired persons and what the effects may be.  相似文献   

12.
Important cardiovascular dysfunctions have been described in streptozotocin (STZ)-diabetic rats. To determine the influence of these changes on the hemodynamic state, the different hemodynamic parameters, obtained by microsphere technique, were studied in STZ-induced (50 mg/kg) diabetic male Wistar rats, as well as in age control. All the rats were examined in the conscious, unrestrained state 12 weeks after induction of diabetes or acidified saline (pH 4.5) injection. During 12 weeks of the diabetic state the most important findings are hypotension, increase in cardiac index, decrease in total peripheral resistance and altered regional blood flow. These results suggest that important hemodynamic alterations are present in the chronic diabetic state.  相似文献   

13.
The activation state of beta-adrenergic receptors (beta-ARs) in vivo is an important determinant of hemodynamic status, cardiac performance, and metabolic rate. In order to achieve homeostasis in vivo, the cellular signals generated by beta-AR activation are integrated with signals from a number of other distinct receptors and signaling pathways. We have utilized genetic knockout models to test directly the role of beta1- and/or beta2-AR expression on these homeostatic control mechanisms. Despite total absence of beta1- and beta2-ARs, the predominant cardiovascular beta-adrenergic subtypes, basal heart rate, blood pressure, and metabolic rate do not differ from wild type controls. However, stimulation of beta-AR function by beta-AR agonists or exercise reveals significant impairments in chronotropic range, vascular reactivity, and metabolic rate. Surprisingly, the blunted chronotropic and metabolic response to exercise seen in beta1/beta2-AR double knockouts fails to impact maximal exercise capacity. Integrating the results from single beta1- and beta2-AR knockouts as well as the beta1-/beta2-AR double knock-out suggest that in the mouse, beta-AR stimulation of cardiac inotropy and chronotropy is mediated almost exclusively by the beta1-AR, whereas vascular relaxation and metabolic rate are controlled by all three beta-ARs (beta1-, beta2-, and beta3-AR). Compensatory alterations in cardiac muscarinic receptor density and vascular beta3-AR responsiveness are also observed in beta1-/beta2-AR double knockouts. In addition to its ability to define beta-AR subtype-specific functions, this genetic approach is also useful in identifying adaptive alterations that serve to maintain critical physiological setpoints such as heart rate, blood pressure, and metabolic rate when cellular signaling mechanisms are perturbed.  相似文献   

14.
The muscle metaboreflex is enhanced in chronic heart failure (CHF) patients, and this fact has been associated with the early fatigue shown by these patients in response to exercise. In animal studies of CHF, it was found that the limited capacity to enhance ventricular performance is responsible for a functional shift from a cardiac output to a systemic vascular resistance (SVR) increase in the mechanism by which the cardiovascular system raises blood pressure in response to the metaboreflex. However, the existence of this functional shift is still unknown in humans. The present study was undertaken to test the hypothesis that a similar hemodynamic response was also present in humans with CHF. The hemodynamic response to metaboreflex activation obtained through postexercise ischemia was assessed in nine patients with CHF and nine healthy controls (CTL) by means of impedance cardiography. The main results were that 1) the blood pressure rise due to the metaboreflex was similar in the two groups; 2) the CTL group achieved the blood pressure response via cardiac output increase, and the CHF group, via SVR increase; and 3) stroke volume was enhanced in the CTL group and decreased in the CHF group. This study demonstrates that in CHF patients, metaboreflex recruitment causes a functional shift from flow increase to peripheral vasoconstriction in the mechanism through which blood pressure is increased. The incapacity to enhance cardiac performance and stroke volume is probably the primary cause of this cardiovascular alteration.  相似文献   

15.
The effects of aging on cardiovascular function and cardiac structure were determined in a rat model recommended for gerontological studies. A cross-sectional analysis assessed cardiac changes in male Fischer 344 x Brown Norway F1 hybrid rats (FBN) from adulthood to the very aged (n = 6 per 12-, 18-, 21-, 24-, 27-, 30-, 33-, 36-, and 39-mo-old group). Rats underwent echocardiographic and hemodynamic analyses to determine standard values for left ventricular (LV) mass, LV wall thickness, LV chamber diameter, heart rate, LV fractional shortening, mitral inflow velocity, LV relaxation time, and aortic/LV pressures. Histological analyses were used to assess LV fibrotic infiltration and cardiomyocyte volume density over time. Aged rats had an increased LV mass-to-body weight ratio and deteriorated systolic function. LV systolic pressure declined with age. Histological analysis demonstrated a gradual increase in fibrosis and a decrease in cardiomyocyte volume density with age. We conclude that, although significant physiological and morphological changes occurred in heart function and structure between 12 and 39 mo of age, these changes did not likely contribute to mortality. We report reference values for cardiac function and structure in adult FBN male rats through very old age at 3-mo intervals.  相似文献   

16.
Qi Z  He J  Su Y  He Q  Liu J  Yu L  Al-Attas O  Hussain T  Ding S  Ji L  Qian M 《PloS one》2011,6(7):e21140
The purpose of this study was to outline the timelines of mitochondrial function, oxidative stress and cytochrome c oxidase complex (COX) biogenesis in cardiac muscle with age, and to evaluate whether and how these age-related changes were attenuated by exercise. ICR/CD-1 mice were treated with pifithrin-μ (PFTμ), sacrificed and studied at different ages; ICR/CD-1 mice at younger or older ages were randomized to endurance treadmill running and sedentary conditions. The results showed that mRNA expression of p53 and its protein levels in mitochondria increased with age in cardiac muscle, accompanied by increased mitochondrial oxidative stress, reduced expression of COX subunits and assembly proteins, and decreased expression of most markers in mitochondrial biogenesis. Most of these age-related changes including p53 activity targeting cytochrome oxidase deficient homolog 2 (SCO2), p53 translocation to mitochondria and COX biogenesis were attenuated by exercise in older mice. PFTμ, an inhibitor blocking p53 translocation to mitochondria, increased COX biogenesis in older mice, but not in young mice. Our data suggest that physical exercise attenuates age-related changes in mitochondrial COX biogenesis and p53 activity targeting SCO2 and mitochondria, and thereby induces antisenescent and protective effects in cardiac muscle.  相似文献   

17.
Recent evidence demonstrates a role for paternal aging on offspring disease susceptibility. It is well established that various neuropsychiatric disorders (schizophrenia, autism, etc.), trinucleotide expansion associated diseases (myotonic dystrophy, Huntington''s, etc.) and even some forms of cancer have increased incidence in the offspring of older fathers. Despite strong epidemiological evidence that these alterations are more common in offspring sired by older fathers, in most cases the mechanisms that drive these processes are unclear. However, it is commonly believed that epigenetics, and specifically DNA methylation alterations, likely play a role. In this study we have investigated the impact of aging on DNA methylation in mature human sperm. Using a methylation array approach we evaluated changes to sperm DNA methylation patterns in 17 fertile donors by comparing the sperm methylome of 2 samples collected from each individual 9–19 years apart. With this design we have identified 139 regions that are significantly and consistently hypomethylated with age and 8 regions that are significantly hypermethylated with age. A representative subset of these alterations have been confirmed in an independent cohort. A total of 117 genes are associated with these regions of methylation alterations (promoter or gene body). Intriguingly, a portion of the age-related changes in sperm DNA methylation are located at genes previously associated with schizophrenia and bipolar disorder. While our data does not establish a causative relationship, it does raise the possibility that the age-associated methylation of the candidate genes that we observe in sperm might contribute to the increased incidence of neuropsychiatric and other disorders in the offspring of older males. However, further study is required to determine whether, and to what extent, a causative relationship exists.  相似文献   

18.
The most important physiological mechanism mediating enhanced exercise performance is increased sympathetic, beta adrenergic receptor (β‐AR), and adenylyl cyclase (AC) activity. This is the first report of decreased AC activity mediating increased exercise performance. We demonstrated that AC5 disruption, that is, knock out (KO) mice, a longevity model, increases exercise performance. Importantly for its relation to longevity, exercise was also improved in old AC5 KO. The mechanism resided in skeletal muscle rather than in the heart, as confirmed by cardiac‐ and skeletal muscle‐specific AC5 KO's, where exercise performance was no longer improved by the cardiac‐specific AC5 KO, but was by the skeletal muscle‐specific AC5 KO, and there was no difference in cardiac output during exercise in AC5 KO vs. WT. Mitochondrial biogenesis was a major mechanism mediating the enhanced exercise. SIRT1, FoxO3a, MEK, and the anti‐oxidant, MnSOD were upregulated in AC5 KO mice. The improved exercise in the AC5 KO was blocked with either a SIRT1 inhibitor, MEK inhibitor, or by mating the AC5 KO with MnSOD hetero KO mice, confirming the role of SIRT1, MEK, and oxidative stress mechanisms. The Caenorhabditis elegans worm AC5 ortholog, acy‐3 by RNAi, also improved fitness, mitochondrial function, antioxidant defense, and lifespan, attesting to the evolutionary conservation of this pathway. Thus, decreasing sympathetic signaling through loss of AC5 is not only a mechanism to improve exercise performance, but is also a mechanism to improve healthful aging, as exercise also protects against diabetes, obesity, and cardiovascular disease, which all limit healthful aging.  相似文献   

19.
While NLRP3‐inflammasome has been implicated in cardiovascular diseases, its role in physiological cardiac aging is largely unknown. During aging, many alterations occur in the organism, which are associated with progressive impairment of metabolic pathways related to insulin resistance, autophagy dysfunction, and inflammation. Here, we investigated the molecular mechanisms through which NLRP3 inhibition may attenuate cardiac aging. Ablation of NLRP3‐inflammasome protected mice from age‐related increased insulin sensitivity, reduced IGF‐1 and leptin/adiponectin ratio levels, and reduced cardiac damage with protection of the prolongation of the age‐dependent PR interval, which is associated with atrial fibrillation by cardiovascular aging and reduced telomere shortening. Furthermore, old NLRP3 KO mice showed an inhibition of the PI3K/AKT/mTOR pathway and autophagy improvement, compared with old wild mice and preserved Nampt‐mediated NAD+ levels with increased SIRT1 protein expression. These findings suggest that suppression of NLRP3 prevented many age‐associated changes in the heart, preserved cardiac function of aged mice and increased lifespan.  相似文献   

20.
Cardiac beta-adrenergic receptor (beta-AR) signaling and left ventricular (LV) responses to beta-AR stimulation are impaired with aging. It is shown that exercise and beta-AR blockade have a favorable effect on cardiac and vascular beta-AR signaling in several cardiovascular diseases. In the present study, we examined the effects of these two different strategies on beta-AR dysregulation and LV inotropic reserve in the aging heart. Forty male Wistar-Kyoto aged rats were randomized to sedentary, exercise (12 wk treadmill training), metoprolol (250 mg.kg(-1).day(-1) for 4 wk), and exercise plus metoprolol treatment protocols. Ten male Wistar-Kyoto sedentary young rats were also used as a control group. Old trained, old metoprolol-treated, and old trained plus metoprolol-treated rats showed significantly improved LV maximal and minimal first derivative of the pressure rise responses to beta-AR stimulation (isoproterenol) compared with old untrained animals. We found a significant reduction in cardiac sarcolemmal membrane beta-AR density and adenylyl cyclase activity in old untrained animals compared with young controls. Exercise training and metoprolol, alone or combined, restored cardiac beta-AR density and G-protein-dependent adenylyl cyclase activation in old rats. Although cardiac membrane G-protein-receptor kinase 2 levels were not upregulated in untrained old compared with young control rats, both exercise and metoprolol treatment resulted in a dramatic reduction of G-protein-receptor kinase 2 protein levels, which is a further indication of beta-AR signaling amelioration in the aged heart induced by these treatment modalities. In conclusion, we demonstrate for the first time that exercise and beta-AR blockade can similarly ameliorate beta-AR signaling in the aged heart, leading to improved beta-AR responsiveness and corresponding LV inotropic reserve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号