首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role that nitric oxide, an endothelium-derived relaxing factor, may play in the regulation of gastric mucosal defence was investigated by assessing the potential protective actions of this factor against the damage caused by ethanol in an ex vivo chamber preparation of the rat stomach. Topical application of glyceryl trinitrate and sodium nitroprusside, which have been shown to release nitric oxide, markedly reduced the area of 70% ethanol-induced hemorrhagic damage. Topical application of a 0.01% solution of authentic nitric oxide also significantly reduced the severity of mucosal damage. Pretreatment with indomethacin precluded the involvement of endogenous prostaglandins in the protective effects of these agents. The protective effects of NO were transient, since a delay of 5 minutes between NO administration and ethanol administration resulted in a complete loss of the protective activity. The protection against ethanol afforded by 10 micrograms/ml nitroprusside could be completely reversed by intravenous infusion of either 1% methylene blue or 1 mM hemoglobin, both of which inhibit vasodilation induced by nitric oxide. Intravenous infusion of 1% methylene blue significantly increased the susceptibility of the mucosa to damage induced by topical 20% ethanol. These results indicate that ethanol-induced gastric damage can be significantly reduced by nitric oxide. The mechanisms underlying the protective actions of nitric oxide are unclear, but may be related to its vasodilator or anti-aggregatory properties.  相似文献   

2.
Elevation in intracellular cyclic GMP levels is the proposed proximal mechanism for the vasodilatory and platelet inhibitory action of nitrovasodilators and of nitric oxide, the putative endothelium-derived relaxing factor. In this study, the stable cyclic GMP analogs, 8-bromo-cGMP and N2, 2'-O-dibutyryl-cGMP were found to inhibit the release of [3H]-arachidonic acid from gamma thrombin-stimulated human platelets in a time- and dose-dependent manner. Inhibition of the formation of arachidonic acid metabolites, 12-HETE and thromboxane B2, paralleled that of arachidonic acid release and was accompanied by a dose-dependent inhibition of platelet aggregation. The formation of phosphatidic acid, a metabolite of phospholipase C, however, was relatively preserved. At a concentration of 8-bromo-cGMP (2 mM) that produced near-total inhibition of arachidonic acid release, phosphatidic acid formation remained at 60% of control levels. Thus, cGMP analogs have a preferential inhibitory effect on the release and subsequent metabolism of arachidonic acid. The phospholipase A2/arachidonic acid pathway appears to be an important target for the physiologic action of cGMP, and EDRF, and for the pharmacologic action of nitrovasodilators.  相似文献   

3.
Vascular endothelium plays a key role in the local regulation of vascular tone and vascular architecture by release of vasodilator and vasoconstrictor substances, as well as factors with pro-coagulant, anticoagulant, fibrinolytic, antibacterial properties, growth factors, chemokines, free radicals, etc. Release of endothelium-derived relaxing factors such as nitric oxide (NO), prostaglandins and endothelium-derived hyperpolarizing factor, as well as vasoconstricting factors such as endothelin, superoxide and thromboxanes play an influential role in the maintenance and regulation of vascular tone and the corresponding peripheral vascular resistance. Under physiological conditions, the release of anticoagulant and smooth muscle relaxing factors exceeds the release of other substances. The first part of this review presents the functions of the endothelium itself, the nature of the endothelium-derived relaxing factor, its production by NO synthases, mechanisms of its action via activation of soluble guanylyl cyclase and production of cyclic 3'-5'-guanosine monophosphate. The resulting biological effects include vasodilatation, regulation of vessel wall structure, increased regional blood perfusion, lowering of systemic blood pressure, antithrombosis and antiatherosclerosis effects, which counteract the vascular actions of endogenous vasoconstrictor substances. Impaired endothelial function, either as a consequence of reduced production/release or increased inactivation of endothelium-derived vasodilators, as well as interactions of NO with angiotensin, reactive oxygen species and oxidized lipoproteins, has detrimental functional consequences and is one of the most important cardiovascular risk factors. Therefore the second part of this review assesses the pathophysiologic impact of the endothelium in examples of cardiovascular pathologies, e.g. endotheliopathies caused by increased angiotensin production, lipid peroxidation, ischemia/reperfusion or diabetes.  相似文献   

4.
The discovery, early studies and identification of endothelium-derived relaxing factor (EDRF) as nitric oxide, are described.  相似文献   

5.
Recent studies have characterized endothelium-derived relaxing factor as nitric oxide. It appears to exert its effect by elevating intracellular levels of cyclic GMP. In this study we confirm that nitric oxide is a potent inhibitor of agonist-induced irreversible aggregation. At the concentrations tested nitric oxide effectively blocked thrombin-stimulated mobilization of cytosolic-free calcium in Fura 2-loaded platelets. In addition, nitric oxide prevented the inositol 1,4,5-trisphosphate-stimulated calcium rise in cytosolic calcium in saponin-permeabilized Fura 2-loaded platelets. Similar to the action of adenylate cyclase stimulators, nitric oxide facilitated lowering of calcium levels raised by the action of agonists. The specific mechanism by which it exerts its effect on intracellular levels of calcium is not clear.  相似文献   

6.
Endothelium-derived relaxing and contracting factors   总被引:68,自引:0,他引:68  
Endothelium-dependent relaxation of blood vessels is produced by a large number of agents (e.g., acetylcholine, ATP and ADP, substance P, bradykinin, histamine, thrombin, serotonin). With some agents, relaxation may be limited to certain species and/or blood vessels. Relaxation results from release of a very labile non-prostanoid endothelium-derived relaxing factor (EDRF) or factors. EDRF stimulates guanylate cyclase of the vascular smooth muscle, with the resulting increase in cyclic GMP activating relaxation. EDRF is rapidly inactivated by hemoglobin and superoxide. There is strong evidence that EDRF from many blood vessels and from cultured endothelial cells is nitric oxide (NO) and that its precursor is L-arginine. There is evidence for other relaxing factors, including an endothelium-derived hyperpolarizing factor in some vessels. Flow-induced shear stress also stimulates EDRF release. Endothelium-dependent relaxation occurs in resistance vessels as well as in larger arteries, and is generally more pronounced in arteries than veins. EDRF also inhibits platelet aggregation and adhesion to the blood vessel wall. Endothelium-derived contracting factors appear to be responsible for endothelium-dependent contractions produced by arachidonic acid and hypoxia in isolated systemic vessels and by certain agents and by rapid stretch in isolated cerebral vessels. In all such experiments, the endothelium-derived contracting factor appears to be some product or by-product of cyclooxygenase activity. Recently, endothelial cells in culture have been found to synthesize a peptide, endothelin, which is an extremely potent vasoconstrictor. The possible physiological roles and pathophysiological significance of endothelium-derived relaxing and contracting factors are briefly discussed.  相似文献   

7.
We examined the responses of newborn piglet pulmonary resistance arteries (PRAs) to 5,6-epoxyeicosatrienoic acid (5,6-EET), a cytochrome P-450 metabolite of arachidonic acid. In PRAs preconstricted with a thromboxane A(2) mimetic, 5,6-EET caused a concentration-dependent dilation. This dilation was partially inhibited by the combination of charybdotoxin (CTX) and apamin, inhibitors of large and small conductance calcium-dependent potassium (K(Ca)) channels, and was abolished by depolarization of vascular smooth muscle with KCl. Disruption of the endothelium significantly attenuated the dilation, suggesting involvement of one or more endothelium-derived vasodilator pathways in this response. The dilation was partially inhibited by nitro-L-arginine (L-NA), an inhibitor of nitric oxide synthase (NOS), but was unaffected by indomethacin, a cyclooxygenase (COX) inhibitor. The combined inhibition of NOS and K(Ca) channels with L-NA, CTX, and apamin abolished 5,6-EET-mediated dilation. Similarly, combined inhibition of NOS and COX abolished the response. We conclude that 5,6-EET is a potent vasodilator in newborn piglet PRAs. This dilation is mediated by redundant pathways that include release of nitric oxide (NO) and COX metabolites and activation of K(Ca) channels. The endothelium dependence of this response suggests that 5,6-EET is not itself an endothelium-derived hyperpolarizing factor (EDHF) but may induce the release of one or more endothelium-derived relaxing factors, such as NO and/or EDHF.  相似文献   

8.
Secretory functions of the vascular endothelium.   总被引:3,自引:0,他引:3  
The endothelial cells which line the blood vessels as a monolayer exert a remarkable control over the vascular system. Indeed, the endothelium can be regarded as a highly active metabolic and endocrine organ in its own right. On the hand, vasoactive substances such as serotonin and bradykinin are inactivated and on the other the cells can enzymatically produce the vasoconstrictor, angiotensin II and secrete endothelin-1 ((ET-1). Perhaps more importantly, the cells also produce two unstable vasodilator substances, which potently inhibit platelet clumping: prostacyclin and endothelium-derived relaxing factor (EDRF) which has been identified as nitric oxide (NO; 1). Both substances seem well designated as local hormones, released to influence adjacent cells. The endothelial cell, therefore, exerts control over the cardiovascular system by elaborating dilator substances as well as vasconstrictors.  相似文献   

9.
Nitric oxide: comparative synthesis and signaling in animal and plant cells   总被引:21,自引:0,他引:21  
Since its identification as an endothelium-derived relaxing factor in the 1980s, nitric oxide has become the source of intensive and exciting research in animals. Nitric oxide is now considered to be a widespread signaling molecule involved in the regulation of an impressive spectrum of mammalian cellular functions. Its diverse effects have been attributed to an ability to chemically react with dioxygen and its redox forms and with specific iron- and thiol-containing proteins. Moreover, the effects of nitric oxide are dependent on the dynamic regulation of its biosynthetic enzyme nitric oxide synthase. Recently, the role of nitric oxide in plants has received much attention. Plants not only respond to atmospheric nitric oxide, but also possess the capacity to produce nitric oxide enzymatically. Initial investigations into nitric oxide functions suggested that plants use nitric oxide as a signaling molecule via pathways remarkably similar to those found in mammals. These findings complement an emerging body of evidence indicating that many signal transduction pathways are shared between plants and animals.  相似文献   

10.
Normal penile erectile function is dependent on arterial adequacy, appropriate venous occlusion, neurohumoral factors, and finally the relaxation of penile cavernous trabecular smooth muscle. The present experiments were designed to test whether compounds related to endothelium-derived relaxing factor have a role in penile smooth muscle relaxation and whether this role is preserved in clinically impotent tissue. Isometric tension experiments were conducted using strips of human tissue (appropriately obtained) from patients found to be impotent by clinical criteria. Glyceryl trinitrate and isosorbide dinitrate produced maximal relaxations of 66 and 63%, respectively, in tissues contracted with norepinephrine: 50% relaxation was observed at 6 x 10(-7) and 8 x 10(-5) M, respectively. The finding of a relaxant response to synthetic nitrovasodilators in "impotent" tissue implies that (i) complete end organ (smooth muscle) failure is not always, if ever, seen, (ii) endothelium-derived factors probably play a role in erectile tissue parallel with their role in other vascular tissues, (iii) more proximal factors may be responsible for clinical impotence, and (iv) synthetic nitrovasodilators may have a role in the therapy of clinical impotence.  相似文献   

11.
The enzyme responsible for the synthesis of endothelium-derived relaxing factor and/or nitric oxide in the endothelium has been described as a particulate enzyme, whereas other isoforms of nitric oxide synthase are soluble enzymes. Here we are reporting that endothelial cells metabolically incorporate myristate (C14), but not palmitate (C16), into nitric oxide synthase. We are postulating that the endothelial-derived nitric oxide synthase is a particulate enzyme because of the fatty acid acylation of the protein which 'anchors' the enzyme into the membrane either directly or via another membrane-bound protein.  相似文献   

12.
Summary Phospholipase A2 (PLA2) produced slow dose dependent relaxation in intact and endothelium-deprived precontracted rabbit aortic strips. In endothelium-deprived preparations, relaxation induced by PLA2 is inhibited by hemoglobin, methylene blue and parabromophenacylbromide (PBPB), and is potentiated by superoxide dismutase (SOD). Indomethacin has no effect. Relaxation is accompanied by a rise in c-GMP. Phospholipase C causes a significant increase in tension, while Phospholipase D has no effects. In intact aortic strips PLA2 causes a biphasic response with no elevation in c-GMP. The results indicate several common features of the PLA2 released factor with endothelium-derived relaxing factor (EDRF). However PLA2 induced relaxation is not dependent on endothelial cells. Apparently in addition to nitric oxide which may be the endothelium-derived relaxing factor, a second smooth muscle relaxing factor exists which is initiated by PLA2 and is independent of endothelium. The production of the PLA2 produced relaxation is dependent on its specific hydrolytic activity. We call this relaxing factor the phospholipid-derived relaxing factor (PDRF).  相似文献   

13.
IL-1 and TNF alpha are assumed to be major mediators of islet cell destruction during the pathogenesis of type 1 diabetes. Here we show by neutralization of the two cytokines with excess antibody that IL-1 and TNF alpha do not contribute to the cytotoxic activity of activated macrophages towards isolated islet cells. However, islet cells can be protected from lysis by depleting the culture medium of L-arginine or by adding the antagonist NG-monomethyl-L-arginine, both of which inhibit the generation of nitric oxide by activated macrophages. These results indicate a role of nitric oxide or its equivalent, the endothelium-derived relaxing factor in the development of type 1 diabetes. This is the first report showing that nitric oxide may damage normal cells and thus may be a hitherto unrecognized pathogenetic factor in tissue inflammation and autoimmune disence.  相似文献   

14.
Unraveling the biological significance of nitric oxide   总被引:4,自引:0,他引:4  
Independent investigations into the biochemical changes and cytostatic properties induced in immunostimulated macrophages and studies involving the identity and mechanism of action of endothelium-derived relaxing factor led to the finding of a new metabolic pathway which converts L-arginine to nitric oxide and citrulline. The pathway has since been reported in a number of additional cell types including cells in the central nervous system (CNS). In the endothelium and CNS nitric oxide is acting as a signaling agent with the evidence supporting activation of the enzyme guanylate cyclase in the target cell. Nitric oxide is toxic and evidence supports a cytostatic/cytotoxic function as the primary action of macrophage-derived nitric oxide.  相似文献   

15.
Patients with insulin-dependent diabetes mellitus are at high risk for vascular disorders such as hypertension, nephropathy, and retinopathy. The most common cause of morbidity and mortality in patients with insulin-dependent diabetes is vascular disease. Despite ongoing research, the pathogenesis of vascular disease in diabetes remains unclear. In recent years, numerous investigators have examined the role of the endothelium-derived relaxing factor, nitric oxide, in the disease state of hypertension and its complications. We review the role of nitric oxide in the development of diabetes-related vascular disease and discuss findings suggesting that nitric oxide metabolism and vascular responsiveness to nitric oxide are altered in diabetes. Patients with diabetes may benefit from therapy that addresses this pathogenic deficiency.  相似文献   

16.
Nitric Oxide in Myogenesis and Therapeutic Muscle Repair   总被引:1,自引:0,他引:1  
Nitric oxide is a short-lived intracellular and intercellular messenger. The first realisation that nitric oxide is important in physiology occurred in 1987 when its identity with the endothelium-derived relaxing factor was discovered. Subsequent studies have shown that nitric oxide possesses a number of physiological functions that are essential not only to vascular homeostasis but also to neurotransmission, such as in the processes of learning and memory and endocrine gland regulation, as well as inflammation and immune responses. The discovery in 1995 that a splice variant of the neuronal nitric oxide synthase is localised at the sarcolemma via the dystrophin?Cglycoprotein complex and of its displacement in Duchenne muscular dystrophy has stimulated a host of studies exploring the role of nitric oxide in skeletal muscle physiology. Recently, nitric oxide has emerged as a relevant messenger also of myogenesis that it regulates at several key steps, especially when the process is stimulated for muscle repair following acute and chronic muscle injuries. Here, we will review briefly the mechanisms and functions of nitric oxide in skeletal muscle and discuss its role in myogenesis, with specific attention to the promising nitric oxide-based approaches now being explored at the pre-clinical and clinical level for the therapy of muscular dystrophy.  相似文献   

17.
Nitric oxide is a major endothelium-derived vascular smooth muscle relaxing factor; its synthesis from L-arginine is selectively inhibited by L-NG-methylarginine. To assess whether basal nitric oxide release contributes to blood pressure regulation in vivo, we have investigated the cardiovascular effects of L-NG-methylarginine in the anesthetized guinea pig. L-NG-methylarginine (0.1-10 mg/kg, i.v. bolus) elicited a sustained, dose-dependent, increase in arterial pressure and a moderate bradycardia. L-arginine (30 mg/kg i.v.) prevented or reversed the pressor effect of L-NG-methylarginine, while atropine (2 mg/kg) abolished the associated bradycardia. In contrast, L-arginine did not attenuate the pressor effect of norepinephrine or angiotensin. Our findings suggest that basal nitric oxide production is sufficient to modulate peripheral vascular resistance; hence nitric oxide may play a role in arterial pressure homeostasis.  相似文献   

18.
Endothelin-1 and nitric oxide are the most potent factors of the endothelium-derived substances. The factors play opposite roles in regulation of cardiovascular system, and their interaction underlies the balance of vasoconstrictor and vasodilator influences on vascular tone under normal conditions. In our experiments, changes in endothelin-1 blood concentration were associated with affected production of endogenous nitric oxide. The altered interrelationships between the endothelium-derived vasoactive substances may precede pathological shifts in the cardiovascular system.  相似文献   

19.
L-精氨酸是一种非常重要的半必需氨基酸,其作为生物体生成NO的前体,参与尿素循环,对人和动物均具有重要的生理功能。现阶段生产精氨酸的主流方法是微生物发酵法,因此,如何快速、高效地选育精氨酸高产菌种成为业内关注的焦点。主要对精氨酸产生菌分子育种方法的最新研究进展进行了综述,并就目前存在的问题和发展方向进行了探讨。  相似文献   

20.
As an endothelium-derived relaxing factor, nitric oxide (NO) maintains blood flow and O2 transport to tissues. Under normal conditions a delicate balance exists in the vascular system between endothelium-derived NO, an antioxidant, and the pro-oxidant elements of the vascular system, O-2, and peroxynitrite (a by-product of the reaction of NO and superoxide); in addition there is a balance between neurogenic tonic contraction and NO-mediated relaxation. The former balance can be disrupted in favor of peroxynitrite and hydrogen peroxide under the conditions of ischemia/reperfusion. This review suggests that NO may be beneficial, not only in terms of its new potential in improving O2 transport without accompanying significant increase in tissue blood flow, but also in its ability to suppress the prooxidative reagents of the vascular systems. These include NO-mediated inhibition of transendothelial migration by leukocyte and the antioxidative effects of NO with regard to ischemia/reperfusion; the relevance of these hypotheses to systemic administration of NO donors is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号