首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kartagener''s syndrome is a very rare congenital malformation comprising of a classic triad of sinusitis, situs inversus and bronchiectasis. Primary ciliary dyskinesia is a genetic disorder with manifestations present from early life and this distinguishes it from acquired mucociliary disorders. Approximately one half of patients with primary ciliary dyskinesia have situs inversus and, thus are having Kartagener syndrome. We present a case of 12 year old boy with sinusitis, situs inversus and bronchiectasis. The correct diagnosis of this rare congenital autosomal recessive disorder in early life is important in the overall prognosis of the syndrome, as many of the complications can be prevented if timely management is instituted, as was done in this in this case.  相似文献   

2.
Multiciliated epithelial cells protect the upper and lower airways from chronic bacterial infections by moving mucus and debris outward. Congenital disorders of ciliary beating, referred to as primary ciliary dyskinesia (PCD), are characterized by deficient mucociliary clearance and severe, recurrent respiratory infections. Numerous genetic defects, most of which can be detected by transmission electron microscopy (TEM), are so far known to cause different abnormalities of the ciliary axoneme. However, some defects are not regularly discernable by TEM because the ciliary architecture of the axoneme remains preserved. This applies in particular to isolated defects of the nexin links, also known as the nexin-dynein regulatory complex (N-DRC), connecting the peripheral outer microtubular doublets. Immunofluorescence analyses of respiratory cells from PCD-affected individuals detected a N-DRC defect. Genome-wide exome sequence analyses identified recessive loss-of-function mutations in GAS8 encoding DRC4 in three independent PCD-affected families.  相似文献   

3.
Extracellular nucleotides are among the most potent mediators of mucociliary clearance (MCC) in human lungs. However, clinical trials revealed that aerosolized nucleotides provide only a transient improvement of MCC to patients diagnosed with cystic fibrosis (CF). In this study, we identified the mechanism that eliminates extracellular nucleotides from human airways. Polarized primary cultures of human bronchial epithelial cells were impermeable to extracellular nucleotides but rapidly dephosphorylated ATP into ADP, AMP, and adenosine. The half-life of a therapeutic ATP concentration (0.1 mm) was approximately 20 s within the periciliary liquid layer. The mucosal epithelial surface eliminated P2 receptor agonists (ATP = UTP > ADP > UDP) at 3-fold higher rates than the serosal surface. We also showed that mucosal (not serosal) ectoATPase activity increases toward areas most susceptible to airway obstruction (nose < bronchi < bronchioles). Bronchial cultures from patients with CF, primary ciliary dyskinesia, or alpha1-antitrypsin deficiency exhibited 3-fold higher mucosal (not serosal) ectoATPase activity than normal cultures. Time course experiments indicated that CF enhances ATP elimination and adenosine accumulation on the mucosal surface. Furthermore, nonspecific alkaline phosphatase was identified as the major regulator of airway nucleotide concentrations in CF, primary ciliary dyskinesia, and alpha1-antitrypsin deficiency. The ectoAT-Pase activity and mRNA expression of mucosally restricted nonspecific alkaline phosphatase were 3-fold higher on bronchial cultures from these patients than from healthy subjects. This study demonstrates that the duration of nucleotide-mediated MCC is limited by epithelial ectonucleotidases throughout human airways, with the efficiency of this mechanism enhanced in chronic inflammatory lung diseases, including CF.  相似文献   

4.
Impaired mucociliary clearance (MCC) is a key feature of many airway diseases, including asthma, bronchiectasis, chronic obstructive pulmonary disease, cystic fibrosis, and primary ciliary dyskinesia. To improve MCC and develop new treatments for these diseases requires a thorough understanding of how mucus concentration, mucus composition, and ciliary activity affect MCC, and how different therapeutics impact this process. Although differentiated cultures of human airway epithelial cells are useful for investigations of MCC, the extent of ciliary coordination in these cultures varies, and the mechanisms controlling ciliary orientation are not completely understood. By introducing a pattern of ridges and grooves into the underlying collagen substrate, we demonstrate for the first time, to our knowledge, that changes in the extracellular matrix can induce ciliary alignment. Remarkably, 90% of human airway epithelial cultures achieved continuous directional mucociliary transport (MCT) when grown on the patterned substrate. These cultures maintain transport for months, allowing carefully controlled investigations of MCC over a wide range of normal and pathological conditions. To characterize the system, we measured the transport of bovine submaxillary gland mucin (BSM) under several conditions. Transport of 5% BSM was significantly reduced compared with that of 2% BSM, and treatment of 5% BSM with the reducing agent tris(2-carboxyethyl)phosphine (TCEP) reduced viscosity and increased the rate of MCT by approximately twofold. Addition of a small amount of high-molecular-weight DNA increased mucus viscosity and reduced MCT by ~75%, demonstrating that the composition of mucus, as well as the concentration, can have significant effects on MCT. Our results demonstrate that a simple patterning of the collagen substrate results in highly coordinated ciliated cultures that develop directional MCT, and can be used to investigate the mechanisms controlling the regulation of ciliary orientation. Furthermore, the results demonstrate that this method provides an improved system for studying the effects of mucus composition and therapeutic agents on MCC.  相似文献   

5.
BackgroundThe existing data demonstrate the potential role of trace elements in nasal mucociliary clearance, although the association between trace element and mineral status and ciliary function in children with chronic rhinosinusitis is insufficiently studied. Therefore, the objective of the present study is evaluation of trace element and mineral status and mucociliary function in pediatric CRS patients before and after functional endoscopic sinus surgery.MethodsThe present study involved 30 children with chronic rhinosinusitis without nasal polyps. During this follow-up the patients were examined preoperatively (point 0), underwent functional endoscopic sinus surgery, and were repeatedly examined at three months postoperatively (point 1). At both points the patients were subjected to quality-of-life assessment using SNOT-20 questionnaire; endoscopic and computer tomography examination of the nasal sinuses; evaluation of ciliary function and mucosal cytology using high-speed videomicroscopy; assessment of blood count and inflammatory markers; as well as analysis of trace element and mineral levels in whole blood, serum, and hair using inductively-coupled plasma mass-spectrometry.ResultsThe obtained data demonstrate that endoscopic sinus surgery significantly improved sinonasal pathology in children with chronic rhinosinusitis, as evidenced by significantly reduced Lund-Mackay, Lund-Kennedy, and SNOT-20 scores. At the same time, no significant improvement of ciliary functions or mucosal cytology was observed postoperatively. Trace element status assessment demonstrated that postoperative serum Zn, whole blood Mg and Cu were significantly lower as compared to preoperative values. In contrast, serum Mn and Cr, as well as whole blood Cr and hair Se were characterized by a significant increase at three months postoperatively. Multiple linear regression analysis demonstrated that serum Zn is significantly associated with the number of ciliated cells and cell viability, whereas serum Mn and whole blood Cu concentrations are inversely associated with cell viability and ciliary length, respectively. Hair Se was found to be associated with the number of neutrophils in the mucosa biopsy.ConclusionRedistribution of trace elements and minerals may at least partially mediate prolonged recovery of mucosal ciliary function in children with chronic rhinosinusitis in three months after functional sinus surgery, although the particular mechanisms of these alterations in trace element levels are to be discovered.  相似文献   

6.
Spherical monodisperse ferromagnetic iron oxide particles of 1.9 μm geometric and 4.2 μm aerodynamic diameter were inhaled by seven patients with primary ciliary dyskinesia (PCD) using the shallow bolus technique, and compared to 13 healthy non-smokers (NS) from a previous study. The bolus penetration front depth was limiting to the phase1 dead space volume. In PCD patients deposition was 58+/-8 % after 8 s breath holding time. Particle retention was measured by the magnetopneumographic method over a period of nine months. Particle clearance from the airways showed a fast and a slow phase. In PCD patients airway clearance was retarded and prolonged, 42+/-12 % followed the fast phase with a mean half time of 16.8+/-8.6 hours. The remaining fraction was cleared slowly with a half time of 121+/-25 days. In healthy NS 49+/-9 % of particles were cleared in the fast phase with a mean half time of 3.0+/-1.6 hours, characteristic of an intact mucociliary clearance. There was no difference in the slow clearance phase between PCD patients and healthy NS. Despite non-functioning cilia the effectiveness of airway clearance in PCD patients is comparable to healthy NS, with a prolonged kinetics of one week, which may primarily reflect the effectiveness of cough clearance. This prolonged airway clearance allows longer residence times of bacteria and viruses in the airways and may be one reason for increased frequency of infections in PCD patients.  相似文献   

7.
Kartagener’s syndrome is a very rare congenital malformation comprising of a classic triad of sinusitis, situs inversus and bronchiectasis. Primary ciliary dyskinesia is a genetic disorder with manifestations present from early life and this distinguishes it from acquired mucociliary disorders. Approximately one half of patients with primary ciliary dyskinesia have situs inversus and, thus are having Kartagener syndrome. We present a case of 12 year old boy with sinusitis, situs inversus and bronchiectasis. The correct diagnosis of this rare congenital autosomal recessive disorder in early life is important in the overall prognosis of the syndrome, as many of the complications can be prevented if timely management is instituted, as was done in this in this case.  相似文献   

8.
Primary ciliary dyskinesia (PCD) is a clinically and genetically heterogenous group of disorders, predominantly inherited as an autosomal recessive trait. The disease phenotype is characterised by defective mucociliary clearance of the airways caused by inborn defects of motile respiratory cilia. Randomization of left/right-body symmetry is found in most PCD variants and results from dysfunction of nodal cilia during early embryonic development. Thus ~50% of PCD patients exhibit situs inversus or heterotaxia. To date nine genes encoding either axonemal motor protein components or dynein assembly factors have been identified. In addition, two X-linked syndromic PCD variants associated either with retinitis pigmentosa or mental retardation have been reported. High-speed videomicroscopy (HVM) for ciliary beat evaluation is the most sensitive diagnostic test, since electron microscopy (EM) and immunofluorescence (IF) analyses are not able to detect all PCD variants. Genetic analyses should be targeted once the PCD variant has been characterized in detail by HVM and EM/IF.  相似文献   

9.
We studied the action of sodium metabisulphite on mucociliary transport in a frog palate epithelial injury model, hypothesizing that it may be useful for the study of mechanisms of airway injury. Sodium metabisulphite (MB) releases SO2 on contact with water. SO2 is a pollutant in automobile fumes and may play a role in the exacerbation of airway disease symptoms. We first investigated its effect on mucociliary clearance. MB 10-1 M, increased mucociliary clearance time (MCT) by 254.5 ± 57.3% of control values, (p < 0.001, n = 7). MB 10-4 and 10-2 M did not interfere with mucus clearance time compared to control values. In MB-treated frog palates, MCT did not return to control values after one hour (control, 97.3 ± 6.3% vs. MB, 140.9 ± 46.3%, p < 0.001, n = 7). Scanning EM images of epithelial tissue were morphometrically analyzed and showed a 25 ± 12% loss of ciliated cells in MB palates compared to controls with an intact ciliary blanket. Intact cells or groups of ciliated cells were found in scanning EM micrographs of mucus from MB-treated palates. This was associated with increased matrix metalloproteinase (MMP-9) activity in epithelial tissue and mucus. We suggest that the loss of ciliated cells as a result of MMP-9 activation prevented full recovery of MCT after MB 10-1 M. The mechanism of action may be on epithelial cell-cell or cell-matrix attachments leading to cell loss and a disruption of MCT. Further studies are warranted to determine whether this is an inflammatory mediated response or the result of a direct action on epithelial cells and what role this mechanism may play in the progression to chronic airway diseases with impaired mucociliary clearance.  相似文献   

10.
We studied the action of sodium metabisulphite on mucociliary transport in a frog palate epithelial injury model, hypothesizing that it may be useful for the study of mechanisms of airway injury. Sodium metabisulphite (MB) releases SO2 on contact with water. SO2 is a pollutant in automobile fumes and may play a role in the exacerbation of airway disease symptoms. We first investigated its effect on mucociliary clearance. MB 10-1 M, increased mucociliary clearance time (MCT) by 254.5 ± 57.3% of control values, (p < 0.001, n = 7). MB 10-4 and 10-2 M did not interfere with mucus clearance time compared to control values. In MB-treated frog palates, MCT did not return to control values after one hour (control, 97.3 ± 6.3% vs. MB, 140.9 ± 46.3%, p < 0.001, n = 7). Scanning EM images of epithelial tissue were morphometrically analyzed and showed a 25 ± 12% loss of ciliated cells in MB palates compared to controls with an intact ciliary blanket. Intact cells or groups of ciliated cells were found in scanning EM micrographs of mucus from MB-treated palates. This was associated with increased matrix metalloproteinase (MMP-9) activity in epithelial tissue and mucus. We suggest that the loss of ciliated cells as a result of MMP-9 activation prevented full recovery of MCT after MB 10-1 M. The mechanism of action may be on epithelial cell-cell or cell-matrix attachments leading to cell loss and a disruption of MCT. Further studies are warranted to determine whether this is an inflammatory mediated response or the result of a direct action on epithelial cells and what role this mechanism may play in the progression to chronic airway diseases with impaired mucociliary clearance.  相似文献   

11.
The coordinated, directional beating of airway cilia drives airway mucociliary clearance. Here we explore the hypothesis that airway surface liquid osmolarity is a key regulator of ciliary beating. Cilia in freshly isolated human and murine airways visualized with streaming video-microscopy exhibited a reciprocal dependence on a physiological range of luminal fluid osmolarities, across the entire range of ciliary activity (0-20 beats per sec). Increasing osmolarity slowed or completely abrogated, while lower osmolarity dramatically stimulated ciliary beating. In parallel, epithelial cell height and importantly, intracellular calcium levels (as judged by fluorescence imaging) also changed. Moreover, ciliary beating was stimulated by isosmotic solutions containing membrane permeant osmolytes, suggesting that cell size and membrane stretch (governed by apical fluid tonicity), rather than osmolarity itself, contribute to the activation. These findings shed light on the pathophysiology of diseases of mucociliary clearance such as cystic fibrosis and other chronic inflammatory lung diseases.  相似文献   

12.
Lee L 《Gene》2011,473(2):57-66
Motile cilia and flagella are organelles that, historically, have been poorly understood and inadequately investigated. However, cilia play critical roles in fluid clearance in the respiratory system and the brain, and flagella are required for sperm motility. Genetic studies involving human patients and mouse models of primary ciliary dyskinesia over the last decade have uncovered a number of important ciliary proteins and have begun to elucidate the mechanisms underlying ciliary motility. When combined with genetic, biochemical, and cell biological studies in Chlamydomonas reinhardtii, these mammalian genetic analyses begin to reveal the mechanisms by which ciliary motility is regulated.  相似文献   

13.
高等动物体内气管、脑室管膜及输卵管等上皮组织具有一类富含运动纤毛的多纤毛细胞,通过其细胞表面运动纤毛的周期性摆动可以清洁气管、驱动脑脊液流动和受精卵运动.运动纤毛发生或功能的异常则可导致气管炎、脑积水、不孕不育等多种遗传疾病.然而,在多纤毛细胞分化过程中关于如何精确组装运动性纤毛复杂结构的分子机制仍不清楚.该研究运用蛋...  相似文献   

14.
15.
Mucociliary airway clearance is an innate defense mechanism that protects the lung from harmful effects of inhaled pathogens. In order to escape mechanical clearance, airway pathogens including Streptococcus pneumoniae (pneumococcus) are thought to inactivate mucociliary clearance by mechanisms such as slowing of ciliary beating and lytic damage of epithelial cells. Pore-forming toxins like pneumolysin, may be instrumental in these processes. In a murine in vitro airway infection model using tracheal epithelial cells grown in air-liquid interface cultures, we investigated the functional consequences on the ciliated respiratory epithelium when the first contact with pneumococci is established. High-speed video microscopy and live-cell imaging showed that the apical infection with both wildtype and pneumolysin-deficient pneumococci caused insufficient fluid flow along the epithelial surface and loss of efficient clearance, whereas ciliary beat frequency remained within the normal range. Three-dimensional confocal microscopy demonstrated that pneumococci caused specific morphologic aberrations of two key elements in the F-actin cytoskeleton: the junctional F-actin at the apical cortex of the lateral cell borders and the apical F-actin, localized within the planes of the apical cell sides at the ciliary bases. The lesions affected the columnar shape of the polarized respiratory epithelial cells. In addition, the planar architecture of the entire ciliated respiratory epithelium was irregularly distorted. Our observations indicate that the mechanical supports essential for both effective cilia strokes and stability of the epithelial barrier were weakened. We provide a new model, where - in pneumococcal infection - persistent ciliary beating generates turbulent fluid flow at non-planar distorted epithelial surface areas, which enables pneumococci to resist mechanical cilia-mediated clearance.  相似文献   

16.
Effect of cAMP on ciliary function in rabbit tracheal epithelial cells   总被引:7,自引:0,他引:7  
To study the effect of adenosine 3',5'-cyclic monophosphate (cAMP) on respiratory ciliary activity, we measured ciliary beat frequency (CBF) of rabbit tracheal epithelium by a photoelectric method in response to cAMP analogues and agents that can increase endogenous cAMP production. Addition of 8-bromo-cAMP dose dependently enhanced CBF, with the maximal increase and the concentration necessary to produce a half-maximal response (KD) being 31.0 +/- 3.4% (SE) (P less than 0.001) and 3.2 +/- 1.5 x 10(-7) M, respectively. Other structurally dissimilar cAMP analogues dibutyryl cAMP and chlorophenylthio-cAMP likewise caused increases in CBF. The phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine and the adenylate cyclase stimulator forskolin also augmented CBF in a dose-dependent fashion and were accompanied by the increases in intracellular concentrations of cAMP. Ciliary discoordination was not observed in any of the experiments. These results suggest that cAMP may accelerate mucociliary clearance through the activation of ciliary motility and that intracellular cAMP levels appear to be an important determinant for the lung mucociliary transport functions.  相似文献   

17.
Nasal mucociliary clearance was measured in both healthy subjects and patients with chronic sinusitis using saccharin granule technique. Nasal mucociliary transit time (ST) was significantly slower in the patients with chronic sinusitis compared with that in controls (p less than 0.005). Nasal mucus collected from each nasal cavity was used for in vitro bullfrog palate clearance studies and compared to the in vivo nasal ST. Mucociliary clearance rate (MTR) on frog palate was 12.5 +/- 2.5 mm/min in the mucus from control subjects, 6.1 +/- 1.5 mm/min in the mucus from the patients. The difference was statistically significant (p less than 0.005). The MTR on frog palate in the patients whose nasal ST was within normal range was significantly slower than that in controls (p less than 0.005), but not significantly different from that in the patients whose nasal ST was over the normal range. These results suggest that the nasal mucous properties which decreased the mucociliary clearance on frog palate did not contribute to the mucociliary clearance of the patients who had a normal one. No significant correlation existed between MTR on frog palate and nasal ST in both control and chronic sinusitis. In chronic sinusitis patients, decelerated nasal ST was recovered significantly by normal saline nebulization compared with the value before the nebulization (p less than 0.01). None of the significant change of ST was observed in control before and after the nebulization.  相似文献   

18.
Causey RC 《Theriogenology》2007,68(3):386-394
Uterine infections are a major cause of infertility, but the role of mucus in equine uterine defense is not well understood. Mucociliary currents play an important role in protecting mucous membranes, including the upper and lower respiratory tracts of mammals, and are required for feeding and oxygenation of many aquatic invertebrates. Although phagocytosis has long been considered the first line of uterine defense in the mare, there are concerns about its efficacy in the uterine lumen. Additional local defenses, such as mucociliary currents, have therefore been proposed. The uterine epithelium exhibits alternating mucus-secreting and ciliated cells supporting a mucopolysaccharide blanket, features shared with mucociliary membranes throughout the animal kingdom. Gross uterine anatomy, such as continuity of uterine and cervical folds, may indicate adaptations to mucociliary clearance. In addition, ciliated cells obtained in uterine lavages often display motility. Disruptions of mucociliary clearance play major roles in pathogenesis of mucosal infections in humans, including pneumonia, chronic sinusitis, and otitis media. Establishing drainage is a major goal of therapy in treatment of chronic sinusitis, hastening return of mucociliary function. Similar disruptions may occur in equine uterine infections, associated with accumulations of uterine fluid, loss of endometrial folds, and cervical trauma. Possible clinical implications of mucociliary clearance in the mare are discussed, however the role of mucociliary clearance in the mare remains speculative.  相似文献   

19.
20.
Primary ciliary dyskinesia (PCD) is a genetic disorder of abnormal ciliary structure and function that leads to defective mucociliary clearance, resulting in oto-sino-pulmonary disease, and infertility. The disease is currently under intense investigation by a number of research groups worldwide. At the recent American Thoracic Society meeting in San Francisco in May 2001, two sessions focused on PCD; a symposium session on May 21 with several featured expert speakers was followed by a mini-symposium on Tuesday May 22, with one featured speaker and presentation of nine abstracts covering a range of research topics. Mattias Salathe (University of Miami, USA) and Stephen Brody (Washington University, St Louis, USA) chaired the symposium session. Presentations focused on the clinical spectrum of PCD, the genetics of PCD, a proteomics approach to detail the structure of cilia, the role of cilia in the embryology of situs laterality, and airway epithelial cell biology. The mini-symposium was chaired by Peadar Noone (University of North Carolina, USA) and Malcolm King (University of Alberta, USA) and included presentations on the use of PCD as a human disease model, accurate definition of the phenotype using clinical and cell biologic markers, and molecular studies. The latter reports ranged from isolation of a protein involved in ciliary structure and function to genetic studies using linkage analysis and the candidate gene approach. Clinicians and scientists alike displayed considerable interest at both sessions, and there were several lively question–answer sessions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号