首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 449 毫秒
1.
The proton signals for the coordinated axial imidazoles in a series of low-spin ferric bis-imidazole complexes with natural porphyrin derivatives have been located and assigned. The methyl signals of several methyl-substituted imidazoles have also been resolved for the mixed ligand complexes of imidazole and cyanide ion. The imidazole spectra for the bis complexes are essentially the same as those reported earlier for synthetic porphyrins, with the hyperfine shifts exhibiting comparable contributions from the dipolar and contact interactions. The contact contribution reflects spin transfer into a vacant imidazole pi orbital. The spectra of both the mono- and bis-imidazole complex concur in predicting that only the 2-H and 5-CH2 signals of an axial histidine are likely to resonate clearly outside the diamagnetic 0 to --10 ppm from TMS region in hemoproteins. However, both the 2-H and 4-H imidazole peaks are found to be too broad to detect in a hemoprotein. Hence, it is suggested that the pair of non-heme, single-proton resonances in low-spin met-myoglobin cyanides arise from the non-equivalent methylene protons at the 5-position of the histidyl imidazole. Both the resonance positions and relative linewidths in the model compounds are consistent with the data for this pair of protons in myoglobins. The possible interpretations of the average downfield bias of these signals as well as the magnitude of their spacing, are discussed in terms of the conformation of the proximal histidine relative to the heme group.  相似文献   

2.
The structural characteristics of oxy- and deoxy-hemocyanins have been investigated using X-ray absorption spectroscopy both in the near-edge (XANES) and for the first shell contribution in the EXAFS region. Several arthropodan and molluscan hemocyanins have been studied in order to trace the inter- and intra-phyla differences. The XANES spectra of oxy-hemocyanins of the different species are remarkably similar, consistent with a very strongly conserved co-ordination geometry of the copper active site. In contrast, small but significant differences are observed between the deoxy-forms of arthropodan and molluscan proteins. In particular, the XANES spectra of deoxy-arthropodan hemocyanins (with the exception of L. polyphemus Hc) show a more intense edge feature at approximately 8983 eV. This difference is tentatively assigned to a more planar geometry of the copper-ligands system in the arthropodan rather than in the molluscan proteins.The first shell analysis of the EXAFS modulation is consistent with the presence of n=3Nepsilon(2) imidazole nitrogens at an average distance of 1.92 +/- 0.03 A from copper in all the deoxy-hemocyanins investigated.Binding of dioxygen results for all hemocyanins in the increase of the number of first shell back-scattering atoms to n=5 with average distances of 1.93 A. Alternatively, by separating the contribution of Nepsilon(2) imidazole nitrogens and of peroxide O-atoms, n=3 ligands at 1.98 +/- 0.03 A and n=2 ligands at 1.87 +/- 0.03 A are found.  相似文献   

3.
Three self-assembled photonic dyads comprising a zinc porphyrin donor and a free base acceptor have been studied by time-resolved fluorescence spectroscopy. The driving force of the assembly is the site selective binding of an imidazole connected to a free base porphyrin. Three spacers have been incorporated between the imidazole connector and the free base porphyrin, providing three different distances separating the donor and the acceptor. The high efficiencies and the rates of energy transfer in the set of dyads is consistent with the Forster energy transfer mechanism. Evidence for Forster back transfer has been obtained, and its efficiency and rate have been quantitatively evaluated for the first time.  相似文献   

4.
The proton signals for the coordinated axial imidazoles in a series of low-spin ferric bis-imidazole complexes with natural porphyrin derivatives have been located and assigned. The methyl signals of several methyl-substituted imidazoles have also been resolved for the mixed ligand complexes of imidazole and cyanide ion. The imidazole spectra for the bis complexes are essentially the same as those reported earlier for synthetic porphyrins, with the hyperfine shifts exhibiting comparable contributions from the dipolar and contract interactions. The contact contribution reflects spin transfer into a vacant imidazole π orbital. The spectra of both the mono- and bis-imidazole complex concur in predicting that only the 2-H and 5CH2 signals of an axial histidine are likely to resonate clearly outside the diamagnetic 0 to ?10 ppm from TMS region in hemoproteins. However, both the 2-H and 4-H imidazole peaks are found to be too broad to detect in a hemoprotein. Hence, it is suggested that the pair of non-heme, single proton resonances in low-spin met-myoglobin cyanides arise from the non-equivalent methylene protons at the 5-position of the histidyl imidazole. Both the resonance positions and relative linewidths in the model compounds are consistent with the data for this pair of protons in myoglobins. The possible interpretations of the average downfield bias of these signals as well as the magnitude of their spacing, are discussed in terms of the conformation of the proximal histidine relative to the heme group.  相似文献   

5.
P E Grebow  T M Hooker 《Biopolymers》1974,13(11):2349-2366
Semiempirical conformational energy calculations were carried out for the cyclic dipeptide L -alanyl-L -histidine diketopiperazine. The results indicate that electrostatic effects are probably significant in determining the conformation assumed by this molecule. When the imidazole group is in its uncharged state the most stable conformations of the molecule are those with the imidazole ring folded over the diketopiperazine ring (χ1 = 60°). Upon protonation of the imidazole group the folded conformation may be destabilized relative to conformations characterized by χ1 positions near 180°.  相似文献   

6.
The chiroptical properties of the cyclic dipeptides cyclo-L -alanyl-L -histidine and cyclo-L -histidinyl-L -histidine have been investigated as a function of molecular conformation. The rotatory strengths of the n-π* transitions of the peptide chromophores and the lowest energy π-π* transitions of the imidazole chromophores have been calculated as a function of the angle of fold of the cyclic dipeptide group and the dihedral angles χ1 and χ2 of the amino acid side chains. The results of this investigation are consistent with the preferred position of the dihedral angle χ1 occurring near 60° in the free base form of cyclo-L -alanyl-L -histidine, and near 180° when the imidazole side chain is protonated. Furthermore, in the case of the free base form of the imidazole group, it is possible that the tautomeric isomer in which Nε is protonated may be more prevalent than the isomer in which Nδ is protonated.  相似文献   

7.
The magnetic circular dichroism (MCD) spectra of three horse heart metmyoglobin compounds, the cyanide, azide and hydroxide forms, have been measured in the visible and near infrared spectral regions at temperatures down to 1.5 K. The three compounds are all virtually completely low-spin at low temperatures with ground g factors of decreasing rhombicity in the order CN- greater than N3- greater than OH-. The MCD magnetization curves have been constructed at selected wavelengths throughout the visible and near infrared regions. The curves are independent of wavelength, showing that all the bands studied are x,y polarized and can, moreover, be satisfactorily fitted to the g factors determined by EPR spectroscopy with theoretical expressions (Thomson, A.J. and Johnson, M.K. (1980) Biochem. J. 191, 411-420). This confirms the assignment and polarizations of the near infrared region low-spin ferric haem charge-transfer bands. The energies of these transitions are markedly dependent upon the added axial ligand, ranging from 1595 to 1295, and 1050 nm for the compounds CN-, N3- and OH-. The MCD spectra of bovine liver catalase and its cyanide adduct have been recorded in the Soret, visible and near infrared regions. Catalase is know to have phenolate anion as the proximal ligand of the haem group. The forms of the spectra make an interesting comparison with those of the analogous metmyoglobin derivatives, in which histidine is the proximal ligand. The MCD spectra of catalase at 4.2 K is an example of a fully high-spin haemoprotein. The cyanide compound is completely low-spin at 4.2 K. The near infrared charge-transfer band is at 1300 nm, showing the effect on the energy of this band of changing from imidazole to phenolate ion as the proximal ligand to haem.  相似文献   

8.
Circular dichroism spectra have been obtained for cationic poly(L -arginine) and poly(L -histidine) in aqueous solutions containing varying amounts of sodium dodecyl sulfate. The detergent induces a disorder-order transition in both polypeptides. In each case the transition is cooperative and occurs when the ratio of detergent to amino acid residue is near unity. The ordered structure formed by poly(L -arginine) is readily identifiable as an α helix. Poly(L -histidine) appears to form a β structure in which the 211-nm electronic absorption band of the imidazole group exhibits significant rotatory strength.  相似文献   

9.
A well-behaved water soluble iron-porphyrin system, meso-tetra-(4-carboxyphenyl) porphinato iron (III) was synthesized. Its solution behavior is described using visable and electron paramagnetic resonance (EPR) spectroscopy. The complex exists in solution as three distinct forms of bridged dimers, oxo, hydroxo and aquo, with the following pK's: oxo + H+ in equilibrium hydroxo, pK = 9.58; hydroxo + H+ in equilibrium aquo, pK = 6.72. In the presence of excess imidazole the second pK is found to be 7.05. Detailed analysis of the interaction of the hydroxo-bridged form with imidazole is presented. It is found that one dimer unit simultaneously binds two imidazole molecules, with an over-all equilibrium constant log Keq = -1.22. EPR spectra are presented for the various forms of iron-porphyrin discussed.  相似文献   

10.
X-ray absorption spectra at the Fe K-edge of the non-heme iron site in Fe(II) as well as Fe(III) soybean lipoxygenase-1, in frozen solution or lyophilized, are presented; the latter spectra were obtained by incubation of the Fe(II) enzyme with its product hydroperoxide. An edge shift of about 2-3 eV to higher energy occurs upon oxidation of the Fe(II) enzyme to the Fe(III) species, corresponding to the valence change. The extended X-ray absorption fine structure shows clear differences in active-site structure as a result of this conversion. Curve-fitting on the new data of the Fe(II) enzyme, using the EXCURV88 program, leads to a coordination sphere that is in agreement with the active-site structure proposed earlier (6 +/- 1 N/O ligands at 0.205-0.209 nm with a maximum variance of 0.009 nm, including 4 +/- 1 imidazole ligands) [Navaratnam, S., Feiters, M. C., Al-Hakim, M., Allen, J. C., Veldink, G. A. and Vliegenthart, J. F. G. (1988) Biochim. Biophys. Acta 956, 70-76], while for the Fe(III) enzyme a shortening in ligand distances occurs (6 +/- 1 N/O ligands at 0.200-0.203 nm with maximum variance of 0.008 nm) and one imidazole is replaced by an oxygen ligand of unknown origin. Lyophilization does not lead to any apparent differences in the iron coordination of either species and gives a much better signal/noise ratio, allowing analysis of a larger range of data.  相似文献   

11.
Theoretical studies of the electronic structure and spectra of models for the ferric resting state and Compound I intermediates of horseradish peroxidase (HRP-I) and catalase (CAT-I) have been performed using the INDO-RHF/CI method. The goals of these studies were twofold: i) to determine whether the axial ligand of HRP is best described as imidazole or imidazolate, and ii) to address the long-standing question of whether HRP-I and CAT-I are a1u and a2u tau cation radicals. Only the imidazolate HRP-I model led to a calculated electronic spectra consistent with the experimentally observed significant reduction in the intensity of the Soret band compared with the ferric resting state. These results provide compelling evidence for significant proton transfer to the conserved Asp residue by the proximal histidine. The origin of the observed reduction of the Soret band intensity in HRP-I and CAT-I spectra has been examined and found to be caused by the mixing of charge transfer transitions into the predominantly porphyrin tau-tau transitions. For both HRP-I and CAT-I, the a1u porphyrin tau cation state is the lowest energy, and it is further stabilized by both the anionic form of the ligand and the porphyrin ring substituents of protoporphyrin-IX. The calculated values of quadrupole-splitting observed in the Mossbauer resonance of HRP-I and CAT-I are similar for the a1u and a2u tau cation radicals. Electronic spectrum of the a1u tau cation radical of HRP-I are more similar to the observed spectra, whereas the spectra of both a1u tau and a2u tau cation radicals of CAT-I resemble the observed spectra. These results also indicate the limitations of using any one observable property to try to distinguish between these states. Taken together, comparison of calculated and observed properties indicate that there is no compelling reason to invoke the higher energy a2u tau cation radical as the favored state in HRP-I and CAT-I. Both ground-state properties and electronic spectra are consistent with the a1u tau cation radical.  相似文献   

12.
Bacterial phytochromes (Bphs) are ancestors of the well characterized plant photoreceptors. Whereas plant phytochromes perform their photoisomerization exclusively via a covalently bound bilin chromophore, Bphs are variable in their chromophore selection. This is demonstrated in the cyanobacterium Calothrix PCC7601 that expresses two Bphs, CphA and CphB. CphA binds phycocyanobilin (PCB) covalently, whereas CphB, lacking the covalently binding cysteine of the plant phytochromes, carries biliverdin IXalpha (BV) as the chromophore. Our experiments elucidate the different modes of chromophore-protein interaction in CphA and CphB and offer a rationale for their chromophore selectivity. The tight binding of BV by CphB prevents PCB from competing for the binding cavity. Even when the chromophore-binding cysteine has been inserted (CphB-mutant L266C), PCB replaces BV very slowly, indicating the tight, but not irreversible binding of BV. The mutant CphB L266C showed a redox-sensitivity with respect to its PCB binding mode: under reducing conditions, the chromoprotein assembly leads to spectra indicative for a covalent binding, whereas absence of dithiothreitol or its removal prior to assembly causes spectra indicative for noncovalent binding. Regarding the CphB-type Bphs lacking the covalently binding cysteine, our results support the involvement of the succeeding histidine residue in chromophore fixation via a Schiff base-like bond between the bilin A-ring carbonyl and the histidine imidazole group. The assembly process and the stability of the holo-proteins were strongly influenced by the concentration of added imidazole (mimicking the histidine side-chain), making the attachment of the chromophore via the histidine more likely than via another cysteine of the protein.  相似文献   

13.
J A Sigman  A E Pond  J H Dawson  Y Lu 《Biochemistry》1999,38(34):11122-11129
In an effort to investigate factors required to stabilize heme-thiolate ligation, key structural components necessary to convert cytochrome c peroxidase (CcP) into a thiolate-ligated cytochrome P450-like enzyme have been evaluated and the H175C/D235L CcP double mutant has been engineered. The UV-visible absorption, magnetic circular dichroism (MCD) and electron paramagnetic resonance (EPR) spectra for the double mutant at pH 8.0 are reported herein. The close similarity between the spectra of ferric substrate-bound cytochrome P450cam and those of the exogenous ligand-free ferric state of the double mutant with all three techniques support the conclusion that the latter has a pentacoordinate, high-spin heme with thiolate ligation. Previous efforts to prepare a thiolate-ligated mutant of CcP with the H175C single mutant led to Cys oxidation to cysteic acid [Choudhury et al. (1994) J. Biol. Chem. 267, 25656-25659]. Therefore it is concluded that changing the proximal Asp235 residue to Leu is critical in forming a stable heme-thiolate ligation in the resting state of the enzyme. To further probe the versatility of the CcP double mutant as a ferric P450 model, hexacoordinate low-spin complexes have also been prepared. Addition of the neutral ligand imidazole or of the anionic ligand cyanide results in formation of hexacoordinate adducts that retain thiolate ligation as determined by spectral comparison to the analogous derivatives of ferric P450cam. The stability of these complexes and their similarity to the analogous forms of P450cam illustrates the potential of the H175C/D235L CcP double mutant as a model for ferric P450 enzymes. This study marks the first time a stable cyanoferric complex of a model P450 has been made and demonstrates the importance of the environment around the primary coordination ligands in stabilizing metal-ligand ligation.  相似文献   

14.
An extensive series of ligand complexes of ferric cytochrome P-450-CAM has been examined by UV-visible absorption, magnetic circular dichroism, and electron paramagnetic resonance spectroscopy in an attempt to identify the ligand trans to cysteinate in the six-coordinate resting state of the enzyme. Thus, the ligands used have been chosen to serve as models for coordination by potential endogenous amino acids and include alcohol, amide and carboxylate oxygen donors, amine, imidazole and indole nitrogen donors and disulfide, thioether, thiol, and thiolate sulfur donors. As this investigation has been by nature an empirical one, the conclusions are strengthened by the concurrent use of three different spectroscopic techniques. All of the complexes formed except those resulting from thiolate addition display spectroscopic properties that are broadly similar to those of low spin, six-coordinate P-450. Of the sulfur donor adducts, disulfide and thioether-bound P-450 have properties that are different enough in detail to distinguish them from native P-450. While the spectral features of the thiol-bound species and of low spin ferric P-450 are alike, the former are pH dependent due to interconversion to bound thiolate, whereas the latter display essentially no spectral changes with pH. Of the oxygen donor complexes, all but carboxylate have spectra that very closely match those of the resting enzyme. Adducts formed with most nitrogenous ligands, including several imidazole derivatives, exhibit spectra that are sufficiently different from native P-450 to exclude them as candidates for the sixth ligand. Interestingly, the spectral properties of a complex formed with an imidazole derivative having a bulky electron-withdrawing substituent in the alpha position are comparable to those native P-450 except for the line shape of the EPR spectrum. Previously published theoretical work suggests that the spectral differences seen between this imidazole derivative and the other examined are electronic and not steric in origin. As no similar electronic mechanism exists for the protein to reduce the electron-donating ability or histidine, it is felt that coordination of histidine in the sixth position of P-450 can be ruled out. In conclusion, close examination of all spectral data reveals that amino acid analog adducts of P-450-CAM with amides and, in particular, alcohols, produce spectra that almost exactly duplicate those of native P-450 and suggests that the ligand trans to cysteinate in the six-coordinate ferric enzyme has an oxygen donor atom.  相似文献   

15.
Horse heart ferric cytochrome c was investigated by the following three methods: (I) Light absorption spectrophotometry at 23 degrees C and 77 degrees K; (II) Electron paramagnetic resonance (EPR) spectroscopy at 20 degrees K; (III) Precise equilibrium measurements of ferric cytochrome c with azide and imidazole between 14.43 and 30.90 degrees C. I and II have demonstrated that: (1) Ferric cytochrome c azide and imidazole complexes were in the purely low spin state between 20 degrees K and 23 degrees C; (2) The energy for the three t2g orbitals calculated in one hole formalism shows that azide or imidazole bind to the heme iron in a similar manner to met-hemoglobin azide or imidazole complexes, respectively. III has demonstrated that: (1) The change of standard enthalpy and that of standard entropy were -2.3 kcal/mol and -1.6 cal/mol per degree for the azide complex formation, and -1.4 kcal/mol and 2.9 cal/mol per degree for the imidazole complex formation. (2) A linear relationship between the change of entropy and that of enthalpy was observed for the above data for the cyanide complex formation. The complex formation of ferric cytochrome c was discussed based on the results of X-ray crystallographic studies compared with hemoglobin and myoglobin.  相似文献   

16.
Resonance Raman spectroscopy has been used to observe changes in the iron-ligand stretching frequency in photoproduct spectra of the proximal cavity mutant of myoglobin H93G. The measurements compare the deoxy ferrous state of the heme iron in H93G(L), where L is an exogenous imidazole ligand bound in the proximal cavity, to the photolyzed intermediate of H93G(L)*CO at 8 ns. There are significant differences in the frequencies of the iron-ligand axial out-of-plane mode nu(Fe-L) in the photoproduct spectra depending on the nature of L for a series of methyl-substituted imidazoles. Further comparison was made with the proximal cavity mutant of myoglobin in the absence of exogenous ligand (H93G) and the photoproduct of the carbonmonoxy adduct of H93G (H93G-*CO). For this case, it has been shown that H2O is the axial (fifth) ligand to the heme iron in the deoxy form of H93G. The photoproduct of H93G-*CO is consistent with a transiently bound ligand proposed to be a histidine. The data presented here further substantiate the conclusion that a conformationally driven ligand switch exists in photolyzed H93G-*CO. The results suggest that ligand conformational changes in response to dynamic motions of the globin on the nanosecond and longer time scales are a general feature of the H93G proximal cavity mutant.  相似文献   

17.
The oxidized and hydroquinone forms of synthetic 8 alpha-N-imidazolylriboflavin have been investigated by proton nuclear magnetic resonance spectroscopy at 360 MHz. Proton resonances due to the imidazole ring, isoalloxazine ring, and ribityl side chain have been assigned on the basis of two-dimensional 1H-1H correlated spectra (COSY), selective decoupling, and nuclear Overhauser effect difference spectra and by comparison of computer-simulated with experimental spectra. The effect of pH on the imidazolyl resonances shows a pKa for the unsubstituted imidazole nitrogen of 6.0 +/- 0.1 for the oxidized form and a value of 7.0 +/- 0.1 for the reduced form, in good agreement with the values obtained from oxidation-reduction potential data in a previous paper [Williamson, G., & Edmondson, D. E. (1985) Biochemistry 24, 7790-7797]. Slow exchange of the flavin 8 alpha-methylene and imidazolyl C(2) protons was observed at pH 6.1 but not at pH values below 4.0 for the oxidized form of the flavin. The reduced form, but not the oxidized form, of the flavin exhibits geminal coupling of the 8 alpha-methylene protons and of the C(1') methylene protons of the ribityl side chain. The magnetic nonequivalence of the protons of these two methylene groups is suggested to result from intermolecular association of the reduced flavin in aqueous solutions at the concentrations required for the spectral experiments.  相似文献   

18.
Using a combination of potentiometry (glass electrode) and quantitative 51V NMR spectroscopy, the full speciation in the vanadate-peroxide and vanadate-peroxide-imidazole systems was determined in the pH range 1-10 (0.150 M Na(Cl) medium, 25 degrees C). Using the computer program LAKE, the pKa value of imidazole and the formation constants for 10 peroxovanadate species and also for three more species where a single imidazole moiety is also bound, have been calculated. The experimental data show a good fit to the calculated speciation model, even for the less abundant species. The species are either monomeric or dimeric in vanadium, and four resonances of the dimeric species have been unambiguously assigned via 2D 51V NMR. Diperoxovanadates are the favoured species at pH 2-10, when sufficient peroxide is present. Imidazole is found to bind strongly to them at pH 6-9. The equilibrium conditions are illustrated in distribution diagrams.  相似文献   

19.
For the purpose of understanding the electron paramagnetic resonance (epr) spectral change of nitrosylhemoproteins under various conditions, the epr spectra for the model system have been analyzed. The model system consists of the nitrogen oxide complex of the iron(II) protoporphyrin IX dimethyl ester and various imidazole derivatives (three hindered and six unhindered imidazole derivatives). The results of the analysis indicate the existence of two molecular species in the model system, which differ in structure of the FeNO unit. These observations were compared with those for the nitrosylhemoproteins.  相似文献   

20.
M R Eftink  R L Biltonen 《Biochemistry》1983,22(22):5134-5140
Various kinetic aspects of the nonenzymatic hydrolysis of cytidine cyclic 2',3'-phosphate and uridine cyclic 2',3'-phosphate have been studied in order to provide a basis for comparison with the ribonuclease A catalyzed hydrolysis reaction. Studies of the pH dependence of the nonenzymatic reaction reveal mechanisms that are first order in hydroxide concentration and second order in hydrogen ion concentration, in addition to a "water" reaction. The rate constant for the water reaction was found to be very small, approximately equal to 2.5 X 10(-6) min-1. General base catalyzed hydrolysis reactions were also studied with imidazole as the catalyst. At pH values in which both the protonated and neutral forms of imidazole are present, a kinetic mechanism was observed that appears to be second order in total imidazole concentration, thus suggesting that bifunctional catalysis occurs. The activation enthalpy for the hydroxide, hydrogen ion, water, and imidazole catalyzed reactions was determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号